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Unseasonal Seasonals?

ABSTRACT    In any seasonal adjustment filter, some cyclical variation will 
be misattributed to seasonal factors and vice versa. The issue has long been 
well understood but it has resurfaced as a problem of special concern because 
the timing of the sharp downturn during the Great Recession appears to have 
distorted seasonals. In this paper, I find that initially this effect pushed reported 
seasonally adjusted nonfarm payrolls up in the first half of the year and down 
in the second half of the year, by slightly more than 100,000 in both cases. But 
the effect declined in later years and is quite small at the time of writing. Going 
beyond the special case of the Great Recession, I argue for using filters that 
constrain the seasonal factors to be more stable than the default filters used by 
U.S. statistical agencies, and also for using filters that are based on estimation of 
a state-space model. Finally, I report some evidence of predictability in revisions 
to seasonal factors.

Most macroeconomic data contain substantial regular variations 
associated with the time of year stemming from weather changes, 

vacations, or other sources. Overlooking the regular nature of this varia-
tion would obscure longer-term trends and business cycle variation. Conse-
quently, statistical agencies generally report seasonally adjusted (SA) data, 
aiming to purge the effect of this regular variation.

Seasonal adjustment is extraordinarily consequential. Figure 1 plots 
the levels of SA and NSA (not-seasonally-adjusted) nonfarm payrolls, as 
reported by the Bureau of Labor Statistics (BLS). The regular within-year 
variation in employment is comparable in magnitude to the effects of the 
1990–1991 and 2001 recessions. In monthly change, the average absolute 
difference between the SA and NSA number is 660,000, which dwarfs 
the normal month-over-month variation in the SA data. All this implies 
that we should think very carefully about how seasonal adjustment is done.

Conceptually, one may define seasonal adjustment as the purging of any 
variations in economic data that are predictable using the calendar alone. 
This includes not only effects associated with the time of year but factors 
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such as the timing of Easter or the number of business days in a month. It 
does not include variations in economic data owing to deviations in weather 
from the norms for a given time of year.

What makes estimation of seasonal effects difficult is that they can 
change over time. For example, the rise of air conditioning changed the 
peak of electricity demand from the winter to the summer (this is, for exam-
ple, documented in Energy Efficient Strategies 2005). Demographic trends 
affect the number of school- and college-age people seeking employment 
primarily during the summer. Climate change may also affect seasonal pat-
terns. If seasonal effects were constant over time, econometricians could 
eventually learn the “true” seasonal patterns. But given that seasonal effects 
do vary over time, the seasonal factor is an unobserved component that can 
be estimated but never perfectly identified.

Two broad approaches are generally used to undertake seasonal adjust-
ment. One approach tracks the seasonal component in a time series by a 
moving average of the series during the same period in different years. 
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Note: Level of nonfarm payrolls employment as reported by the BLS.
Source: Author’s calculations.

Figure 1.  Nonfarm Payrolls Employment: Seasonally Adjusted and Unadjusted, 
1990–2013
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This is the idea behind the Bureau of the Census X-12 ARIMA seasonal 
adjustment methodology.1 Henceforth in this paper, I will refer to this as 
the X-12 filter. This methodology involves first fitting a time series model 
to forecast and backcast the series, and then applying the moving average 
approach to the resulting extended series. If the data are not extended far 
enough, then asymmetric weights are used at the start and end of the sample. 
The different treatment of the start and end of the sample is important, both 
because the latest data are most important for the purposes of economic 
analysis and because the seasonal filter must inherently be one-sided at 
these points. The algorithm is described in some detail in the appendix to 
this paper and in greater detail by David Findley and others (1998) and by 
Dominique Ladiray and Benoît Quenneville (1989). U.S. and Canadian 
statistical agencies generally use the X-12 filter, and this will be my main 
focus in this paper.2 An alternative is to write down a model decomposing a 
series into components (such as trend, seasonal, and irregular) and to estimate 
this through the Kalman filter. The TRAMO-SEATS program developed at 
the Bank of Spain (Gómez and Maravall, 1996) is an example of a model-
based methodology.

Unfortunately, in academic economic and econometric research, issues 
of seasonal adjustment are typically given short shrift.3 A great deal of work 
has been done on the question of how to do seasonal adjustment, but these 
papers get limited outside attention and are seldom published in leading 
journals. Most academics treat seasonal adjustment as a very mundane 
job, rumored to be undertaken by hobbits living in holes in the ground. I 
believe that this is a terrible mistake, though it is one in which the statistical 
agencies share at least a little of the blame. Statistical agencies emphasize 
SA data (and in some cases do not even publish NSA data), and while they 
generally document their seasonal adjustment process thoroughly, they do 
not always do so in a way that facilitates replication or encourages entry 
into this research area. Yet seasonality is both substantively important and 

1.  ARIMA stands for AutoRegressive Integrated Moving Average.
2.  As of the time of writing, the Census Bureau is developing an X-13 ARIMA program, 

which is intended to allow users to choose between model-based and nonparametric seasonal 
adjustment, but this is not yet used by statistical agencies.

