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ABSTRACT   This paper explores the consequences for economic research 
of methods used by data publishers to protect the privacy of their respondents. 
We review the concept of statistical disclosure limitation for an audience of 
economists who may be unfamiliar with these methods. We characterize what it 
means for statistical disclosure limitation to be ignorable. When it is not ignor-
able, we consider the effects of statistical disclosure limitation for a variety of 
research designs common in applied economic research. Because statistical 
agencies do not always report the methods they use to protect confidentiality, we 
also characterize settings in which statistical disclosure limitation methods are 
discoverable; that is, they can be learned from the released data. We conclude 
with advice for researchers, journal editors, and statistical agencies.

This paper is about the potential effects of statistical disclosure limita-
tion (SDL) on empirical economic modeling. We study the methods 

that public and private providers use before they publish data. Advances 
in SDL have unambiguously made more data available than ever before, 
while protecting the privacy and confidentiality of identifiable informa-
tion on individuals and businesses. But modern SDL intrinsically distorts 
the underlying data in ways that are generally not clear to the researcher 
and that may compromise economic analyses, depending on the specific 
hypotheses under study. In this paper, we describe how SDL works. We pro-
vide tools to evaluate the effects of SDL on economic modeling, as well as 
some concrete guidance to researchers, journal editors, and data providers 
on assessing and managing SDL in empirical research.

Some of the complications arising from SDL methods are highlighted by 
J. Trent Alexander, Michael Davern, and Betsey Stevenson (2010). These 
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authors show that the percentage of men and women by age in public-
use microdata samples (PUMS) from Census 2000 and selected American 
Community Surveys (ACS) differs dramatically from published tabulations 
based on the complete census and the full ACS for individuals age 65 and 
older. This result was caused by an acknowledged misapplication of confi-
dentiality protection procedures at the Census Bureau. As such, it does not 
reflect a failure of this specific approach to SDL. Indeed, it highlights the 
value to the Census Bureau of making public-use data available—researchers 
draw attention to problems in the data and data processing. Correcting these 
problems improves future data publications.

This episode reflects a deeper tension in the relationship between the 
federal statistical system and empirical researchers. The Census Bureau 
does not release detailed information on the specific SDL methods and 
parameters used in the decennial census and ACS public-use data releases, 
which include data swapping, coarsening, noise infusion, and synthetic 
data. Although the agency originally announced that it would not release 
new public-use microdata samples that corrected the errors discovered 
by Alexander, Davern, and Stevenson (2010), shortly after that announce-
ment it did release corrections for all the affected Census 2000 and ACS 
PUMS files.1 There is increased concern about the application of these SDL 
procedures without some prior input from data analysts outside the Census 
Bureau who specialize in the use of these PUMS files. More broadly, this 
episode reveals the extent to which modern SDL procedures are a black box 
whose effect on empirical analysis is not well understood.

In this paper, we pry open the black box. First, we characterize the inter-
action between modern SDL methods and commonly used econometric 
models in more detail than has been done elsewhere. We formalize the data 
publication process by modeling the application of SDL to the underlying 
confidential data. The data provider collects data from a frame defining 
an underlying, finite population, edits these data to improve their quality, 
applies SDL, then releases tabular and (sometimes) microdata public-use 
files. Scientific analysis is conducted on the public-use files.

Our model characterizes the consequences for estimation and inference 
if the researcher ignores the SDL, treating the published data as though 
they were an exact copy of the clean confidential data. Whether SDL is 
ignorable or not depends on the properties of the SDL model and on the 

1. See the online appendix, section B.1. Supplemental materials and online appendices 
to all papers in this volume may be found at the Brookings Papers web page, www.brookings. 
edu/bpea, under “Past Editions.”
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analysis of interest. We illustrate ignorable and nonignorable SDL for a 
variety of analyses that are common in applied economics.

A key problem with the approach of most statistical agencies to modern 
SDL systems is that they do not publish critical parameters. Without know-
ing these parameters, it is not possible to determine whether the magni-
tude of nonignorable SDL is substantial. As the analysis by Alexander, 
Davern, and Stevenson (2010) suggests, it is sometimes possible to “dis-
cover” the SDL methods or features based on related estimates from the 
same source. This ability to infer the SDL model from the data is useful in 
settings where limited information is available. We illustrate this method 
with a detailed application in section IV.B.

For many analyses, SDL methods that have been properly applied will 
not substantially affect the results of empirical research. The reasons are 
straightforward. First, the number of data elements subject to modification 
is probably limited, at least relative to more serious data quality problems 
such as reporting error, item missingness, and data edits. Second, the effects 
of SDL on empirical work will be most severe when the analysis targets 
subpopulations where information is most likely to be sensitive. Third, SDL 
is a greater concern, as a practical matter, for inference on model param-
eters. Even when SDL allows unbiased or consistent estimators, the vari-
ance of those estimators will be understated in analyses that do not explicitly 
correct for the additional uncertainty.

Arthur Kennickell and Julia Lane (2006) explicitly warned economists 
about the problems of ignoring statistical disclosure limitation methods. 
Like us, they suggested specific tools for assessing the effects of SDL on 
the quality of empirical research. Their application was to the Survey of 
Consumer Finances, which was the first American public-use product to 
use multiple imputation for editing, missing-data imputation, and SDL 
(Kennickell 1997). Their analysis was based on the efforts of statisticians 
to explicitly model the trade-off between confidentiality risk and data 
usefulness (Duncan and Fienberg 1999; Karr and others 2006).

The problem for empirical economics is that statistical agencies must 
develop a general-purpose strategy for publishing data for public consump-
tion. Any such publication strategy inherently advantages certain analy-
ses over others. Economists need to be aware of how the data publication 
technology, including its SDL aspects, might affect their particular analy-
ses. Furthermore, economists should engage with data providers to help 
ensure that new forms of SDL reflect the priorities of economic research 
questions and methods. Looking to the future, statisticians and computer 
scientists have developed two related ways to address these issues more 
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systematically: synthetic data combined with validation servers and privacy-
protected query systems. We conclude with a discussion of how empirical 
economists can best prepare for this future.

I. Conceptual Framework and Motivating Examples

In this section we lay out the conceptual framework that underlies our 
analysis, including our definitions of ignorable versus nonignorable SDL. 
We also offer two motivating examples of SDL use that will be familiar to 
social scientists and economists: randomized response for eliciting sensi-
tive information from survey respondents and the effect of topcoding in 
analyzing income quantiles.

I.A. Key Concepts

Our goal is to help researchers understand when the application of SDL 
methods affects the analysis. To organize this discussion, we introduce 
key concepts that we develop in a formal model in the online appendix. 
We assume the analyst is interested in estimating features of the model that 
generated the confidential data. However, the analyst only observes the 
data after the provider has applied SDL. The SDL is, therefore, a distinct 
part of the process that generates the published data.

We say the SDL is ignorable if the analyst can recover the estimates 
of interest and make correct inferences using the published data without 
explicitly accounting for SDL—that is, by using exactly the same model as 
would be appropriate for the confidential data. In applied economic research 
it is common to implicitly assume that the SDL is ignorable, and our defini-
tion is an explicit extension of the related concept of ignorable missing data.

If the data analyst cannot recover the estimate of interest without the 
parameters of the SDL model, the SDL can then be said to be nonignorable. 
In this case, the analyst needs to perform an SDL-aware analysis. How-
ever, the analyst can only do so if either (i) the data provider publishes 
sufficient details of the SDL model’s application to the confidential data, 
or (ii) the analyst can recover the parameters of the SDL model based 
on prior information and the published data. In the first case, we call the 
nonignorable SDL known. In the second case, we call the nonignorable 
SDL discoverable.

I.B. Motivating Examples

Consider two examples of SDL familiar to most social scientists. 
The first is randomized response, which allows a respondent to answer 
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a sensitive question truthfully without revealing the answer to the inter-
viewer. This yields more accurate responses, since respondents are more 
likely to answer truthfully, but at the cost of adding noise to the data. The 
second example is income topcoding, which is a form of SDL that protects 
the privacy of high-income households. This example highlights the fact 
that the ignorability of SDL is a function not just of the SDL method but 
also of the estimand of interest.

RANDOMIZED RESPONSE Stanley Warner (1965) proposed a survey tech-
nique in which the respondent is presented with one of two questions 
that can both be answered either “yes” or “no.” The interviewer does 
not know the question. The respondent opens an envelope drawn from a 
basket of identical envelopes, reads the question silently, responds “yes” 
or “no,” and then destroys the question. With a certain probability the 
question is sensitive (for example, “Have you ever committed a violent 
crime?”), and with a complementary probability the question is innocuous 
(for example, “Is your birthday between July 1st and December 31st?”). 
Again, the interviewer records only the “yes” or “no” answer and never 
sees the true question.

If one runs this single-question survey on a sample of 100 people cho-
sen randomly, the estimated proportion of “yes” answers has an expected 
value equal to the probability that the respondent was asked the sensitive 
question times the population probability (in our example) of having 
committed a violent crime plus the complement of the probability that 
the respondent was asked the sensitive question times one-half. If the 
sample mean proportion of “yes” answers is 26 percent, then to recover 
the implied estimate for the population probability of having commit-
ted a violent crime one needs to know the probability that the sensitive 
question was asked. The standard error of the estimated proportion of 
“yes” answers is 4.4 percent, but the standard error for the estimated 
population proportion of having committed a violent crime is 4.4 percent 
divided by the probability that the respondent was asked the sensitive 
question.

Why is this a form of statistical disclosure limitation? Because no one 
other than the respondent knows which question was asked, this procedure 
places bounds on the amount of information that anyone, including the 
interviewer, can learn about the respondent’s answer to the sensitive ques-
tion. (See section II.B for a complete discussion.) This form of SDL is obvi-
ously not ignorable. The data analyst does not care about the 26 percent but 
wants to estimate the proportion of people who have committed a violent 
crime. The data publisher adds the following documentation about the SDL 
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parameters: Only half the respondents were asked the sensitive question; 
the other half were asked a question for which half the people in the popu-
lation would answer “yes.” Now the analyst can estimate that the propor-
tion who committed a violent crime is 2 percent, and its standard error is 
8.8 percent. Notice that the SDL affected both the mean and the standard 
error of the estimate.

CONSEQUENCES OF TOPCODING FOR QUANTILE ESTIMATION Richard 
Burkhauser and others (2012) provide a simple, vivid example of the 
consequences of SDL for economic analysis. Because of SDL, changes 
in the upper tail of the income distribution are largely hidden from view in 
research based on public-use microdata, most often the Current Population 
Survey (CPS). Because income is a sensitive data item, and large incomes 
can be particularly revealing in combination with other information, the 
Census Bureau and the Bureau of Labor Statistics both censor incomes 
above a certain threshold in their public-use files. The topcoding of income 
protects privacy, but it also limits what can be done with the data.

Burkhauser and others (2012) report that the income topcode results 
in 4.6 percent of observations being censored. Thus, the topcoded data 
are perfectly fine for measuring the evolution of the 90-10 quantile ratio 
but completely useless for measuring the evolution of incomes among 
the top 1 percent of households, as was revealed when Thomas Piketty 
and Emmanuel Saez (2003) analyzed uncensored income data based 
on Internal Revenue Service (IRS) tax filings. Piketty and Saez (2003) 
showed that trends in income inequality look quite different in the 
administrative record data than in the CPS. Using restricted-access CPS 
data, Burkhauser and others (2012) showed that the difference between 
the administrative and survey data was largely due to censoring in the 
survey data.

If we could observe all the confidential data, Y, they would have prob-
ability distribution function pY(Y) and cumulative distribution function  
FY (Y ). For studying income inequality, interest centers on the quantiles of 
FY, defined by the inverse cumulative distribution function QY. When draw-
ing inferences about the quantiles of the income distribution, topcoding 
is irrelevant for all quantiles that fall below the top-coding threshold, T.  
We say top-coding is ignorable if, for a given quantile point of interest  
p ∈ [0, 1], QZ(p) = QY(p), where QZ(p) is the quantile function of the 
published data, Z.

This very familiar example highlights several features of ignorable and 
nonignorable SDL. First, whether SDL can be ignored depends on both 
the properties of the SDL mechanism and the specific estimand of interest. 
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Second, assessing the effect of SDL requires knowledge of the mechanism. 
If the value of the topcode threshold T were not published, it would not be 
possible for the researcher to assess whether a specific quantile of interest 
could be learned from the published data. The researcher might learn the 
topcode by inspecting the published data. In this case, we say the topcode 
is a discoverable form of SDL.