3.  There are important papers studying seasonal fluctuations and arguing that they are  
useful sources of identifying information in macroeconomic models, including Ghysels (1988), 
Barsky and Miron (1989), Hansen and Sargent (1993), Sims (1993), and Saijo (2013). Barsky 
and Miron (1989) also study stylized facts over the seasonal cycle and find that they are quite 
similar to the stylized facts over the business cycle. However, these papers do not focus on 
how to parse data into seasonal and nonseasonal components.
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difficult. It essentially involves issues such as bandwidth choice, or choos-
ing between parametric and nonparametric approaches, that are all quite 
standard in modern econometrics. In short, seasonal adjustment could and 
should be better integrated into mainstream econometrics.

This paper therefore revisits the question of seasonal adjustment, 
including the difficulty of disentangling seasonality from cyclical factors. 
It focuses on seasonal adjustment of the BLS current employment statistics 
(CES) survey (the “establishment” survey), which includes total nonfarm 
payrolls, since this is the most widely followed monthly economic indicator.  
Section I discusses the impact of the Great Recession on seasonality as an 
important illustration of the problem. In this section, I also provide confi-
dence intervals for seasonal factors. I find that these are quite wide—a direct 
implication of the intrinsic difficulty in separating business cycle and sea-
sonal fluctuations. In section II, I discuss the choice of an “optimal” filter. 
I argue for using filters that constrain the seasonal factors to vary less over 
time than the filters used by U.S. statistical agencies. My main criterion for 
optimality is forecasting. Decomposing a time series into different com-
ponents may be helpful for prediction, if those components have different 
dynamics. Section III establishes some results from revisions to estimated 
seasonal factors. Section IV concludes, offering suggestions for the practice 
of seasonal adjustment.

I.  Seasonals and the Great Recession

I.A.  Distortions from the Timing of the Recession’s Acute Phase

There has been a great deal of commentary among Wall Street analysts 
and in the press suggesting that the Great Recession may have distorted 
seasonals. The basic intuition is that the worst of the downturn came from 
November 2008 to March 2009. Standard seasonal filters will treat this as 
an indication that the “winter effect” became more negative,4 even though 
the downturn owed to a collapse in financial intermediation that had nothing 
to do with seasonality. The result is that SA data in subsequent years may 
have been biased upward in the winter and downward at other times. This 
possibility has led many to question how seasonal adjustment is undertaken, 
and it serves as the motivating example for this paper.

4.  The X-12 seasonal filters include an automatic treatment for outliers, discussed in the 
appendix. But these are only outliers affecting a single month, so they do not resolve the 
concern that the recessions distorted seasonals.
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Seasonal adjustment in the BLS CES and Current Population Survey 
(CPS) is quite involved. In the CES, it is done at the three-digit NAICS5 
level (or more disaggregated for some series) using the X-12 seasonal 
adjustment process, and these series are then aggregated to constructed SA 
total nonfarm payrolls.6 In the CPS, eight disaggregates are each season-
ally adjusted, and they are then used to compute the SA unemployment 
rate. I approximately replicate the full CES seasonal adjustment process, 
taking each of the 152 NSA disaggregated employment series, which are 
combined to form total nonfarm payrolls as an input, seasonally adjusting 
each of them, and then aggregating them.7 Likewise, I approximately rep-
licate the CPS seasonal adjustment process, taking eight CPS disaggregate 
series, seasonally adjusting them separately, and computing the resultant 
unemployment rate.8

I am aware of two pieces of detailed existing work on the Great Reces-
sion and CES seasonal factors. Steven Wieting (2012a) runs the X-12 pro-
gram on aggregate NSA employment data,9 replacing the actual data with 
a fictitious path that has a constant pace of decline from September 2008 
to March 2009. He finds that this materially changed the contours of SA 
employment growth in 2010 and 2011, although in both years other factors 
just happened to give growth a bounce in the early spring that faded later on. 
Jurgen Kropf and Nicole Hudson (2012) redo the seasonal adjustment for 
the entire establishment survey using an alternative methodology to control 
for the impact of the recession.

In contrast to Wieting, they find that the Great Recession had no material  
impact on seasonals. Their methodology is to allow for “ramps,” that is, 
additional level shifts that occur linearly over a period of time. Their start- and 

5.  NAICS stands for the North American Industry Classification System, the industrial 
code system used for the past decade by BLS.

6.  In this paper, I take the practice of statistical agencies in seasonally adjusting disaggre-
gates as given, but note that Geweke (1978) argued for instead applying seasonal adjustment 
directly to the aggregate data.

7.  The mean absolute deviation between my implementation of seasonal adjustment and 
the published BLS number for total nonfarm payroll employment is 10,000. At least some part 
of this is completely unavoidable because the BLS only publishes rounded unadjusted data, 
whereas their seasonal adjustment uses the unrounded numbers. Also, seasonal adjustment 
for data from November 2012 and earlier were computed by the BLS using disaggregate data 
as observed at the time of the January 2013 employment report release, which I do not have 
and the last two months of which have subsequently been revised.

8.  The mean absolute deviation between my implementation of seasonal adjustment and 
the published BLS number for the unemployment rate is 0.02 percent.

9.  Applying the X-12 program to aggregate NSA data does not produce aggregate SA 
data as reported by the BLS.



70	 Brookings Papers on Economic Activity, Fall 2013

end-dates vary by series, but averaging across series they are October 2007 
(start) and May 2010 (end; this is nearly a year after the NBER trough). 
These dates are not focused on the few months during the Great Recession 
in which employment was hemorrhaging. In my view, Kropf and Hudson’s 
methodology does not address the concern that job losses concentrated 
from November 2008 to March 2009 have distorted estimates of seasonal 
factors. They do not report employment data during 2008–09 using their 
alternative seasonal adjustment, but I strongly suspect that it would exhibit 
the same unusual concentration of job losses during the winter months as 
in the published SA series.

My approach to assessing the possibility that the Great Recession dis-
torted seasonals is similar in spirit to that of Wieting (2012a), but I conduct 
the seasonal adjustment at the disaggregate level to get closer to what BLS 
is actually doing. For each month t from July 2008 to May 2009, I multi-
ply each of the disaggregated CES employment numbers by a constant qt.  
The 11 constants qt are picked so as to ensure that seasonally adjusted 
aggregate nonfarm payrolls decline linearly from July 2008 to June 2009. 
More precisely, they are selected numerically to minimize the variance of 
month-over-month changes in aggregate seasonally adjusted payrolls from 
June 2008 to June 2009. Any unusual seasonal variation over this period is 
thus wiped out in these fictitious data.

Figure 2 plots SA monthly payroll changes during 2008–09 in both the 
real and the fictitious data; in the latter, SA employment declines at a steady 
pace of about 550,000 jobs per month. Here, and throughout this section, 
the seasonal adjustment is applied to the whole sample at the end of the 
sample period; this is not a real-time seasonal adjustment exercise.

Next, figure 3 plots the difference between the monthly level of actual 
seasonally adjusted total nonfarm payroll employment and the correspond-
ing series based on the alternative, fictitious path for employment during 
the Great Recession. Consequently, figure 3 can be interpreted as showing 
the distortion to the monthly level of employment induced by the Great 
Recession, under the assumption that the unusual seasonal variation in 
2008–09 did not in fact owe to changing seasonals.

In figure 3, the distortion to seasonal factors induced by the Great 
Recession pushes down the level of seasonally adjusted employment in the 
second half of the year and drives it up in the first half of the year. The effect 
repeats itself each year, generally getting smaller over time. The effect is 
largest in the second half of 2009 and the first half of 2010, where the level 
of employment is off by more than 100,000. As time goes by, the effect 
diminishes. At the end of the sample, it is small, but still not negligible.
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Note: Monthly changes in total SA nonfarm payroll employment from July 2008 to June 2009 both as 
reported by the BLS and using the alternative fictitious data (see text) that I use for the purpose of 
calculating post-recession seasonal factors.

Source: Author’s calculations.

Figure 2.  Monthly Changes in Seasonally Adjusted Nonfarm Payroll Employment,  
July 2008–June 2009

Figure 3 shows the estimated effects of the Great Recession on the sub
sequent monthly level of seasonally adjusted employment. When one con-
siders the monthly change in seasonally adjusted employment, it follows that 
each year from about November to April the apparently distorted seasonals 
biased the employment changes upward, whereas from May to October 
they had the reverse effect. In each year from 2010 to 2013, there has been 
a tendency for strong economic growth in the early spring being followed 
by a summer of discontent, as discussed in Wieting (2012b). Figure 3 shows 
that a part of this pattern is due to distortions in seasonal factors, but the 
seasonal distortions story can only explain a part of the phenomenon in 
2010–2012, and it explains very little of it in 2013.10

10.  The X-12 program incorporates a diagnostic check for whether a seasonal adjustment 
procedure is excessively unstable, based on sliding spans (Findley and others 1990). This 
procedure flags instability for 25 out of the 152 series (in the sense that the maximum abso-
lute percentage difference in the estimated seasonal factor across spans exceeds 3 percent 
for these series).