The work of Jeff Larrimore and others (2008) also illustrates how, when 
armed with information about SDL methods and access to the confidential 
data, researchers can improve their analysis with minimal change to the 
risk of harmful or unlawful data disclosure. Larrimore and others (2008) 
published new data for 24 separate income series for 1976–2006 that con-
tain the mean values of incomes above the topcode values within cells, dis-
aggregated by race, gender, and employment status. They show that these 
cell means can be used with the public-use CPS microdata to analyze the 
income distribution in ways that would otherwise require direct access to 
the confidential microdata.

In the randomized response example, the SDL model is known as long 
as the probability that the sensitive question was asked is disclosed. With-
out disclosure of this probability, the researcher is unable to perform an  
SDL-aware analysis because it is not discoverable. By contrast, an un - 
disclosed topcode level may still be discoverable by a researcher through 
inspection of the data.

II. The Basics of Statistical Disclosure Limitation

The key principle of confidentiality is that individual information should 
only be used for the statistical purposes for which it was collected. More-
over, that information should not be used in a way that might harm the 
individual (Duncan, Jabine, and de Wolf 1993, p. 3). This principle 
embodies two distinct ideas. First, individuals have a property right of 
privacy covering their personal information. Second, once such personal 
data have been shared with a trusted curator, individuals should be pro-
tected against uses that could lead to harm. These ideas are reflected in the 
development and implementation of SDL among data providers. For the 
United States, the Federal Committee on Statistical Methodology (Harris-
Kojetin and others 2005) has produced a very thorough summary of the 
objectives and practices of SDL.

The constant evolution of information technology makes it challeng-
ing to translate the principle of confidentiality into policy and practice. 
The statutes that govern how statistical agencies approach SDL explicitly 
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prohibit any breach of confidentiality.2 However, statisticians and computer 
scientists have formally proven that it is impossible to publish data without 
compromising confidentiality, at least probabilistically. We touch in our 
conclusion on how public policy should adapt in light of new ideas about 
SDL and privacy protection. The current period of tension also character-
izes the broader co-evolution of science and public policy around SDL, 
which we briefly review.

II.A. What Does SDL Protect?

SDL may appear to protect against unrealistic, fictitious, or overblown 
threats. Reports of data security breaches, in which hackers abscond with 
terabytes of sensitive individual information, are increasingly common, 
but it has been roughly six decades since the last reported breach of data 
privacy within the federal statistical system (Anderson and Seltzer 2007, 
for household data; Anderson and Seltzer 2009, for business data). One 
is hard-pressed to find a report of the American Community Survey, for 
example, being “hacked.” Yet it is important to acknowledge that the prin-
ciple of confidentiality for statistical agencies arose from very real and 
deliberate attempts by other government agencies to use the data collected 
for statistical purposes in ways that were directly harmful to specific indi-
viduals and businesses.

Laws to protect data confidentiality arose from the need to separate the 
statistical and enforcement activities of the federal government (Anderson 
and Seltzer 2007; 2009). These laws were subsequently weakened and 
violated in a small but influential number of cases. For example, the U.S. 
government obtained access to confidential decennial census information 
to help locate German and Japanese Americans during World Wars I and 
II, and from the economic census to assist with war planning. The privacy 
laws were subsequently strengthened, in part because businesses were 
quite reluctant to provide information to the Census Bureau for fear that 
it could either be used for tax or antitrust proceedings or be used by their 

2. U.S. Code Title 13, Section 9, governing the Census Bureau, prohibits “any publica-
tion whereby the data furnished by any particular establishment or individual under this 
title can be identified” (see https://www.law.cornell.edu/uscode/text/13/9, accessed August 6, 
2015). U.S. Code Title 5, Section 552a (part of the Confidential Information Protection and 
Statistical Efficiency Act of 2002), which governs all federal statistical agencies, requires 
them to “establish appropriate administrative, technical, and physical safeguards to insure 
the security and confidentiality of records and to protect against any anticipated threats or 
hazards to their security or integrity which could result in substantial harm, embarrassment, 
inconvenience, or unfairness to any individual on whom information is maintained” (see 
https://www.law.cornell.edu/uscode/text/5/552a, accessed August 6, 2015).
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competitors to reveal trade secrets. The statistical agencies therefore also 
have a pragmatic interest in laws that protect individual and business infor-
mation against intrusions by other parts of the federal and state govern-
ments, since these laws directly affect willingness to participate in censuses 
and surveys.

The modern proliferation of data and advances in computing technol-
ogy have led to new concerns about data privacy. We now understand 
that it is possible to identify an individual from a very small number of 
demographic attributes. In a much-cited study, Latanya Sweeney (2000) 
shows how then publicly available hospital records might be linked 
to survey data to compromise confidentiality. Arvind Narayanan and 
Vitaly Shmatikov (2008) show that supposedly anonymous user data 
published by Netflix can be re-identified. Although no harm was docu-
mented in these cases, they highlight the potential for harm in the world 
of big data.

Paul Ohm (2010) argues that for every individual there may be a “data-
base of ruin” that can be constructed by linking together existing non-
ruinous data. That is, there may be one database with some embarrassing 
or damaging information, and another database with personally identifi-
able information to which it may be linked, perhaps through a sequence of 
intermediate databases. In some cases, there are clear financial incentives 
to seek out such a database of ruin. A potential employer or insurer may 
have an interest in learning health information that a prospective employee 
would rather not disclose. If such information could be easily and cheaply 
gleaned by combining publicly available data, economic intuition suggests 
that firms might do so, despite the absence of documented instances of such 
behavior. An alternative perspective is offered by Jane Yakowitz (2011), 
who argues for legal reforms that reduce the emphasis on hypothetical 
threats to privacy and expand the emphasis on the benefits from providing 
accurate, timely socioeconomic data.

II.B. Concepts and Methods of SDL

Modern SDL methods are designed to allow high-quality statistical infor-
mation to be published while protecting confidentiality. Since many applied 
researchers may have an incomplete awareness of and knowledge about 
the ways in which SDL distorts published data, we provide an overview 
of the most common SDL methods applied to economic and demographic 
data. For a more technical and detailed treatment, we refer the reader to two 
recent works on SDL and formal privacy models: Statistical Confidentiality: 
Principles and Practice by George Duncan, Mark Elliot, and Juan-José 
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Salazar-González (2011), and “The Algorithmic Foundations of Differential 
Privacy” by Cynthia Dwork and Aaron Roth (2014).

A TAXONOMY OF THREATS TO CONFIDENTIALITY Confidentiality may be vio-
lated in many related ways. An identity disclosure occurs if the identity of 
a specific individual is completely revealed in the data. This can occur 
because a unique identifier is released or because the information released 
about a respondent is enough to uniquely identify him or her in the data. An 
attribute disclosure occurs when it is possible to deduce from the published 
data a specific confidential attribute of a given respondent.

Modern SDL and formal privacy systems treat disclosure risk probabi-
listically. From this perspective, the problem is not merely that published 
data might perfectly identify a respondent or his or her attributes. Rather, 
it is that the published data might allow a user to infer a respondent’s iden-
tity or attributes with high probability. This concept, known as inferential 
disclosure, was introduced by Tore Dalenius (1977) and formalized by 
Duncan and Diane Lambert (1986) in statistics, and by Shafi Goldwasser 
and Silvio Micali (1982) in computer science.

Suppose the published data are denoted Z. A confidential variable yi is 
associated with a specific respondent i. The prior beliefs of a user about the 
value of yi are represented by a probability distribution, p(yi), that reflects 
information from all other sources. Then p(yi ⎜Z) represents the updated—
posterior—beliefs of the user about the value of yi after the data Z are pub-
lished. An inferential disclosure has occurred if the posterior beliefs are too 
large relative to prior beliefs.

Our example of randomized response from section I.B provides intuition 
about inferential disclosure. The probability that the respondent will answer 
“yes” given that the truth is “yes” is 75 percent. The probability that the 
respondent will answer “yes” given that the truth is “no” is 25 percent. These 
two probabilities are entirely determined by the probability that the respon-
dent was asked the sensitive question and the probability that the answer to 
the innocuous question is “yes.” They do not depend on the unknown 
population probability of having committed a violent crime. The ratio 
of these two probabilities is the Bayes factor—the ratio of the posterior 
odds that the truth is “yes” versus “no” given the survey answer “yes” to 
the prior odds of “yes” versus “no.” The interviewer learns from a “yes” 
answer that the respondent is three times as likely as a random person to 
have committed a violent crime, and that is all the interviewer learns. Had 
the violent crime question been asked directly, the interviewer could have 
updated his posterior beliefs by a much larger factor—potentially infinite 
if the respondent answers truthfully.
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Moving forward, it is important to keep the concept of inferential disclo-
sure in mind for two reasons. First, it leads to a key intuition: It is impos-
sible to publish useful data without incurring some threat to confidentiality. 
A privacy protection scheme that provably eliminates all inferential 
disclosures is equivalent to a full encryption of the confidential data and 
therefore useless for analysis.3 Second, to be effective against inferential 
disclosure, certain SDL methods require that statistical agencies also 
conceal the details of their implementation. For example, with swapping, 
knowledge of the swap rate would increase inferential disclosure risk by 
improving the user’s knowledge of the full data publication process. We 
will argue later that researchers, and agencies, should prefer SDL methods 
whose details can be made publicly available.

II.C. SDL Methods for Microdata

SUPPRESSION Suppression is one of the most common forms of SDL. 
Suppression can be used to eliminate an entire record from the data or to 
eliminate an entire attribute. Record-level suppression is ignorable under 
the same assumptions that lead to ignorable missing data models in gen-
eral. However, if the suppression rule is based on data items deemed to be 
sensitive, then it is very unlikely that the data were suppressed at random. 
In that case, knowledge of the suppression rule along with auxiliary infor-
mation from the underlying microdata is extremely useful in assessing the 
effect of suppression on any specific application. Sometimes suppression is 
combined with imputation; this occurs when sensitive information is sup-
pressed and then replaced with an imputed value.

AGGREGATION Aggregation refers to the coarsening of values a vari-
able can take, or the combination of information from multiple variables. 
The canonical example is the Census Bureau’s practice of aggregating 
geographic units into Public-Use Microdata Areas (PUMAs). Likewise, 
data on occupation are often reported in broad aggregates. The aggrega-
tion levels are deliberately set in such a way that the number of individuals 
represented in the data have some combination of attributes that exceeds a 
certain threshold. Aggregation is what prevents a user from, say, looking 
up the income of a 42-year-old economist living in Washington, D.C. Other 
forms of aggregation are quite familiar to empirical researchers, such as 
topcoding income, and reporting income in bins rather than in levels. These 

3. Evfimievski, Gehrke, and Srikant (2003) and Dwork (2006) prove it is impossible to 
deliver full protection against inferential disclosures, using different, but related, formaliza-
tions of the posterior probabilities.
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methods are well understood by researchers, and their effects on empirical 
work have been carefully studied. In many cases, it is easy to determine 
whether aggregation is a problem for a particular research application; in 
such cases, one possible solution is to obtain access to the confidential, 
disaggregated data.

NOISE INFUSION Noise infusion is a method in which the underlying 
microdata are distorted using either additive or multiplicative noise. The 
infusion of noise is not generally ignorable. If applied correctly, noise infu-
sion can preserve conditional and unconditional means and covariances, but 
it always inflates variances and leads to attenuation bias in estimated regres-
sion coefficients and correlations among the attributes (Duncan, Elliot, and 
Salazar-González 2011, p. 113). To assess the effects for any particular 
application, researchers need to know which variables have been infused 
with noise along with information about any relevant parameters govern-
ing the distribution of noise. If such information is not published, it may 
be possible to infer the noise distribution from the public-use data if there 
are multiple releases of information based on the same underlying frame. 
We illustrate this possibility in our analysis of the public-use Quarterly 
Workforce Indicators (QWI), Quarterly Census of Employment and Wages 
(QCEW), and County Business Patterns (CBP) data in section IV.B.

DATA SWAPPING Data swapping is the practice of switching the values of 
a selected set of attributes for one data record with the values reported in 
another record. The goal is to protect the confidentiality of sensitive values 
while maintaining the validity of the data for specific analyses. To imple-
ment swapping, the agency develops an index based on the probability that 
an individual record can be re-identified.4 Sensitive records are compared 
to “nearby” records on the basis of a few variables. If there is a match, the 
values of some or all of the other variables are swapped. Usually, the geo-
graphic identifiers are swapped, thus effectively relocating the records in 
each other’s location.

For example, in Athens, Georgia, there may be only one male household 
head with 10 children. If that man participates in the ACS and reports 
his income, it would be possible for anyone to learn his income by simply 
reading the unswapped ACS. To protect confidentiality, the entire data 
record can be swapped with the record of another household in a different 
geographic area with a similar income.

4. See Reiter (2005), Skinner and Holmes (1998), and Skinner and Shlomo (2008) for 
specifics on the risk indexes and Duncan, Elliot, and Salazar-González (2011, p. 114) for a 
review of historical uses of swapping.
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Swapping preserves the marginal distribution of the variables used to 
match the records at the cost of all joint and conditional distributions involv-
ing the swapped variables. The computer science community has frequently 
criticized this approach to confidentiality protection because it does not 
meet the “cryptography” standard: an encryption algorithm is provably 
secure when all details and parameters, except the encryption key, can  
be made public without compromising the algorithm. SDL algorithms 
like swapping are not provably effective when too many of their parameters 
are public. That is why the agencies do not publish them or release more 
than a few details of their swapping procedures.

The lack of published details is what makes input data swapping so insid-
ious for empirical research. Matching variables, the definition of “nearby,” 
and the rate at which sensitive and nonsensitive records are swapped can 
all affect the data analyses that use those variables, so parameter confiden-
tiality makes it difficult to analyze the effects of swapping. Furthermore, 
even restricted-access arrangements that permit use of the confidential data 
may still require the use of the swapped version, even if other SDL modi-
fications of the data have been removed. Some providers even destroy the 
unswapped data.

SYNTHETIC MICRODATA Synthetic microdata involve the publication of 
a data set with the same structure as the confidential data, in which  
the published data are drawn from the same data-generating process as 
the confidential data but some or all of the confidential data have been 
suppressed and imputed. The confidential data, Y, are generated by a 
model, p(Y ⎜θ), parameterized by θ. The synthetic microdata are drawn 
from p(Ỹ ⎜Y ), the posterior predictive distribution for the data process 
given the observed data, which has been estimated by the statistical 
agency.

When originally proposed by Roderick Little (1993) and Donald Rubin 
(1993), synthetic data methods mimicked procedures that already existed 
for missing-data problems. Synthetic data methods impose an explicit 
cost on the researcher—imputed data replacing actual data—in exchange 
for an explicit benefit, namely the correct estimation and inference proce-
dures that are available for the synthetic data. The Little–Rubin forms of 
synthetic data analysis are guaranteed to be SDL-aware. If the researcher’s 
hypothesis is among those for which correct inference procedures are avail-
able, then the synthetic data are provably analytically valid. John Abowd 
and Simon Woodcock (2001), Trivellore Raghunathan, Jerome Reiter, and 
Rubin (2003), and Reiter (2004) have refined the Little–Rubin methods, 
allowing them to be applied to complex survey data and combined with 
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other missing data imputations. They have also shown that the class of 
hypotheses with provable analytical validity is limited by the models used 
to estimate p(Ỹ ⎜Y).

Synthetic data can only be used by themselves for certain types of 
research questions—those for which they are analytically valid. This set 
of hypotheses depends on the model used to generate the synthetic data. 
For example, if the confidential data are 10 discrete variables and the 
synthetic data are generated from a model that includes all possible inter-
actions of two of these variables, then any research question involving only 
two variables can be analyzed in a correct, SDL-aware manner from the 
synthetic data. The analyst does not need access to the confidential data. 
But no model involving three or more variables can be analyzed correctly 
from the synthetic data. Such models require that the analyst have access to 
the confidential data. When the model used to produce the synthetic data is  
publicly available, researchers can assess whether a given synthetic data set 
is appropriate for a specific question.

Synthetic data can also be used as a framework for the development of 
models, code, and hypotheses. For example, researchers can sometimes 
develop models using the synthetic data, which are public, and then run 
those models on the confidential data. These applications form part of a 
feedback loop in which external researchers help provide improvements to 
the synthetic data model. We discuss synthetic data and the feedback loop 
in more detail in section VI.A.

FORMAL PRIVACY MODELS Formal privacy models emerged from data-
base security and cryptography. The idea is to model the publication of data 
by the statistical agency using a randomized mechanism that answers statis-
tical questions after adding noise to the properly computed answer in the 
confidential data. This is known in SDL as output distortion. Breaches of 
privacy are modeled as a game between users, who try to make inferential 
disclosures from the published data, and the statistical agency, which tries 
to limit these disclosures.

Dwork (2006) and Dwork and others (2006) formalized the privacy 
protection associated with output-distortion SDL in a model called 
ε-differential privacy. For economists, Ori Heffetz and Katrina Ligett 
(2014) provide a very accessible introduction. Dwork and Roth (2014), in 
section 3, use our running example of randomized response to character-
ize ε-differential privacy. In ε-differential privacy, the SDL must put an 
upper bound, ε, on the Bayes factor. In our example, ε = ln (Bayes factor 
bound) = ln 3 = 1.1. Bounding the Bayes factor implies that the maxi-
mum amount the interviewer can learn from a “yes” answer is that the 
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respondent (in our original example) is three times as likely as a random 
person in the population to have committed a violent crime.

With formal privacy-protected data publication systems, there are prov-
able limits to the amount of privacy loss that can be experienced in the 
population even under worst-case outcomes. These systems also have 
provable accuracy for a specific set of hypotheses. From a researcher per-
spective, then, formal privacy systems and synthetic data are very similar— 
only some hypotheses can be studied accurately, and these are deter-
mined by the statistical queries answered in the formal privacy model. For 
example, in a case where the confidential data are, once again, 10 discrete 
variables, and the formal privacy system publishes a protected version of 
every two-way marginal table, then, once again, any hypothesis involv-
ing only two variables can be studied correctly. Likewise, no hypotheses 
involving three or more variables can be studied correctly without addi-
tional privacy-protected publications. Whether these computations can be 
safely performed by the formal privacy system depends on whether any 
privacy budget remains. If the privacy budget has been exhausted by pub-
lishing all two-way tables, then no further analysis of the confidential data 
is permitted.

Synthetic data and formal privacy methods are converging. In the SDL 
literature, researchers now analyze the confidentiality protection provided 
by the synthetic data (Kinney and others 2011; Benedetto and Stinson 
2015; Machanavajjhala and others 2008). In the formal privacy literature, 
analysts may choose to publish the privacy-protected output as synthetic 
data—that is, in a format that allows an analyst to use the protected data 
as if they were the confidential data (Hardt, Ligett, and McSherry 2012). 
The analysis of synthetic data produced by a formal privacy system is not 
automatically SDL-aware. The researcher has to use the published features 
of the privacy model to correct the estimation and the inference.

II.D. SDL Methods for Tabular Data

Tabular data present confidentiality risks when the number of entities 
contributing to a particular cell in a table is small or the influence of a few 
of the entities on the value of the cell is large, such as for magnitudes like 
total payroll. A sensitive cell is one for which some function of the cell’s 
microdata falls above or below a threshold set by an agency-specific rule. 
The two most common methods for handling sensitive cells are forms of 
randomized rounding, which distorts the cell value and may distort other 
cells as well, and the more common method of suppression. An alternative 
to suppression is to build tables after adding noise to the input microdata.
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SUPPRESSION Suppression deletes the values for sensitive cells from 
the published data. From the outset, it was understood that primary 
suppression—not publishing easily identified data items—does not protect 
anything if an agency publishes the rest of the data, including summary 
statistics (Fellegi 1972). In such a case, users could infer the missing items 
from what was published. Agencies that rely on suppression for tabular data 
make complementary suppressions to reduce the probability that a user can 
infer the sensitive items from the published data.

Suppressions introduce a missing-data problem for researchers. Whether 
that missing-data problem is ignorable or not depends on the nature of the 
model being analyzed and the manner in which suppression is done. An 
analysis using geographical variation for identification will benefit from 
using data where industrial classifications were used for the complementary 
suppressions, whereas an analysis that uses industrial variation will benefit 
from using data where the complementary suppressions were made using 
geographical classifications. Ultimately, the preferences of the agency that 
chooses the complementary suppression strategy will determine which 
analyses have higher data quality. As with swap rates, agencies rarely pub-
lish details of their methods for choosing complementary suppressions.

INPUT DISTORTION Input distortion of the microdata is another method 
for protecting tabular data. Using this method, an agency distorts the value 
of some or all of the inputs before any publication tables are built, and then 
computes all, or almost all, of the cells using only the distorted data.

II.E. Current Practices in the U.S. Statistical System

The SDL methods in the decentralized U.S. statistical system are varied. 
The most thorough analysis of this topic is the one published by the Federal 
Committee on Statistical Methodology (FCSM), which is organized by the 
chief statistician of the United States in the Office of Management and 
Budget (Harris-Kojetin and others 2005). We summarize the key features 
of the FCSM report and, where possible, provide updated information on 
certain data products used extensively by economists. It is incumbent upon 
the researcher to read the relevant documentation and, if necessary, contact 
the data provider to obtain nonconfidential publications detailing how the 
data were collected and prepared for publication, including which methods 
of SDL were applied.

The goal of the FCSM report is to characterize best practices for SDL, 
and it contains a table presenting the methods employed by each agency 
to protect microdata and tabular data (Harris-Kojetin and others 2005,  
p. 53). As of 2005, the table shows, almost all federal agencies that published 
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microdata reported using some form of nonignorable, undiscoverable 
data perturbation. The Census Bureau’s stated policy is “for small popu-
lations or rare characteristics, noise may be added to identifying vari-
ables, data may be swapped, or an imputation applied to the characteristic” 
(Harris-Kojetin and others 2005, p. 40). Many other agencies, including the 
Bureau of Labor Statistics (BLS) and National Science Foundation (NSF), 
contract with the Census Bureau to conduct surveys and therefore use the 
same or similar guidelines for SDL. The National Center for Education 
Statistics (NCES) also reports using ad hoc perturbation of the microdata 
to prevent matching, including swapping and “suppress and impute” for 
sensitive data items.

In a recent technical report by Amy Lauger, Billy Wisniewski, and Laura 
McKenna (2014), the Census Bureau released up-to-date information  
on its SDL methods. In addition to information about discoverable SDL 
methods, like geographic thresholds and topcoding, the report describes 
in more detail how noise is added to microdata to protect confidentiality. 
Specifically, it states that “noise is added to the age variable for persons 
in households with 10 or more people,” and that “noise is also added to a 
few other variables to protect small but well-defined populations but we 
do not disclose those procedures” (Lauger, Wisniewski, and McKenna 
2014, p. 2).

This Census Bureau report also confirms that swapping is the primary 
SDL method used in the ACS and decennial censuses. The swapping 
method targets records that have high disclosure risk due to some com-
bination of rare attributes, such as racial isolation in a particular location. 
The records at risk are matched on the basis of an unnamed set of variables 
and swapped into a different geography. In the past few years, the Census 
Bureau has changed the set of items it uses to determine whether a record 
is at risk and should be swapped, and the swap rate has increased slightly. 
The Census Bureau performed an evaluation of the effects of swapping 
on the quality of published tabular statistics, but it has not published its 
evaluation results due to concerns that they might compromise the SDL 
procedures themselves.

One Census Bureau official whom we interviewed said the rate of swap-
ping is low relative to the rate at which data are edited for other purposes. 
Furthermore, the official said, swapping is applied to cases that are extreme 
outliers on some particular combination of variables. Without getting more 
precise, the official conveyed that swapping, while potentially of consider-
able concern, may have substantially less effect on economic research than, 
say, missing-data imputation.



238 Brookings Papers on Economic Activity, Spring 2015

Within the last 10 years the Census Bureau has also begun produc-
ing data based on more modern SDL methods. The Quarterly Workforce 
Indicators are protected using an input noise infusion method that, among 
other features, eliminates the need for cell suppression in count tables. 
The Census Bureau also offers synthetic microdata from the linked SIPP/
SSA/IRS data, the Longitudinal Business Database, and the Longitudinal 
Employer-Household Dynamics (LEHD) Origin-Destination Employment 
Statistics (LODES).5

III. How SDL Affects Common Research Designs

In this section, we demonstrate how to apply the concepts of ignorable 
and nonignorable SDL in common applied settings. In most cases, SDL 
is nonignorable, and researchers therefore need to know some properties 
of the SDL model that was applied to their data. When the SDL model 
is not known, it may still be discoverable in the manner introduced in 
section I.A.

III.A. Estimating Population Proportions with Noise Infusion

This example is motivated by the SDL procedure that is used to mask 
ages in the Census 2000, ACS, and CPS microdata files. Although the mis-
application of the procedure has been corrected for Census 2000 and ACS, 
current versions of the CPS for the mid-2000s may still be affected by the 
error, and have not been reissued. See the online appendix, section B, for 
more details.