72	 Brookings Papers on Economic Activity, Fall 2013

An adjustment for the Great Recession effect along the lines that I 
envision could not have been implemented during the winter of 2008–09. 
However, it could have been implemented after the summer of 2009. The 
apparent consequences of the seasonal distortions from the Great Recession 
lasted for a few years, and so such an adjustment implemented in late 2009 
or 2010 would still have been applicable to real-time analysis of incoming 
data during the post-recession period. Indeed, as discussed further below, 
the Federal Reserve Board implemented an adjustment for the effects of the 
Great Recession in the 2010 annual revision of industrial production data 
(published June 25, 2010).

I also consider the CPS reports, which include the unemployment rate. 
I multiply each of the four CPS unemployment numbers for each month 
from July 2008 to May 2009 by a month-specific adjustment parameter, so 
as to ensure that the total seasonally adjusted unemployment level climbs 
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Note: For each month from July 2009 to April 2013, this figure shows the difference between the level 
of seasonally adjusted nonfarm payrolls using the actual current vintage of data and the level using the 
alternative fictitious data (described in the text), in which seasonally adjusted employment declined 
linearly from June 2008 to June 2009. The vertical dotted grid lines denote year turns, so that the bars 
immediately to the right represent January data.

Source: Author’s calculations.

Figure 3.  Estimated Effect of Recession-Induced Seasonal Distortion on Monthly  
Payroll Levels, July 2009–April 2013
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linearly from June 2008 to June 2009. I likewise adjust each of the four CPS 
employment numbers to ensure that the employment level falls linearly. 
Figure 4 plots the resulting difference between the actual unemployment 
rate and the corresponding series based on the alternative fictitious path. 
The pattern is roughly the mirror image of figure 3: the Great Recession 
drives down the unemployment rate in the first half of each year and drives 
it up in the second half. The effect diminishes over time. The estimated dis-
tortion is, at most, about 0.08 percent. This seems less consequential than 
the distortion in the CES, but it is still not negligible (for scaling purposes, 
note that the standard deviation of monthly changes in the unemployment 
rate since 1984:01 is 0.16 percent).

In the remainder of this paper I focus on the seasonal adjustment of 
the CES survey. But the impact of the Great Recession on seasonals might 
well apply to other macroeconomic data as well. Lewis Alexander and 
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Note: For each month from July 2009 to April 2013, this figure shows the difference between the 
seasonally adjusted unemployment rate using the actual current vintage of data and using the alternative 
fictitious data, described in the text, in which seasonally adjusted unemployment climbed linearly from 
June 2008 to June 2009. The vertical dotted grid lines denote year turns, so that the bars immediately to 
the right represent January data. 

Source: Author’s calculations.

Figure 4.  Estimated Effect of Recession-Induced Seasonal Distortion on Monthly  
Unemployment Rate, July 2009–April 2013
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Jeffrey Greenberg (2012) argue that it affects initial jobless claims. Ellen 
Zentner, Aichi Amemiya, and Jeffrey Greenberg (2012) argue that it 
affects the Chicago PMI and the ISM index. And the Federal Reserve 
Board has made an intervention in its seasonal adjustment procedures 
for industrial production.

Finally, it is worth noting that the Great Recession did not just affect SA 
data after the recession was over, it also affected the SA data from before 
the recession, notably 2005–07. This effect is much less important, though, 
because the monthly contours of data from about seven years ago are of 
little relevance for policy today.

I.B.  Another Way to Measure the Distortions

There are of course other possible ways of measuring distortions in sea-
sonal adjustment arising from the Great Recession. One approach, pro-
posed by Thomas Evans and Richard Tiller (2013) in the context of the CPS, 
is to treat all the data for 2008 and 2009 as missing. The X-12 program 
would then fill in these data with forecasts based on earlier data. A level shift 
dummy can be included for January 2010. In common with the approach that 
I propose, but unlike that of Kropf and Hudson (2012), this method forces 
the seasonal adjustment filter to operate without any knowledge of the tim-
ing of the acute phase of the Great Recession.

I apply this Evans and Tiller approach to the 152 CES disaggregates. 
Figure 5 plots the resulting difference between the monthly level of actual 
seasonally adjusted total nonfarm payroll employment and the correspond-
ing series based on this alternative seasonal adjustment from January 2010 
on. The difference is qualitatively similar to what I found earlier, shown in 
figure 3: The distortion to seasonal factors induced by the Great Recession 
pushes down the level of seasonally adjusted employment in the second 
half of the year and drives it up in the first half of the year. The magnitude 
of the effect is about 100,000 in 2010 and gets smaller over time.