Suppose the confidential data contain a binary variable (such as gender) 
and a multicategory discrete variable (such as age). We are interested in 
estimation and inference for the age-specific gender distribution, where β, 
the conditional probability of being male given age, is the parameter of 
interest. When age has been subjected to SDL, using published age to 
compute these conditional probabilities will lead to problems. The esti-
mated probability of being male conditional on age is affected by the SDL, 
even though the gender variable was not itself altered by the SDL.

Using the generalized randomized response structure, suppose that 
we know the probability that the published age data are unaltered. With 
probability ρ, the observed male/female value comes from the true age 
category. With the complementary probability, the observed outcome is a 

5. See for example U.S. Census Bureau (2013a, 2013b, 2015).
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binary random variable with expected value μ ≠ β. For example, μ might 
be the average value of the proportion male for all age categories at risk to 
be changed by the SDL model. In any case, μ is unknown.

Equation B.16 in the online appendix shows that if we ignore the 
SDL, the conditional probability estimator and its variance are biased. 
An SDL-aware estimator for the conditional probability of being male for 
a given age is β̂ = [z

_
1 − (1 − ρ) μ]/ρ, where z

_
1 is the estimated sample 

proportion of males of the chosen age. The estimator for the conditional 
proportion of interest β̂ is confounded by the two SDL parameters, except 
in the special case that ρ = 1, which implies that no SDL was applied to the 
published age data. If all of the observations have been subjected to SDL, 
then β̂ is undefined, and the expected value of z

_
1 is just μ. In the starkest 

possible terms, the estimator in equation B.16 is hopelessly underidentified 
in the absence of information about ρ and μ.

If ρ and μ are not known, they may still be discoverable if the analyst has 
access to estimates of conditional probabilities like β from an alternative 
source. See the online appendix, section B, for more details of the appli-
cation to the Census 2000 and ACS PUMS that generalizes the analysis in 
Alexander, Davern, and Stevenson (2010). This procedure can be used 
to discover the SDL in any data set, for example the CPS, for which alter-
native reliable published estimates of the gender-specific age distribution 
are available.

The SDL process is still underidentified if we consider only a single 
outcome like the gender-age distribution, but there are quite a few other 
binary outcomes that could also be studied, conditional on age—for exam-
ple, marital status, race, and ethnicity. The differences between Census 2000 
estimates of the proportion married at age 65 and older and their comparable 
Census 2000 PUMS estimates have exactly the same functional form as 
online appendix equation B.17 with exactly the same SDL parameters. 
Since these proportions condition on the same age variable, all the other 
outcomes that also have an official Census 2000 or ACS published pro-
portion can be used to estimate the unknown SDL parameters. The identi-
fying assumptions are (i) that all proportions are conditioned on the same 
noisy age variable, and (ii) that the noisy age variable can be reasonably 
modeled as randomized-response noise. We implement a similar method in 
section IV.B.

III.B. Estimating Regression Models

We next consider the effect of SDL on linear regression models. First, we 
analyze SDL applied to the dependent variable, assuming that the agency 
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replaces sensitive values with model-based imputed values. This form of 
SDL is nonignorable for parameter estimation and inference. Parameter 
estimates will be attenuated and standard errors will be underestimated. 
Furthermore, this form of SDL is not discoverable, except when there are 
two data releases from the same frame that use different, independent SDL 
processes.

Our analysis draws on the work of Barry Hirsch and Edward Schumacher 
(2004) and Christopher Bollinger and Hirsch (2006), who study the closely 
related problem of bias from missing-data imputation in the CPS. Respon-
dents to the CPS commonly fail to provide answers to certain questions. 
In the published data, the missing values are imputed semi-parametrically, 
conditional on a set of variables. Hirsch and Schumacher (2004) observe 
that if union status is not in the conditioning set for the imputation model, 
the union wage gap will be underestimated when using imputed and non-
imputed values in a regression of log wages on union status. This bias 
is exacerbated by using additional controls. The result occurs because if 
union status is not in the imputation model’s conditioning set, then some 
union workers are imputed nonunion wages, and some nonunion workers 
are imputed union wages. Bollinger and Hirsch (2006) show that these 
results hold very generally.

There are two key differences in our approach. First, assessing bias from 
missing-data imputation is feasible because the published data include an 
indicator variable that flags which values were reported and which were 
imputed. With SDL, the affected records and variables are not flagged. 
Second, in the SDL application, the published data can be imputed using 
the distribution of the confidential data. This means that the agency does 
not have to use an ignorable missing-data model when doing imputations 
for SDL. When imputing actual missing data, which was the subject of 
the Bollinger and Hirsch (2006) paper, the agency does assume that the 
missing data were generated by an ignorable inclusion model. The direct 
consequence is that the model used to impute the suppressed values can 
be conditioned on all of the confidential data, including the rule that deter-
mines whether an item will be suppressed. More succinctly, the analysis 
below demonstrates the effect of using an imputation model (or swapping 
rule) that does not contain a regressor of interest, and thus is not conflated 
with any bias that could arise from nonrandomness of the suppression rule.

SDL APPLIED TO THE DEPENDENT VARIABLE The model of interest is the 
function E[yi1⎜yi2] = α + yi2 β. In the published data, sensitive values of 
the outcome variable yi1 are suppressed and imputed. The variable γi indi-
cates whether yi1 is suppressed and imputed. When γi = 1, the confidential 
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data are published without modification. When γi = 0, the value for yi1 is 
replaced with an imputed value, zi1, which is drawn from pY1⎜X (yi1⎜xi, γi = 0), 
the conditional distribution of the outcome variable given xi among sup-
pressed observations. The conditioning information used in the imputation 
model, xi = fI (yi2), is a function fI that maps all of the available conditioning 
information in yi2 into a vector of control variables xi.

The simplest example is a model in which xi consists of a strict subset 
of variables in yi2. For example, in Hirsch and Schumacher (2004), yi2 is 
a set of conditioning variables that includes an indicator for union mem-
bership, and xi is the same set of conditioning variables but excluding 
the union membership indicator. Like the suppression model, the features 
of the imputation model, including the function fI, are known only to the 
agency and not to the analyst.

The released data are zi1 = yi1 if γi = 1 and zi1 ∼ pY1⎜X(y1i ⎜xi, γi = 0) otherwise.  
For the other variables, z2i = y2i. The marginal probability that the exact 
confidential data are published is Pr [γi = 1] = ρ. So the suppression rate is 
(1 − ρ), an exact analogue of the rate at which irrelevant data replace good 
data in randomized response. Finally, note that nothing in this specification 
requires independence between the decision to suppress, γi, and the data 
values, yi1 and yi2.

The effects of statistical disclosure limitation in this context are generi-
cally nonignorable except for two unusual cases. If no observations are 
suppressed (ρ = 1), then the SDL is ignorable because it is irrelevant. In 
the more interesting case, the characteristics, xi, perfectly predict z2i, and 
the SDL model is also ignorable for consistent estimation of β. This case is 
interesting because it occurs when the agency conditions on all covariates of 
interest, y2i, when imputing y1i, and then releases y2i without any additional 
SDL. Even in this latter case, while the SDL is ignorable for consistent 
estimation of β, it is not ignorable for inference. The SDL model introduces 
variance that is not included in the standard estimator for the variance of β̂.

The effects of SDL on estimation and inference could be assessed  
and corrected if the analyst knew two key properties of the SDL model: 
(i) the suppression rate, (1 − ρ) = Pr [γi = 0]; and (ii) the set of character-
istics used to impute the suppressed observations, xi. At present, almost 
nothing is known in the research community about either characteristic of 
the SDL models used in many data sets. See online appendix, section C.1, 
for details.

SDL APPLIED TO A SINGLE REGRESSOR If SDL is applied to a single regres-
sor rather than to the dependent variable, the conclusions of the analysis 
remain the same, as long as the imputation model does not perfectly predict 
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the omitted regressor. Curiously, if the regression model only has a single 
regressor and the conditioning information is the same, the bias from SDL 
is identical whether the SDL is applied to the regressor or to the depen-
dent variable. If there are multiple regressors, with SDL applied to a single 
regressor, the SDL introduces bias in all regressors. The model setup and 
nature of the bias are derived explicitly in the online appendix, section C.2.

III.C. Estimating Regression Discontinuity Models

Regression discontinuity (RD) and regression kink (RK) models can 
be seriously compromised when SDL has been applied to the running vari-
able. To illustrate some of these issues, we consider a design from Guido 
Imbens and Thomas Lemieux (2008). This analysis is intended to guide 
economists, who can perform our simplified SDL-aware analysis as part of 
the specification testing for a general RD.

MODEL SETUP Modeling the unobservable latent outcomes is intrinsic 
to the RD analysis. We incorporate the usual counterfactual data process 
inherent in the RD design directly into the data model. As Imbens and 
Lemieux (2008) note, this is a Rubin Causal Model (Rubin 1974; Holland 
1986; Imbens and Rubin 2015). The simplest data model, corresponding to 
Imbens and Lemieux (2008, pp. 616–19), has three continuous variables 
and one discrete variable whose conditional distribution is degenerate in 
the RD design and nondegenerate in the fuzzy RD (FRD) design. The latent 
data process consists of four variables with the following definitions: wi (0) 
= untreated outcome, wi (1) = treated outcome, ti = treatment indicator, and 
ri = RD running variable. The confidential data vector has the experimental 
design structure, Y = (wi*, ti, ri) where wi* = wi (ti).

Our interest centers on the conditional expectations in the population 
data model E[wi(0)⎜ri] = f1(ri) and E[wi(1)⎜ri] = f2(ri), where f1(ri) and f2(ri) 
are continuous functions of the running variable, ri. The parameter of inter-
est is the average treatment effect at τ:
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NONIGNORABLE SDL IN THE RUNNING VARIABLE We focus on the setting 
where SDL is only applied to the RD running variable and its associated 
indicator. The published data vector is Z = (wi*, ti, zi). The published run-
ning variable is sampled from a distribution that depends on the true value: 
zi ∼ pZ⎜R (zi ⎜ri). We assume the distribution pZ⎜R (zi ⎜ri) is the randomized 
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response mixture model, a generalization of simple randomized response 
described in the online appendix, section D.1. The SDL process depends 
on two parameters: ρ, the probability that the confidential value of the run-
ning variable is released without added noise, and δ, the standard deviation 
of a mean zero noise term added to the running variable when subjected 
to SDL.

If the agency publishes its SDL values ρ = ρ0 and δ = δ0 and the true 
RD is strict, then the analyst can correct the strict RD estimator directly 
using
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Clearly, this implies that the uncorrected estimate is attenuated toward 
zero. Intuitively, the introduction of noise into the running variable con-
verts the strict RD to a fuzzy RD, with E[ti ⎜zi, ρ0, δ0] playing the role of 
the “compliance status” function. For details, see the online appendix, 
section D.2.

When the true RD is strict, the SDL is discoverable from the compli-
ance function even if the agency has not released the SDL parameters. 
The researcher can use the fact that the compliance function g(zi) =
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When the noise addition is independent of the outcome variables (as is 
the case here), the change in the probability of treatment at the discontinuity 
point, τ, is equal to the share of undistorted observations, ρ0. When ρ = 1, 
there has been no SDL, and both estimators yield the conventional sharp 
RD estimate. A similar analysis shows that a sharp RK design becomes a 
fuzzy RK design (Card and others 2012) in the presence of SDL. As in 
the case of linear regression, it is still necessary to model the extra variabil-
ity from the SDL to get correct estimates of the variance of the estimated 
RD parameter.

IMPLICATIONS OF SDL IN THE RUNNING VARIABLE FOR FUZZY RD MODELS If 
generalized randomized-response SDL is applied to the running variable, 
then the SDL is ignorable for parameter estimation when using a fuzzy 
RD design. The FRD compliance function must be augmented with the 
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contribution from SDL. When the running variable is distorted with nor-
mally distributed noise, as we have assumed, there is no point mass any-
where, and hence no discontinuity in the probability of treatment at the 
discontinuity that is due to the SDL. The claim that the SDL is ignorable for 
estimation of the treatment effect in the fuzzy RD design follows because 
the only discontinuity in the estimated compliance function is entirely due 
to the discontinuity in the true running variable. (See the online appendix, 
section D.2.1, for details.) Imbens and Lemieux (2008) show that the 
instrumental variable (IV) estimator that uses the RD as an exclusion 
restriction is formally equivalent to the fuzzy RD estimator, so the SDL is 
also ignorable for consistent estimation in this case as well.

Whether or not the SDL is ignorable for consistent estimation, it is never 
ignorable for inference. The estimated standard errors of the RD and FRD 
treatment effects must be adjusted.