I.C.  Might Seasonal Patterns Have Recently Changed?

The distortions discussed in the last two subsections are a case of cyclical 
variation being mistakenly attributed to seasonal effects. But the converse 
is also possible. A striking example of a series where seasonal patterns are 
changing and the filters are slow to catch up is employment by couriers  
and messengers (Wieting, 2012a). Figure 6 plots monthly changes in sea-
sonally adjusted employment in this industry. Notwithstanding the fact that 
the series has been seasonally adjusted, there is a clear spike upward each 
December, which is reversed in the New Year. This appears to owe to the 
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fact that people do more of their Christmas shopping online than in the past, 
and it creates a surge in employment by companies such as UPS and FedEx. 
This is a changing seasonal pattern that the filter is mistaking for a cyclical 
effect, though it may not be very important in the aggregate, because there 
is an offsetting secular shift toward less Christmas shopping at bricks-and-
mortar retailers.

It could be that the Great Recession and its aftermath genuinely changed 
seasonal patterns, and that filters mistakenly attribute some of this to cyclical  
effects. Wieting (2012b) and Hyatt and Spletzer (2013) argue that job turn-
over has declined sharply in the last few years. That means less hiring 
during the early summer months, when employers normally expand their 
payrolls, and less firing in January and February. Of course, it is a bit unclear 
whether one would want to treat this as a change in seasonal patterns or just 
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Note: For each month from January 2010 to April 2013, this figure shows the difference between the 
level of seasonally adjusted nonfarm payrolls using the actual current vintage of data and the level using 
the alternative seasonal adjustment in which data from 2008 and 2009 are treated as missing (with a level 
shift in 2010:01), following Evans and Tiller (2013). The vertical dotted grid lines denote year turns, so 
that the bars immediately to the right represent January data.

Source: Author’s calculations.

Figure 5.  Estimated Effect of Recession-Induced Seasonal Distortion on  
Monthly Payroll Levels: Alternative Methodology, January 2010–April 2013
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as unusual cyclical behavior for a few years. If it lasts long enough, though, 
it should be viewed as a change in seasonal patterns. Since seasonal factors 
take some time to adjust to this change, seasonally adjusted data would then  
be biased downward in the summer months and upward in the winter months. 
This is a separate but seasonal-related story that could also explain part of 
the tendency for employment data to be strong in the early spring and weak 
later in the year.11

I.D.  Impulse Responses

The broad concern, of which the effect of the Great Recession on sea-
sonals is an important special case, is that the seasonal filter may incor-
rectly attribute cyclical patterns or month-to-month “noise” to changing 
seasonality, or vice versa. To see how the former can happen generically, I 

11.  Indeed, well before the Great Recession, Canova and Ghysels (1994) found evidence 
that seasonal patterns can to some extent be affected by the business cycle.
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Figure 6.  Seasonally Adjusted Monthly Change in Employment of Couriers and  
Messengers, 2009–13
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perform an experiment of adding 1 percent to each NSA employment dis-
aggregate in January–March 2007 and then trace out the dynamic effects of 
this on SA aggregate employment data.

The results of this exercise are shown in figure 7. The shock drives SA 
employment up in January–March 2007 by about 0.8 percent, because the 
impact on the seasonal factors attenuates the shock. In the following January, 
the result is to push SA data down by about 0.15 percent and to drive SA 
data up a little in the rest of the year. The effects are smaller the next year, 
smaller again the following year, and have more or less worked through the  
system after 3 years, although the shock still has some effects on sporadic 
months after that. Figure 7 also shows the effect of the shock on SA employ-
ment in earlier years—the echo effect is two-sided. This exercise only illus-
trates the impulse response of a very particular shock: A one-percent shock 
that lasts for 3 months. To figure out the precise effects of other shocks, such 
as a shock that lasts for 6 months, the impulse response would have to be 
computed separately. The seasonal adjustment process is complicated and 
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Source: Author’s calculations.

Figure 7.  Estimated Effect of Shock to Employment, 2003–13
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nonlinear; authors including Allan Young (1968) and Eric Ghysels, Clive 
Granger, and Pierre Siklos (1996) discuss the extent to which it may be 
approximated by a linear process.

I.E.  Discussion

Amid signs of economic recovery at the start of 2010, 2011, and 2012, 
the Federal Reserve began each year by moving toward an “exit strategy” 
from unconventional monetary policy, hoping on each occasion that the 
recovery had gained enough momentum to be self-sustaining. In each case, 
when the apparent rebound faltered, the Federal Reserve restarted uncon-
ventional policy. The problems with disentangling cyclical and seasonal 
patterns are of course well known to Federal Reserve staff. However, it  
is possible that some of the stop-start nature of asset purchase policy over 
this period reflects misleading estimates of seasonal factors, especially since 
the Federal Open Market Committee (FOMC) is remarkably sensitive to 
small changes in the payrolls number.

It is likewise possible that financial markets were to some extent fooled 
by problems with seasonal adjustments, as conjectured by Wieting (2012c). 
His argument is that in the aftermath of the Great Recession, the Citigroup 
economic surprise index was positive in the winter and negative the rest of 
the year. This index is a weighted average of differences between actual and 
expected data (from surveys). To test this, I compute the correlation between 
the surprise component of the monthly change in nonfarm payrolls and the 
distortion in these data from my estimates discussed above. I find that the 
correlation is positive, meaning that better-than-expected SA data tended to 
be overstated, although the correlation is not statistically significant.

The case of the Great Recession highlights the broader difficulty in 
separating cyclical and seasonal effects. This broad problem has been noted 
in earlier business cycles as well, including the recessions of 1957–58 and 
1973–75 (Gilbert 2012; Ghysels 1987; Sargent 1978).

In the case of the Great Recession one may want to interfere in the 
normal econometric seasonal filter in some way so as to prevent the timing 
of the most acute part of the downturn from doing much to affect seasonal 
factors. In its seasonal adjustment of industrial production data, the Federal 
Reserve Board has decided to pre-adjust the NSA data for much of 2009 in 
order to eliminate the Great Recession effect before applying the normal 
seasonal filter. The BLS has not conducted such an adjustment. It seems 
clear that the Great Recession has distorted seasonals in the CES—the pace 
of job losses from November 2008 to March 2009 surely owed very little to 
shifting seasonal patterns. Still, it is understandable that a statistical agency 
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might not want to make such consequential judgmental interventions in 
the construction of data. The data produced by the BLS are extremely 
influential in election campaigns, so making seasonal adjustments with a 
methodology that limits manual intervention may be important to insulate 
the agency from unfounded claims of political bias. But the situation is dif-
ferent for sophisticated end-users of the data, such as the Federal Reserve 
Board. These users should—and perhaps for internal purposes they already 
do—construct alternative seasonal factors in employment data that in some 
way override the effect of the timing of the worst part of the Great Recession.

In the end a reasonable compromise would be for statistical agencies to 
provide both SA and NSA data, with the seasonal adjustment conducted by 
a filter that involves only limited manual intervention, allowing the end-
user to apply the appropriate filter. Producing only NSA data and leaving 
the seasonal adjustment up to end-users would mean that there would be no 
single usable baseline measure of month-to-month fluctuations in employ-
ment, unemployment, or other such variables. At the same time, I agree with 
Agustín Maravall (1995) that producing only SA data would be much worse, 
since users would then be unable to undertake their own decomposition of 
data into seasonal and nonseasonal components. Yet amazingly, the Bureau 
of Economic Analysis stopped releasing NSA GDP data some years ago as 
a cost-cutting measure. It is hard to imagine that the savings were material. 
While it seems likely that the drop in output in 2008Q4 and 2009Q1 has 
meaningfully affected national income and product account seasonal factors, 
data availability precludes a complete analysis of this possibility.

More generally, it is very unfortunate that for the most basic measure 
of economic activity in the largest economy in the world, researchers are 
effectively prevented from evaluating any difficulties associated with sea-
sonal adjustment.

I.F.  Providing Confidence Intervals for Seasonal Factors

Given the nature of the decomposition of data into seasonal and nonseasonal  
components, it seems important to provide confidence intervals for seasonal 
factors. Jerry Hausman and Mark Watson (1985) argued for the importance 
of providing such confidence intervals, but more than 25 years later their 
plea has largely fallen on deaf ears.12 Methods for seasonal adjustment such 

12.  There are exceptions. Tiller and Natale (2005) use a structural model, along the lines 
that I consider later in this paper, to get an estimate with standard error for the seasonal com-
ponent of the unemployment rate. Scott, Sverchkov, and Pfeffermann (2005) also consider 
estimating the variance of the X-11 seasonal adjustment filter.
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as the X-12 lack any direct means for constructing confidence intervals. 
However, an advantage of the model-based approach to seasonal adjustment 
is that confidence intervals are provided as a by-product of the Kalman filter.