In some applications, the treatment indicator is not observed and must 
be proxied by the discontinuity point, around which the RD is strict. If 
the treatment indicator is not observed and SDL has been applied to the 
running variable, only the sharp RD estimator is available, and it will 
be attenuated by a factor ρ. Nothing can be done in this setting without 
auxiliary information about the SDL model.

NONIGNORABLE SDL IN OTHER PARTS OF THE RD DESIGN When SDL is applied 
to the dependent variable rather than the running variable, the situation 
is more complicated. We refer to our analysis of regression models in sec-
tion III.B. SDL applied to the dependent variable will lead to attenuation 
of the estimated treatment effect unless all relevant variables, including 
the running variable and its interaction with the discontinuity point, are 
included in the SDL model for the dependent variable. Hence, SDL applied 
to the dependent variable is more likely to cause problems for RD than for 
conventional linear regression models, since the variation around the dis-
continuity point is unlikely to be included in the agency’s imputation or 
swapping algorithms.

CONSEQUENCES OF DATA COARSENING FOR SDL The ignorability of SDL in 
some circumstances was anticipated in the work of Daniel Heitjan and 
Rubin (1991), which considers the problem of inference when the pub-
lished data are coarsened. Their application was to reporting errors where, 
for instance, individuals round their hours to salient, whole numbers. The 
same model is relevant to those types of microdata SDL that aggregate 
attribute categories, like occupations or geographies, and to topcoding.

David Lee and David Card (2008) consider the consequences of microdata 
coarsening for RD designs. For example, if ages are coarsened into years, the 
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RD design in which age is the running variable will group observations near 
the boundary with those further from the boundary, violating the required 
assumption that the running variable is continuous around the treatment 
threshold. Once again, depending on the type of RD design, when SDL is 
accomplished through coarsening of the running variable, it is not ignor-
able. An analysis that uses the coarsened running variable with a standard 
RD estimator may be biased and understate standard errors. As in Heitjan 
and Rubin (1991), Lee and Card (2008) establish conditions under which 
a grouped-data estimator provides a valid way to handle coarsened data. 
This method is agnostic about the cause of the grouping and is therefore 
SDL-aware by construction.

III.D. Estimating Instrumental Variable Models

We consider simple instrumental variable models with a single endoge-
nous explanatory variable, a single instrument, and no additional regressors. 
Except where indicated, the intuition for these examples carries through to a 
more general setting with multiple instruments and controls.

The confidential data model of interest is the standard IV system

y t

t z

i i i

i i i

= κ + γ + ε

= φ + δ + η

where yi is the outcome of interest, ti is a scalar variable that may be cor-
related with the structural residual εi, and zi is a scalar variable that can 
serve as an instrument. That is, zi is uncorrelated with εi and δ ≠ 0. We 
assume the SDL described in section III.B is applied to either the depen-
dent variable, the endogenous regressor, or the instrument.

With this simplified setup, the IV estimator γ̂IV = β̂RF/δ̂, where β̂RF, is 
the parameter estimate from the reduced form equation yi = α + βzi + vi. We 
apply the results in section III.B. First, if SDL is applied to the dependent 
variable, then the point estimate of γ will be attenuated. This is an immediate 
consequence of the fact that plim β̂ ≤ β, while plim δ̂ = δ. Second, by paral-
lel reasoning, if SDL is applied to the endogenous regressor, then the point 
estimate of γ will be exaggerated. In this case, plim β̂ = β, but plim δ̂ ≤ δ. 
This result implies that IV models may overstate the coefficient of interest 
when SDL is applied to the endogenous regressor. It is also not possible to 
use IV to correct for SDL in this case.

Finally, somewhat surprisingly, SDL is ignorable when applied to the 
instrument. In this particular model, with a single instrument and no regres-
sors, the attenuation term is the same in the first-stage and reduced form, 
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and therefore cancels out of the ratio β̂RF/δ̂. We caution, however, that this 
ignorability does not extend to the case where there are additional exog-
enous regressors. In summary, our analysis suggests that blank-and-impute 
SDL is generally nonignorable for instrumental variables estimation and 
inference.

IV. Analysis of Official Tables

Tabular or aggregate data are the primary public output of most official 
statistical systems. Most agencies offer a technical manual that provides 
an extensive description of how the microdata inputs were transformed 
into the publication tables. These manuals rarely, if ever, include an assess-
ment of the effects of the SDL, and we could find no examples of manuals 
that did among the federal statistical agencies. When an agency releases 
measures of precision for aggregate data, these measures do not include 
variation due to SDL.

There are three key forms of SDL applied to tabular summaries. All fed-
eral agencies rely on primary and complementary suppression as the main 
SDL method. When an alternative SDL method is used, the most common 
ones add noise to the underlying input microdata or to the prerelease tabu-
lated estimates. For household-based inputs, most agencies also perform 
some form of swapping before preparing tabular summaries. For business-
based inputs, we are not aware of any SDL system that uses swapping.

IV.A. Directly Tabulating Published Microdata

An alternative to using published tabulations is to tabulate from pub-
lished microdata files. This is usually not an option for business data, which 
form the bulk of our examples in this section, but it may be an option for 
household data. We explore some of the pitfalls of doing custom tabula-
tions in the online appendix, section E.3. Researchers should use caution 
when making tabulations from published microdata if the subpopulations 
being studied are often suppressed in the official tables. The presence of 
suppression usually signals a data quality problem.

IV.B. Suppression versus Noise Infusion

WHEN SUPPRESSION IS NONIGNORABLE Tabular suppression rules identify 
cells that are too heavily influenced by a few observations. The conse-
quences for research are profound when those few observations are the 
focus of a particular study or the cause of a very inconvenient complemen-
tary suppression. It is not surprising that detailed data about the upper 
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0.25 percent of the income distribution are almost all suppressed by the 
Statistics of Income Division of the IRS. If a study focuses on unusual 
subpopulations, dealing with suppression is a normal part of the research 
design.

The most common form of suppression bias occurs when an analyst 
is assembling data at a given aggregation level, such as county level by 
four-digit NAICS6 industry group from the BLS’s Census of Employ-
ment and Wages frame. Between 60 and 80 percent of the published 
cells will have missing data. These data cannot reasonably be missing at 
random (ignorably missing) because the rule used to determine if those 
data could be published depends upon the values of the missing data. 
The problem compounds as covariates from other sources are added to 
the analysis.

Formally, SDL suppression is never ignorable. The probability that 
a cell is suppressed depends on the values of its component microdata 
records. Surprisingly, there is considerable resistance to replacing sup-
pression with SDL methods that infuse deliberate noise. Noise-infusion 
SDL, as applied in the QWI, allows for the elimination of cell suppres-
sion and therefore eliminates bias from missing data. The trade-off is an 
increase in variance of all table entries, including those that would not 
be suppressed.

Perhaps the resistance to replacing suppression with noise-infusion 
arises because the bias from suppression is buried in a missing-data prob-
lem that most applied studies address with ad hoc methods: (i) analyze 
the published data as though the suppressions were ignorable, or (ii) do 
the analysis at a more aggregated level (say, NAICS subsector rather than 
NAICS industry group). These approaches are generally not as good as 
what could be accomplished with the same data if the cause were acknowl-
edged and addressed.

A better solution, which is still ad hoc, is to use the frame variable 
to allocate the values of higher-level aggregates into the missing lower-
level observations for the same variable. For example, in the QWI the 
frame variable is quarterly payroll—it is never suppressed at any level 
of aggregation—and in the QCEW and CBP the frame variable is the 
number of establishments, which is also never suppressed in these pub-
lications. The analyst can proportionally allocate the three-digit industrial 
aggregate employment, say, using the four-digit proportions of the frame 

6. North American Industry Classification System.
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variable as weights. This can be done in a sophisticated manner so that 
none of the observed original data are overwritten or contradicted by this 
imputation. For example, it can be done by only imputing the values of 
the four-digit employment that were actually suppressed and respecting 
the published three-digit employment totals for the sum of all four-digit 
industries within that total. This solution at least acknowledges that the 
suppression bias is nonignorable. The values for the higher-level aggre-
gates contain some information about the suppressed values. Allocations 
based on the frame variable assume that the distribution of every variable 
with missing data across the entire population is the same as the distribu-
tion of the frame variable.

The analyst can do better still. The best solution for any given analysis 
is to combine the model of interest with a model for the suppressed data. 
Bayesian hierarchical models, like the ones we used in this paper, work 
well. Software tools for specifying and implementing such models are read-
ily available. The complete model will properly account for the nonrandom 
pattern of the missing data, will incorporate prior information about the sup-
pression rule that can be used for identification, and account for the addi-
tional uncertainty introduced by suppression. See Scott Holan and others 
(2010) for a specific application to BLS data.

WHEN NOISE INFUSION MAKES THE SDL NONIGNORABLE Applying SDL by 
input noise infusion dramatically reduces the amount of suppression in the 
publication data. Since we are going to illustrate many of the features of 
these systems in the example in section V, we devote our attention here to 
the basic nonignorable features of input noise infusion.

Input noise infusion models were first proposed by Timothy Evans, 
Laura Zayatz, and John Slanta (1998). The noise models they proposed are 
constructed so that the expectation of the noisy aggregate, given the con-
fidential aggregate, equals the confidential aggregate. This is the sense in 
which these measures are unbiased. In addition, as the number of entities 
in a cell (usually business establishments) gets large, the variance of the 
aggregate that is due to noise infusion vanishes. This is the sense in which 
these measures add variance to the published data in exchange for reducing 
suppression bias. Finally, the noise itself is usually generated from an inde-
pendent, identically distributed random variable, so the joint distribution of 
the confidential data and the input noise factors into two independent dis-
tributions. Thus, SDL using input noise infusion can sometimes be ignor-
able for estimating the parameter of interest, but it will generally not be 
ignorable when trying to form a confidence interval around that estimate. 
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Because the noise process affects the posterior distribution of most param-
eters of interest, it is generally not ignorable.

Fortunately, agencies have been much more open about the processes 
used to produce publication tables from noise-infused inputs. A data-quality 
variable generally indicates whether the published value suffers from sub-
stantial infused noise. These flags are based on the absolute percentage error 
in the published value compared to the confidential value. It turns out, as 
we will see below, that they also sometimes release enough information to 
estimate the variance of the noise process itself, which is the SDL parameter 
that plays the role of the randomized-response “true data” probability. When 
the variance of the noise-infusion process goes to zero, the SDL becomes 
ignorable for all analyses, if no other SDL replaces it.

V. SDL Discovery in Published Tables

In this section, we show that it is possible to use information from three 
data sets released from very similar frames to conduct complete SDL-
aware analyses. These data sets are the QWI, the QCEW, and the CBP. 
The key insight is that each data set applies a different SDL method to 
the same confidential microdata. The variation across the published data 
facilitates discovery of the SDL process. First, it is possible to directly 
infer a key unpublished variance term from the QWI noise infusion 
model. This variance term can then be used to correct SDL-generated 
estimation bias. Second, we argue that the QCEW and CBP data can be 
used as instruments to correct SDL-induced measurement error in analy-
sis based on the QWI.

V.A. Overview of the QWI, QCEW, and CBP Data Sets

The QWI is a collection of 32 employment and earnings statistics pro-
duced by the Longitudinal Employer-Household Dynamics program at the 
U.S. Census Bureau. It is based on state Unemployment Insurance (UI) 
system records integrated with information on worker and workplace char-
acteristics. Workplace characteristics are linked from the QCEW micro-
data. The frame for employers and workplaces is the universe of QCEW 
records, including both the employer report and the separate workplace 
reports. A QCEW workplace is an establishment in the QWI data. Essen-
tially, the same QCEW inputs are used by the BLS to publish its Census 
of Employment and Wages (CEW) quarterly series on employment and 
total payroll. (In what follows, the acronym QCEW is reserved for the 
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inputs and publications of the BLS in the CEW series.) CBP data sets are 
also published by the Census Bureau from inputs based on its employer 
Business Register.

While the QWI, QCEW, and CBP use closely related sources to pub-
lish statistics by employer characteristics, they apply different methods for 
SDL. The QWI and CBP distort the establishment-level microdata using a 
multiplicative noise model and publish the aggregated totals. The QCEW 
aggregates the undistorted confidential establishment-level microdata and 
then suppresses sensitive cells with enough complementary suppressions 
of nonsensitive cells to allow publication of most table margins.

V.B. Published Aggregates from the QWI, QCEW, and CBP

We give just enough detail here so that the reader can see how the Cen-
sus Bureau and BLS form the aggregates for the quarterly payroll variables 
that we will use to illustrate the consequences of universal noise infusion 
for SDL. (More details are in the online appendix, section F.)