As an illustrative exercise for forming confidence intervals for seasonal 
factors, I take one of the basic structural models of Andrew Harvey (1989). 
In this model, a time series yt can be decomposed as:

y s vt t t t= τ + + ,

where tt, st, and vt denote the stochastic trend, stochastic seasonal, and 
irregular components, respectively, which follow the specifications:
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where {e1t, e2t, e3t, e4t} are zero mean shocks that are each identically dis-
tributed over time, and that are independent of each other both over time 
and cross-sectionally and S is the number of periods in a year. The model 
is simple, but it mirrors the X-12 model in seeking to decompose the series 
into trend, seasonal, and irregular components.

The above model is fitted to total NSA employment data.13 Figure 8 
shows the standard error associated with the estimate of the month-to-
month change in the seasonal factor in this structural model. It varies 
over time, increasing at the end of the sample (because there is only past 
information to guide the seasonal factors). At the end of the sample it is 
around 70,000 jobs per month. That seems to be a reasonable calibration 
of the uncertainty associated with seasonal adjustment,14 but of course it is  

13.  Naturally, the estimated seasonal factor differs from the BLS seasonal factor, both 
because a different seasonal adjustment method is used and because it is applied to aggregate 
data, whereas the BLS seasonally adjusts disaggregate data. From January 2007 to the present, 
the mean absolute difference between the SA data using this basic structural model and the  
SA data as reported by the BLS is 46,000 per month.

14.  The actual seasonal adjustment process is done at the disaggregate level and ought 
consequently to be more precise. That gives one a reason to think that my estimated stan-
dard error could be too big. On the other hand, the standard Kalman smoother estimate of 
standard errors neglects parameter uncertainty, which gives one a reason to think that my 
estimated standard error could be too small.
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dependent on the specific model used. Including a cyclical component in 
the structural model does reduce the standard error on the seasonal compo-
nent, but only slightly.

It should be stressed that this calibration ignores any sampling error in 
the payrolls number. The BLS estimates the sampling standard error in the 
monthly level of employment to be about 56,000. Combining sampling 
error with uncertainty about the seasonal decomposition implies enormous 
uncertainty in SA monthly payrolls changes.15 Given this, it is remark-
able that the FOMC reacts to very modest payrolls surprises. It is likewise 
noteworthy—but perhaps a consequence of the FOMC’s sensitivity—that 
financial market asset prices are so responsive to such noisy data.

15.  Moreover, even if one treats the weights in the seasonal adjustment filter as known, 
the sampling error will still impart uncertainty to the estimation of the seasonal factors 
(Hausman and Watson 1985).
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Note: This figure plots the standard error of the seasonal component estimate in month-over-month 
changes in payroll employment when the basic seasonal structural model is applied to aggregate payroll 
employment. The standard error is computed via the Kalman smoother, treating parameters as fixed.

Source: Author’s calculations.

Figure 8.  Standard Error of Seasonal Component in Monthly Payroll Changes,  
January 2007–April 2013
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II.  Optimal Seasonal Adjustment

This section departs from the specific issue of the impact of the Great 
Recession on seasonals and instead considers the broader question of what is 
the “optimal” choice from among the many seasonal filters that are available.

II.A.  Attention to Bandwidth Choice

A critical part of the X-12 process involves estimating the seasonal factors 
by taking weighted moving averages of data in the same period of different 
years. This is done by taking a symmetric n-term moving average of m-term 
averages, which is referred to as an n × m seasonal filter. For example, for  
n = m = 3, the weights are 1/3 on the year in question, 2/9 on the years before 
and after, and 1/9 on the two years before and after.16 The filter can be a  
3 × 1, 3 × 3, 3 × 5, 3 × 9, 3 × 15, or stable filter. The stable filter averages 
the data in the same period of all available years. The default settings of the 
X-12, as described in the appendix, involve using a 3 × 3, 3 × 5, or 3 × 9 
seasonal filter, depending on a criterion discussed in the appendix. Figure 9  
plots the weights for the different filters. The choice of filter is effectively 
the bandwidth choice in a nonparametric statistical problem, and the choice 
of bandwidth involves a bias-variance trade-off. If seasonal patterns fluc-
tuate a great deal, then a small choice of bandwidth will be appropriate 
to reduce the problem of changing seasonals being incorrectly attributed 
to cyclical variation (bias). The example of changing seasonality coming 
from the sudden expansion in online retailing in figure 6 is an illustration of 
where a low bandwidth is suitable. On the other hand, if seasonal patterns do 
not flap around much, a higher choice of bandwidth will reduce the problem 
of cyclical patterns being incorrectly attributed to seasonals (variance). The 
problem of the Great Recession distorting seasonals illustrates a situation 
where a high bandwidth is suitable.