Tabular aggregates are formed over a classification k = 1, . . . , K that 
partitions the universe of establishments into K mutually exclusive and 
exhaustive cells Ω(k)t. These partitions have detailed geographic and indus-
trial dimensions. For all three data sources, geography is coded using FIPS7 
county codes. Industrial classifications are NAICS sectors, subsectors, and 
industry groups. The tabular magnitudes are computed by aggregating the 
values over the establishments in the group k. For the QWI, in the absence 
of SDL, the total quarterly payroll Wjt for establishment j in group k and 
quarter t would be estimated by8

W Wk t jt
j k t

∑( ) =( )
∈Ω( )

2 .

For the QCEW, an identical formula uses total quarterly payroll, as 
measured by W jt 

(QCEW) and for CBP, the quarterly payroll variable would be 
W jt 

(CBP). Published aggregates from the QWI are computed using multiplica-
tive noise factors δj that have mean zero and constant variance. (More 
details are in the online appendix, section G.) The published quarterly pay-
roll is computed as

W Wk t j jt
j k t

∑( ) = δ( )
∈Ω( )

p3 ,

7. Federal Information Processing Standard.
8. We abstract from the weight that QWI uses to benchmark certain state-level aggre-

gates. Formulas including weights are in the online appendix, section H.
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where we have adopted the convention of tagging the post-SDL value 
with an asterisk. The same noise factor is used to aggregate total quarterly 
payroll and all other QWI variables. Total quarterly payroll is never sup-
pressed in the QWI. The number of establishments in a cell is not pub-
lished. If, and only if, a cell has a published value of W*, then there is at 
least one establishment in that cell.

The published QCEW payroll aggregate is exactly the output of equa-
tion 2 using QCEW inputs. The published QCEW total quarterly payroll 
might be missing due to suppression. The QCEW data use item-specific 
suppression. Payroll might be suppressed when employment is not, and 
vice versa.

The CBP total quarterly payroll is exactly the output of equation 3 with 
CBP-specific inputs, including the noise factor. As with the QWI data, the 
same noise factor is used for all the input variables from a particular estab-
lishment. The published CBP aggregates have some SDL suppressions and 
can therefore be missing. The number of establishments in a cell is never 
suppressed, nor is the size distribution of employers.

V.C. Regression Models with Nonignorable SDL

The noise infusion in QWI may be nonignorable. Univariate regres-
sion of a variable from another data set onto a QWI aggregate provides a 
simple illustration, which we summarize here. (See the online appendix, 
section E.4, for details.)

The model of interest is appendix equation E.26, the regression of a 
county-level outcome Y(k)t from a non-QWI source on QWI quarterly payroll 
in the county W*. The dependent variable can be subjected to SDL as long 
as it is independent of the QWI SDL, as would be the case if the dependent 
variable were computed by the BLS or the Bureau of Economic Analysis 
(BEA). The published aggregate data are the [Y(k)t, W*(k)t]. The undistorted 
values, W(k)t, are confidential.

The probability limit of the ordinary least squares (OLS) estimator for 
the regression coefficient on β based on using the published data is appen-
dix equation E.27, and the asymptotic bias ratio is appendix equation E.28. 
The bias due to SDL depends on the product of two factors: the variance 
of the noise-infusion process and the expected Herfindahl index for payroll 
within aggregate k, as derived in the online appendix, section E.5. If either 
of these factors is zero, there is no bias in estimation. But the expected Her-
findahl index is data, so we cannot make prior restrictions on that compo-
nent. This leaves only the SDL noise variance. Clearly, the noise infusion is  
nonignorable in this setting.
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One option is to correct the bias analytically. If the noise variance is 
known or can be estimated, the bias can be corrected directly. An unbiased 
estimator for E[W(k)t]2 is available from E[W*(k)t]2 once the variance of the 
multiplicative noise factor, V[δj], is known, after which it only remains to 
recover V[W(k)t] from the definition of V[W*(k)t].

The second possibility is to find instruments. Any instrument, Z(k)t, cor-
related with W(k)t and uncorrelated with the SDL noise infusion process, 
will work, as shown in appendix equation E.29. In the QWI setting, there 
are three natural candidates for such instruments: (i) data from the QCEW 
for the same cell; (ii) data from CBP from the same cell; and (iii) data from 
neighboring cells (geographies or industries) in the QWI.

Data from QCEW for the same cell are based on the same administra-
tive record system. QWI tabulates its measures from the UI wage records. 
QCEW tabulates from the associated ES-202 workplace report. The total 
payroll measure has an identical statutory definition on both administrative 
record systems for the state’s Unemployment Insurance. Data for CBP are 
tabulated from the Census Bureau’s employer Business Register. Payroll 
and employment come from the employer federal tax filings, and the pay-
roll measured from this IRS source has a very similar statutory definition 
as compared to the definition used by QWI and QCEW. Finally, QWI data 
from nearby geographies or industries (depending on the aggregate repre-
sented by k) should be correlated with the QWI variable in the regression 
because they are based on the same administrative record system reports.

By construction, all of these instruments are uncorrelated with the SDL-
induced noise in the right-hand side of equation E.26. In the case of QCEW 
or CBP data, any SDL-induced noise (CBP) or suppression bias (QCEW 
and CBP) in the instrument is independent of the noise in QWI. How-
ever, if many of the cells in the tabulation of the instrument are suppressed, 
that will affect the validity of the instrument, as we analyzed in section 
IV.B. When there are many suppressions in QCEW or CBP for the partition 
under study, data from the neighboring QWI cells can be used to complete 
the set of instruments.

Perhaps surprisingly, the input noise infusion to the QWI does not bias 
parameter estimates if the dependent and independent variables all come 
from QWI. Once drawn, the establishment-level noise factors are the same 
across variables and over time. Therefore, the variance from noise infu-
sion affects all variables in exactly the same manner, factors out of the 
OLS moment equations, and then cancels. The same feature of the QWI 
also leads the time-series properties of the data to be preserved after noise 
infusion. We note that this feature is unique to the QWI method of noise 
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infusion, where the noise process is fixed over time for each cross-sectional 
unit. It does not hold for other forms of noise infusion, such as the one used 
by CBP.

V.D. Estimating the Variance Contribution of SDL for the QWI

It is possible to recover the variance of the noise factor V[δj], which is 
needed to correct directly for bias in the univariate and multivariate regres-
sion examples using the QWI. The details of this estimation process are 
presented in the online appendix, section E.5.

Our leverage in this analysis comes from the fact that QWI and QCEW 
use identical frames (QCEW establishments). Hence, we can use W (k)t

(QCEW) 
as the instrument for W(k)t, as long as it has not been suppressed too often. 
Furthermore, we can use W (k)t

(QCEW), which is published at the county level as 
an instrument for any subcategory of QWI payroll, for example payroll of 
females ages 55–64, even though no exact analogue is published in QCEW.

Although the data come from a different administrative record system, 
the concepts underlying the CBP payroll variable are very similar to both 
the QWI and QCEW inputs. The SDL system used for CBP data is very 
similar to the one used for QWI, but the random noise in CBP is indepen-
dent of the random noise in QWI. Therefore, CBP data can also be used 
as instruments, and they are suppressed far less often than QCEW data. The 
formulas for recovering both systems’ SDL parameters are in the online 
appendix, section E.5.

V.E. Empirical Results

Table 1 presents the estimates of the equation used to recover the SDL 
parameters fitted using matched QWI and QCEW data for the first quar-
ters of 2006 through 2011 by ordinary least squares. Table 2 fits the same 
functions using mixed-effect models.9 The equations are fitted for state-
level aggregations, where the error in both the employment and payroll 
magnitudes is mitigated by the benchmarking, county-level aggregations, 
where the agreement in the workplace codes for county is most likely to 
be strong, and county by NAICS sector-level aggregations, where there is 
greater scope for differences between the coding of the microdata in QWI 
and QCEW.

Both tables give very similar estimates for V[δ] whether we use payroll 
or employment as the basis. This suggests that the bias in estimating V[δ] 

9. By the construction of the noise-infusion process for QWI, the design of the random 
effects is orthogonal to ln N(k)t.
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from using proxies for the Herfindahl index is either minimal or uncorre-
lated between employment and payroll. Either way, we are able to estimate 
with reasonable precision the range of possibilities for V[δ], and these indi-
cate that the noise infusion does not create a very substantial bias or inflate 
estimated variances substantially.

VI. The Frontiers of SDL

In this section we discuss the relationship between synthetic data and vali-
dation servers, the nature and limits of formal privacy systems, and the 
analysis of confidential data in enclaves.

VI.A. Analysis of Synthetic Data

We defined synthetic data in section II. Here we discuss the tight rela-
tionship between synthetic data systems and validation servers, a method 
of improving the accuracy of synthetic data that links the user commu-
nity and the data providers directly. In a synthetic data feedback loop, the 
agency releases synthetic microdata to the research community. Research-
ers analyze the synthetic data as if they were public-use versions of the 
confidential data using SDL-aware analysis software. When the analysis 
of the synthetic data is complete, the researchers may request a validation, 
which is performed by the data providers on the actual confidential data. 
The results of the validation are subjected to conventional SDL and then 
released to the researcher as public-use data. The data provider then inven-
tories these analyses and uses them to improve the analytical validity of the 
synthetic data in the next release by testing new versions of the synthetic 
data on the models in its inventory.

The Census Bureau has two active feedback-loop, synthetic-data sys-
tems: the Survey of Income and Program Participation (SIPP) Synthetic 
Beta (SSB) and the Synthetic Longitudinal Business Database (SynLBD).10 
The SSB provides synthetic data for all panels of the SIPP linked to longi-
tudinal W-2 data. SynLBD is a synthetic version of selected variables and 
all observations from the confidential Longitudinal Business Database, the 
research version of the employer Business Register, longitudinally linked.

A recent paper by Marianne Bertrand, Emir Kamenica, and Jessica 
Pan (2015) provides an excellent illustration of the advantages of using 

10. Information about the SIPP database can be found here: https://www2.vrdc.cornell.
edu/news/data/sipp-synthetic-beta-file. Information about the SynLBD database can be 
found here: https://www2.vrdc.cornell.edu/news/data/lbd-synthetic-data/
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synthetic data that are part of a feedback loop. The authors use the admin-
istrative record values for married couples’ individual W-2 earnings to 
compute the proportion of household income that was due to each partner. 
They hypothesize that there should be a regression discontinuity at 50 per-
cent because of their model prediction that women should prefer to marry 
men with higher incomes than their own. The SSB data have undergone 
extensive SDL and, for this model, the effects of this SDL on the RD run-
ning variable was extensive, nonignorable, and had a stated “suppress and 
impute rate” of 100 percent. Analyses from synthetic data show no causal 
effect. However, analyses from the validation estimation on the confiden-
tial data, where the earnings variables have not been subjected to any SDL 
but are imputed when missing, show a clear discontinuity. The validated 
estimates are reported in the published paper. Any researcher anywhere in 
the world can use the SSB and SynLBD by following the instructions on 
the Cornell University-based server that is used as the interface for analy-
ses that are part of the feedback process.11

While writing this paper, we discovered why the analysis of the linked 
SIPP-IRS data by Bertrand, Kamenica, and Pan (2015) showed no causal 
effect when the synthetic data were used. The reason can be seen by exam-
ining equation 1 when the running variable has been modified for every 
observation, as is the case in the SSB. The regression-discontinuity effect is 
not identified in the synthetic data, and it will not generally be identified for 
any RD design that uses the many exact earnings and date variables in the 
SSB. If only the SSB were available with no access to validation, RD and 
FRD analyses using these data would be pointless. However, because the 
SSB offers validation using the underlying confidential data and traditional 
SDL on the output coefficients, an analyst can do a specification search for 
the response functions f1 and f2 using the SSB, then submit the entire proto-
col from the specification search for validation. The validated estimate of 
the RD or FRD treatment effect provides the researcher’s first evidence on 
that effect. Thus, the use of the feedback mechanism for the synthetic data 
protected the research design from pretest estimation and false-discovery 
bias for the inferences on the causal RD effect, an incredible silver lining.

We have already noted that the Survey of Consumer Finances (SCF) uses 
synthetic data for SDL, based on the same model that is used for edit and  
imputation of item missing data. The statutory custodian for the SCF is 
the Federal Reserve Board of Governors. The Fed maintains a very limited 

11. The Cornell-based server is located here: http://www2.vrdc.cornell.edu/news/
synthetic-data-server/step-1-requesting-access-to-sds/
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feedback loop that is described in the codebook (Federal Reserve Board of 
Governors 2013).

VI.B. Formal Privacy Systems

A researcher is much more likely to encounter a formal privacy system 
for SDL when interacting with a private data provider. Differential pri-
vacy was invented at Microsoft. As early as 2009, Microsoft had in place 
a system, Privacy Integrated Queries (PINQ), that allowed researchers to 
analyze its internal data files (such as search logs) with a fixed privacy 
budget using only analysis tools that were differentially private at every 
step of the process, including data editing (McSherry 2009). These tools 
ensure that every statistic seen by the researcher, and therefore available for 
publication, satisfies ε-differential privacy. When the researcher exhausts ε, 
no further access to the data is provided.

PINQ computes contingency tables, linear regressions, classifica-
tion models, and other statistical analyses using provably private algo-
rithms. Its developer recognized that a strong privacy guarantee comes 
at the expense of substantial accuracy. It was up to the analyst to decide 
how to mitigate that loss of accuracy. The analyst could spend most of 
the privacy budget to get some very accurate statistics—ones for which 
the inferences were not substantially altered as compared to the same 
inference based on the confidential data. But then the analysis was over, 
and the analyst could not formulate follow-up hypotheses because there 
was no remaining privacy budget. Alternatively, the analyst could use 
only a small portion of the privacy budget doing many specification 
searches, each one of which was highly inaccurate as compared to the 
same estimation using the confidential data, then use the remainder 
of the privacy budget to compute an accurate statistic for the chosen 
specification.

The literature on formal privacy models is still primarily theoretical. 
At present, there are serious concerns about the computational feasibil-
ity of applying formal privacy methods to large, high-dimensional data,  
as well as their analytical validity for nontrivial research questions. 
However, these methods make clear the cost in terms of loss of accu-
racy that is inherent in protecting privacy by distorting the analysis of 
the confidential data. The formal methods also allow setting a privacy 
budget that can be allocated across competing uses of the same under-
lying data.

Economists should have no trouble thinking about how to spend a pri-
vacy budget optimally during a data analysis. But they might also wonder 
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how any real empirical analysis can survive the rigors of never seeing the 
actual data. That is a legitimate worry, and one that the formal privacy com-
munity takes very seriously. For a glimpse of one possible future, see the 
work of Dwork (2014), who calls for all custodians of private data to pub-
lish the rate at which their data publication activities generate privacy losses 
and to pay a fine for nonprivate uses (infinite privacy loss, ε = ∞). Public 
and private data providers will have an increasingly difficult time explain-
ing why they are unwilling to comply with this call when others begin to do 
so. The resulting public policy debate is very unlikely to result in less SDL 
applied to the inputs or outputs of economic data analyses.

VI.C. Analysis of Confidential Data in Enclaves

Because this paper is about the analysis of public-use data when the 
publisher has used statistical disclosure limitation, we have not discussed 
restricted access to the underlying confidential data. Restricted access 
to the confidential data also involves SDL. First, some agencies do not 
remove all of the SDL from the confidential files they allow researchers 
to use in enclaves. Second, the output of the researcher’s analysis of the 
confidential data is considered a custom tabulation from the agency’s per-
spective. The output is subjected to the same SDL methods that any other 
custom tabulation would require.

VII. Discussion

Unlike many other aspects of the processes by which data are produced, 
SDL is poorly understood and seldom discussed among economists. SDL 
is applied widely to the data most commonly used by economists, and the 
pressure on data custodians to protect privacy will only get stronger with 
time. We offer suggestions to researchers, journal editors, and statistical 
agencies to facilitate and advance SDL-aware economic research.

VII.A. Suggestions for Researchers

Over the decades since SDL was invented, research methods have 
changed dramatically—most notably in the applied microeconomists’ 
adoption of techniques that require both enormous amounts of data and 
very precise model-identifying information. The combination of these two 
requirements has led to much more extensive use of confidential data with 
the publication of only summary results. Studies carried out this way have 
very limited potential for replication or reuse of the confidential data. Grant 
funding agencies have insisted that the researchers they fund prepare a data 
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management plan for the curation of the data developed and analyzed using 
their funds, yet very few statistical agencies or private firms will surrender 
a copy of the confidential data for secure curation to allow research teams 
to comply with this requirement. Consequently, only the public portion 
of this scientific work can be curated and reused. But all such public data 
have been subjected to very substantial SDL, almost all of it in the form 
of suppression—none of the original confidential data and very little of the 
intermediate work product can be published.

Suppression on this scale leads to potentially massive biases and very 
limited data releases. To address this problem, over these same decades 
statisticians and computer scientists have worked to produce SDL methods 
that permit the publication of more data, including detailed microdata with 
large samples and precise model-identifying variables. Yet only a handful 
of applied economists are active in the SDL and data privacy communities. 
What Arthur Kennickell accomplished by integrating the editing, imputa-
tion, and SDL components of the Survey of Consumer Finances in 1995 
and orchestrating the release of those microdata in a format that required 
SDL-aware analysis methods was not accomplished again until 2007, 
when the Census Bureau released synthetic microdata for the Survey of 
Income and Program Participation. We believe that the reason economists 
have been reticent about exploring alternatives to suppression is that they 
have not fully understood how pernicious suppression bias actually is.

Statistical agencies do understand this, and the SDL and privacy- 
preserving methods they have adopted are designed to control suppression 
bias by introducing some deliberate variance. Economists tend to argue 
that the deliberate infusion of unrelated noise is a form of measurement 
error that infects all of the analyses. That is true, as we have shown, but 
it is an incomplete picture. Suppression too creates massive amounts of 
unseen bias—the direct consequence of not being able to analyze the data 
that are not released. Economists should recognize that the publication of 
altered data with more limited suppression instead of just the unsuppressed 
unaltered data could be a technologically superior solution to the SDL 
problem. We challenge more economists to become directly involved in 
the creation and use of SDL and privacy-preserving methods that are more 
useful to the discipline than the ones developed to serve the general user 
communities of statistical agencies and Internet companies.

In the meantime, what can productively be done? Economic research-
ers who use anything other than the most aggregated data should become 
more familiar with the methods used to produce those data: population 
frames, sampling, edit, imputation, and publication formulas, in addition 
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to SDL. This will help reduce the tendency to think of SDL as the only 
source of bias and variation. For students, these topics are usually covered 
in courses called “Survey Methodology,” but they belong in econometrics 
and economic measurement courses too.

VII.B. Suggestions for Journals, Editors and Referees

Journals should insist that authors document the entire production pro-
cess for the inputs and output of their analyses. The current standards are 
incomplete because they focus on the reproducibility of the published 
results from uncurated inputs. Economists do not even have a standard for 
citing data. A proper data citation identifies the provenance of the exact 
file used as the starting point for the analysis. Requiring proper citation 
of curated data inputs provides an incentive for those who perform such 
activities, just as proper software citation has provided an incentive to cre-
ate and maintain curated software distribution systems. Discussions of the 
consequences of frame definitions, sampling, edit, imputation, publication 
formulas, and SDL that were applied to the inputs are also important for 
any econometric analysis. If authors cannot cite sources that document 
each of these components, they should be required to include the informa-
tion in an archival appendix.

We make these points because we also want the journals to require 
documentation of the SDL procedures that were applied to the inputs 
and outputs of the analyses, although we do not think it is appropriate to 
single out SDL for special attention. The other aspects of data publication 
we discuss here also have implications for interpreting and reproducing 
the published results. If scientific journals added their voices to the calls 
for better documentation of all data publication methods, it would be 
easier to press statistical agencies to release more details of their SDL 
methods.

VII.C. Suggestions for Statistical Agencies and Other Data Providers

We think that the analysis in this paper should be considered a prima 
facie case for releasing more information about the actual parameters used 
in SDL methods and for favoring SDL methods that are amenable to SDL-
aware statistical analysis. By framing our arguments using methods already 
widely adopted to assess the effects of data quality issues, we hope to show 
that the users are also entitled to better information about specific SDL 
methods. We have also shown that if certain SDL methods are used, only 
very basic summary parameters need to be released. These can even be 
released as probability distributions, if desired.
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We stress that we are not singling out SDL for special attention. Very spe-
cific information about the sample design is released in the form of the sam-
pling frames used, detailed stratification structures, sampling rates, design 
weights, response rates, cluster information, replicate weights, and so on. 
Very specific information is released about items that have been edited, 
imputed or otherwise altered to address data quality concerns. But virtually 
nothing—nothing specific—is released about SDL parameters. This imbal-
ance fuels the view that the SDL methods may have unduly influenced a 
particular analysis. In addition, it is critical to know which SDL methods 
have been permanently applied to the data, so that they must be considered 
even when restricted access is granted to the confidential data files.

Our remarks are not directed exclusively to government statistical agen-
cies; they apply with equal force to Amazon, Facebook, Google, Microsoft, 
Netflix, Yahoo, and other Internet giants as they begin to release data prod-
ucts like Google Trends for use by the research community.

VIII. Conclusion

Although SDL is an important component of the data publication pro-
cess, it need not be more mysterious or inherently problematic than other 
widely used and well understood methods for sampling, editing, and impu-
tation, all of which affect the quality of analyses that economists perform 
on published data. Enough is known about current SDL methods to permit 
modeling their consequences for estimation of means, quantiles, propor-
tions, moments, regression models, instrumental variables models, regres-
sion discontinuity designs, and regression kink models. We have defined 
ignorable SDL methods in a model-dependent manner that is exactly par-
allel to the way ignorability is defined for missing-data models. We have 
shown that an SDL process is ignorable if one can apply the methods that 
would be appropriate for the confidential data directly to the published 
data and reach the same conclusions.

Most SDL systems are not ignorable. This is hardly surprising, since 
the main justification for using SDL is limiting the ability of the analyst 
to draw conclusions about unusual data elements such as re-identifying a 
respondent or a sensitive attribute. The same tools that help assess the influ-
ence of experimental design and missing data on model conclusions can be 
used to make any data analysis SDL-aware. One such system, the multiple 
imputation model used for SDL by the Survey of Consumer Finances, has 
operated quite successfully for two decades. Other systems, most notably 
the synthetic data systems with feedback loops operated by the Census 
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Bureau, are quite new but permit fully SDL-aware analyses of important 
household and business microdata sources.

Finally, we have shown that the methods we developed here can be used 
effectively on real data and that the consequences of SDL for data analysis 
are limited, at least for the models we considered here. When methods that 
add noise are used, there is less bias than for equivalent analyses that use 
data subjected to suppression. The extra variability that the noise-infusion 
methods generate is of a manageable magnitude.

We use these findings to press for two actions: (i) publication of more 
SDL details by the statistical agencies so that it is easier to assess whether 
or not SDL matters in a particular analysis and (ii) less trepidation by our 
research colleagues in using data that have been published with extensive 
SDL. There is no reason to treat the use of SDL as significantly more chal-
lenging than the analysis of quasi-experimental data or an analysis with 
substantial nonignorable missing data.

ACKNOWLEDGMENTS   We acknowledge direct support from the Alfred 
P. Sloan Foundation (Grant G-2015-13903) and, of course, the Brookings Insti-
tution. Abowd acknowledges direct support from the National Science Founda-
tion (NSF Grants BCS-0941226, TC-1012593, and SES-1131848). This paper 
was written while Abowd was visiting the Center for Labor Economics at the 
University of California, Berkeley. We are grateful for helpful comments from 
David Card, Cynthia Dwork, Caroline Hoxby, Tom Louis, Laura McKenna, 
Betsey Stevenson, Lars Vilhuber, and the volume editors.



264 Brookings Papers on Economic Activity, Spring 2015

References

Abowd, John M., and Simon D. Woodcock. 2001. “Disclosure Limitation in 
Longitudinal Linked Data.” In Confidentiality, Disclosure, and Data Access: 
Theory and Practical Applications for Statistical Agencies, edited by Pat Doyle, 
Julia Lane, Jules Theeuwes, and Laura Zayatz. Amsterdam: North Holland.

Alexander, J. Trent, Michael Davern, and Betsey Stevenson. 2010. “Inaccurate Age 
and Sex Data in the Census PUMS Files: Evidence and Implications.” Public 
Opinion Quarterly 74, no. 3: 551–69.

Anderson, Margo, and William Seltzer. 2007. “Challenges to the Confidentiality 
of U.S. Federal Statistics, 1910–1965.” Journal of Official Statistics 23, no. 1: 
1–34.

———. 2009. “Federal Statistical Confidentiality and Business Data: Twentieth 
Century Challenges and Continuing Issues.” Journal of Privacy and Confi-
dentiality 1, no. 1: 7–52.

Benedetto, Gary, and Martha Stinson. 2015. “Disclosure Review Board Memo: 
Second Request for Release of SIPP Synthetic Beta Version 6.0.” U.S. Census 
Bureau, Survey Improvement Research Branch, Social, Economic, and Hous-
ing Statistics Division (SEHSD). http://www.census.gov/content/dam/Census/
programs-surveys/sipp/methodology/DRBMemoTablesVersion2SSBv6_0.pdf

Bertrand, Marianne, Emir Kamenica, and Jessica Pan. 2015. “Gender Identity and 
Relative Income within Households.” Quarterly Journal of Economics 130, 
no. 2: 571–614.

Bollinger, Christopher R., and Barry T. Hirsch. 2006. “Match Bias from Earnings 
Imputation in the Current Population Survey: The Case of Imperfect Matching.” 
Journal of Labor Economics 24, no. 3: 483–520.

Burkhauser, Richard V., Shuaizhang Feng, Stephen P. Jenkins, and Jeff Larrimore. 
2012. “Recent Trends in Top Income Shares in the United States: Reconciling 
Estimates from March CPS and IRS Tax Return Data.” Review of Economics 
and Statistics 94, no. 2: 371–88.

Card, David, David Lee, Zhuan Pei, and Andrea Weber. 2012. “Nonlinear Policy 
Rules and the Identification and Estimation of Causal Effects in a General-
ized Regression Kink Design.” Working Paper no. 18564. Cambridge, Mass.: 
National Bureau of Economic Research.

Dalenius, Tore. 1977. “Towards a Methodology for Statistical Disclosure Control.” 
Statistik Tidskrift 15: 429–44.

Duncan, George T., Mark Elliot, and Juan-José Salazar-González. 2011. Statistical 
Confidentiality: Principles and Practice. New York: Springer.

Duncan, George T., and Stephen E. Fienberg. 1999. “Obtaining Information While 
Preserving Privacy: A Markov Perturbation Method for Tabular Data.” Presented 
at Eurostat conference Statistical Data Protection ’98 (SDP’98). Available at 
http://www.heinz.cmu.edu/research/21full.pdf

Duncan, George T., Thomas B. Jabine, and Virginia A. de Wolf, eds. 1993. Private 
Lives and Public Policies: Confidentiality and Accessibility of Government Sta-
tistics. Washington: National Academies Press.

Duncan, George T., and Diane Lambert. 1986. “Disclosure-Limited Data Dissemi-
nation.” Journal of the American Statistical Association 81, no. 393: 10–18.



JOHN M. ABOWD and IAN M. SCHMUTTE 265

Dwork, Cynthia. 2006. “Differential Privacy.” In Automata, Languages and 
Programming: 33rd International Colloquium, Proceedings, Part II, edited by  
Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener. Berlin 
and Heidelberg: Springer.

———. 2014. “Differential Privacy: A Cryptographic Approach to Private 
Data Analysis.” In Privacy, Big Data, and the Public Good: Frameworks for 
Engagement, edited by Julia Lane, Victoria Stodden, Stefan Bender, and 
Helen Nissenbaum. Cambridge University Press.

Dwork, Cynthia, Frank McSherry, Kobbi Nissim, and Adam Smith. 2006. “Cali-
brating Noise to Sensitivity in Private Data Analysis.” In Theory of Cryptog-
raphy: Third Theory of Cryptography Conference, Proceedings, edited by  
Shai Halevi and Tal Rabin. Berlin and Heidelberg: Springer.

Dwork, Cynthia, and Aaron Roth. 2014. “The Algorithmic Foundations of Differ-
ential Privacy.” Foundations and Trends in Theoretical Computer Science 9, 
nos. 3–4: 211–407.

Evans, Timothy, Laura Zayatz, and John Slanta. 1998. “Using Noise for Disclo-
sure Limitation for Establishment Tabular Data.” Journal of Official Statistics 
14, no. 4: 537–51.

Evfimievski, Alexandre, Johannes Gehrke, and Ramakrishnan Srikant. 2003. 
“Limiting Privacy Breaches in Privacy Preserving Data Mining.” In Proceed-
ings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on 
Principles of Database Systems (PODS). New York: Association for Computing 
Machinery. http://www.cs.cornell.edu/johannes/papers/2003/pods03-privacy.pdf

Federal Reserve Board of Governors. 2013. Codebook for 2013 Survey of  
Consumer Finances. Washington.

Fellegi, I. P. 1972. “On the Question of Statistical Confidentiality.” Journal of the 
American Statistical Association 67, no. 337: 7–18.

Goldwasser, Shafi, and Silvio Micali. 1982. “Probabilistic Encryption and How 
to Play Mental Poker Keeping Secret All Partial Information.” In Proceedings 
of the Fourteenth Annual ACM Symposium on Theory of Computing (STOC). 
New York: Association for Computing Machinery. https://www.cs.purdue.edu/
homes/ninghui/readings/Qual2/Goldwasser-Micali82.pdf

Hardt, Moritz, Katrina Ligett, and Frank McSherry. 2012. “A Simple and Practi-
cal Algorithm for Differentially Private Data Release.” In Advances in Neu-
ral Information Processing Systems 25, edited by F. Pereira, C. J. C. Burges,  
L. Bottou, and K. Q. Weinberger. Red Hook, N.Y.: Curran Associates.

Harris-Kojetin, Brian A., Wendy L. Alvey, Lynda Carlson, Steven B. Cohen, and 
others. 2005. “Report on Statistical Disclosure Limitation Methodology.” Statis-
tical Policy Working Paper no. 22, Federal Committee on Statistical Methodol-
ogy. https://fcsm.sites.usa.gov/files/2014/04/spwp22.pdf

Heffetz, Ori, and Katrina Ligett. 2014. “Privacy and Data-Based Research.” Journal 
of Economic Perspectives 28, no. 2: 75–98.

Heitjan, Daniel F., and Donald B. Rubin. 1991. “Ignorability and Coarse Data.” 
Annals of Statistics 19, no. 4: 2244–53.

Hirsch, Barry T., and Edward J. Schumacher. 2004. “Match Bias in Wage Gap 
Estimates due to Earnings Imputation.” Journal of Labor Economics 22, no. 3: 
689–722.



266 Brookings Papers on Economic Activity, Spring 2015

Holan, Scott H., Daniell Toth, Marco A. R. Ferreira, and Alan F. Karr. 2010. “Bayes-
ian Multiscale Multiple Imputation with Implications for Data Confidentiality.” 
Journal of the American Statistical Association 105, no. 490: 564–77.

Holland, Paul W. 1986. “Statistics and Causal Inference.” Journal of the American 
Statistical Association 81, no. 396: 945–60.

Imbens, Guido W., and Thomas Lemieux. 2008. “Regression Discontinuity Designs: 
A Guide to Practice.” Journal of Econometrics 142, no. 2: 615–35.

Imbens, Guido W., and Donald B. Rubin. 2015. Causal Inference for Statistics, 
Social and Biomedical Sciences: An Introduction. Cambridge University Press.

Karr, A. F., C. N. Kohnen, A. Oganian, J. P. Reiter, and A. P. Sanil. 2006. “A Frame-
work for Evaluating the Utility of Data Altered to Protect Confidentiality.” Amer-
ican Statistician 60, no. 3: 224–32.

Kennickell, Arthur B. 1997. “Multiple Imputation and Disclosure Protection:  
The Case of the 1995 Survey of Consumer Finances.” In Record Linkage  
Techniques, edited by Wendy Alvey and Bettye Jamerson. Arlington, Va.: 
Federal Committee on Statistical Methodology.

Kennickell, Arthur, and Julia Lane. 2006. “Measuring the Impact of Data Pro-
tection Techniques on Data Utility: Evidence from the Survey of Consumer 
Finances.” In Privacy in Statistical Databases: CENEX-SDC Project Inter-
national Conference, Proceedings, edited by Josep Domingo-Ferrer and 
Luisa Franconi. Berlin and Heidelberg: Springer.

Kinney, Satkartar K., Jerome P. Reiter, Arnold P. Reznek, Javier Miranda, and 
others. 2011. “Towards Unrestricted Public Use Business Microdata: The Syn-
thetic Longitudinal Business Database.” International Statistical Review 79, 
no. 3: 362–84.

Larrimore, Jeff, Richard V. Burkhauser, Shuaizhang Feng, and Laura Zayatz. 
2008. “Consistent Cell Means for Topcoded Incomes in the Public Use March 
CPS (1976–2007).” Journal of Economic and Social Measurement 33, no. 2: 
89–128.

Lauger, Amy, Billy Wisniewski, and Laura McKenna. 2014. “Disclosure Avoid-
ance Techniques at the U.S. Census Bureau: Current Practices and Research.” 
Research Report Series (Disclosure Avoidance) no. 2014-02. Washington: Center 
for Disclosure Avoidance Research, U.S. Census Bureau.

Lee, David S., and David Card. 2008. “Regression Discontinuity Inference with 
Specification Error.” Journal of Econometrics 142, no. 2: 655–74.

Little, Roderick J. A. 1993. “Statistical Analysis of Masked Data.” Journal of Offi-
cial Statistics 9, no. 2: 407–26.

Machanavajjhala, A., D. Kifer, J. Abowd, J. Gehrke, and L. Vilhuber. 2008. “Pri-
vacy: Theory Meets Practice on the Map.” In Proceedings of the 2008 IEEE 
24th International Conference on Data Engineering. Red Hook, N.Y.: Curran 
Associates.

McSherry, Frank 2009. “Privacy Integrated Queries: An Extensible Platform for 
Privacy Preserving Data Analysis.” In Proceedings of the 2009 ACM SIGMOD 
International Conference on Management of Data. New York: Association for 



JOHN M. ABOWD and IAN M. SCHMUTTE 267

Computing Machinery. http://research.microsoft.com/pubs/80218/sigmod115-
mcsherry.pdf

Narayanan, Arvind, and Vitaly Shmatikov. 2008. “Robust De-Anonymization of 
Large Sparse Datasets.” In Proceedings of the 2008 IEEE Symposium on Secu-
rity and Privacy. Red Hook, N.Y.: Curran Associates.

Ohm, Paul 2010. “Broken Promises of Privacy: Responding to the Surprising 
Failure of Anonymization.” UCLA Law Review 57: 1701.

Piketty, Thomas, and Emmanuel Saez. 2003. “Income Inequality in the United 
States, 1913–1998.” Quarterly Journal of Economics 118, no. 1: 1–41.

Raghunathan, T. E., Reiter, J. P., and Rubin, D. B. 2003. “Multiple Imputation for 
Statistical Disclosure Limitation.” Journal of Official Statistics 19, no. 1: 1–16.

Reiter, Jerome P. 2004. “Simultaneous Use of Multiple Imputation for Missing 
Data and Disclosure Limitation.” Survey Methodology 30, no. 2: 235–42.

———. 2005. “Estimating Risks of Identification Disclosure in Microdata.” 
Journal of the American Statistical Association 100, no. 472: 1103–12.

Rubin, Donald B. 1974. “Estimating Causal Effects of Treatments in Randomized and 
Nonrandomized Studies.” Journal of Educational Psychology 66, no. 5: 688–701.

———. 1993. “Discussion: Statistical Disclosure Limitation.” Journal of Official 
Statistics 9, no. 2: 461–68.

Skinner, C. J., and D. J. Holmes. 1998. “Estimating the Re-Identification Risk per 
Record in Microdata.” Journal of Official Statistics 14, no. 4: 361–72.

Skinner, Chris, and Natalie Shlomo. 2008. “Assessing Identification Risk in Sur-
vey Microdata Using Log-Linear Models.” Journal of the American Statistical 
Association 103, no. 483: 989–1001.

Sweeney, L. 2000. “Uniqueness of Simple Demographics in the U.S. Population.” 
Technical report no. LIDAP-WP4. Laboratory for International Data Privacy, 
Carnegie Mellon University.

U.S. Census Bureau. 2013a. SIPP Synthetic Beta: Version 6.0 [computer file], Wash-
ington; Cornell University, Synthetic Data Server [distributor], Ithaca, N.Y.

U.S. Census Bureau. 2013b. Synthetic Longitudinal Business Database: Version 
2.0 [computer file], Washington; Cornell University, Synthetic Data Server 
[distributor], Ithaca, N.Y.

U.S. Census Bureau. 2015. LEHD Origin-Destination Employment Statistics 
(LODES), Washington; U.S. Census Bureau [distributor].

Warner, Stanley L. 1965. “Randomized Response: A Survey Technique for Elimi-
nating Evasive Answer Bias.” Journal of the American Statistical Association  
60, no. 309: 63–69.

Yakowitz, Jane. 2011. “Tragedy of the Data Commons.” Harvard Journal of Law 
and Technology 25, no. 1.