Out of the 152 CES seasonal series that I seasonally adjust in section 2 
with the default X-12 settings, 118 end up using the 3 × 5 filter, 31 use the 
3 × 3 filter, and 3 use the 3 × 9 filter.17 The 3 × 3 and 3 × 5 filters that are 
effectively used in CES seasonal adjustment have a very small bandwidth. 
The 3 × 3 filter only weights the current year and the previous and sub
sequent two years. The 3 × 5 filter puts 87 percent of the weight on these 
five years. This small bandwidth means that a special factor in one year can 
have a large effect on seasonals. The flip side is that the distortion will wash 

16.  Note that an n × m filter and an m × n filter are the same thing.
17.  This is the filter used on the D step of the algorithm as described in the appendix.
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out after 2 or 3 years. This bandwidth also means that genuine changes in 
seasonal patterns will be picked up fairly quickly.

In the X-12 filter the data are extended with forecasts and backcasts 
from a seasonal ARIMA model. If they are not extended far enough, then 
an asymmetric filter is used at the beginning and end of the sample instead 
(more details are given in the appendix). Importantly, this means that at 
the end of the sample the seasonal adjustment may be even more heavily 
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Note: This figure plots the weights on the same period each year used by alternative seasonal MA 
filters in the X-12. The stable filter is not reported, but gives equal weight to all years over the sample on 
which the seasonal filter is run. 

Source: Author’s calculations.

Figure 9.  Alternative Seasonal MA Filters
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influenced by a small number of observations than would be the case in the 
middle of the sample.

It is also important to note that the BLS implements seasonal adjustment 
using about 10 years of data. So even the stable filter does not assume that 
seasonal factors never change, just that the changes within the last 10 years 
are negligible.

II.B.  Criteria for Optimality

A number of criteria are possible for making the optimal choice of band-
width within the X-12 filter, or indeed for deciding between the X-12 and 
other methods of seasonal adjustment. One might pick the seasonal filter 
to maximize the accuracy of parameter estimates in a rational expectations 
model or to control the size or maximize the power of tests of such a model 
(Hansen and Sargent 1993; Sims 1993; Saijo 2013). The predictability of 
seasonal patterns makes them potentially very useful for inference in ratio-
nal expectations models.

Alternatively, one might pick the filter to minimize the mean square error 
of the estimate of the seasonal component. This is easiest to conceptualize 
if one has an explicit model. Of course, given a correctly specified model, 
the model itself should give the best estimate of the seasonal component.18 
But all models are mis-specified, and so other methods may then do better. 
Treating the data as approximated by a model, one could then ask what 
X-12 filter gives the minimum mean square error. Raoul Depoutot and 
Christophe Planas (1998) consider approximating a time series yt with 
the model:

L L y L L at t( )( )( )( )− − = + θ + θ1 1 1 1 ,12
1 12

12

where at is independent and identically distributed (iid) noise—a so-called 
“airline” model (Box and Jenkins 1986), which implies a decomposition 
of the series into trend, seasonal, and irregular components (Hillmer and 
Tiao, 1982). Depoutot and Planas (1998) provide a look-up table telling us 
which X-12 filter from among the 3 × 3, 3 × 5, 3 × 9, and 3 × 15 alternatives  
gives the minimum mean square error of the seasonal component, for a 
given choice of the parameters q1 and q12. Out of the 152 CES seasonal 
series that I seasonally adjust, based on this criterion, the 3 × 3 would be 

18.  Burridge and Wallis (1984) show that an unobserved component model with particular 
parameter values can come close to the X-11 filter that was in use at that time. But the X-11 is 
still suboptimal for any other time-series models.
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optimal for 20 series, the 3 × 5 for 16 series, the 3 × 9 for 18 series, and the 
3 × 15 for 98 series. These filters are generally higher bandwidth than in  
the default X-12 program, implying that seasonal factors should be con-
strained to vary less over time. Depoutot and Planas (1998) and Richard 
Tiller, Daniel Chow, and Stuart Scott (2007) use this same methodology to 
determine the optimal X-12 filter for a range of series, and likewise find 
that higher bandwidth filters are optimal for many series.

However, the main objective for seasonal adjustment under consideration 
in this paper is to obtain data for a forecasting model. Decomposing a time 
series into different components may be helpful for prediction, if those 
components have different dynamics. Thus, if one’s objective is to forecast 
NSA data at the h-month horizon, one might want to split the data into SA 
data and the seasonal factor. One could fit a forecasting model to the SA data 
and forecast the seasonal factor by the last available value for that month in 
the sample period. Using SA data in this way, one can ask what seasonal 
filter gives the most accurate forecasts. This is my proposed optimality 
criterion.

The forecasting objective may be somewhat narrow, but it is easy to 
quantify any gains from seasonal adjustment, and of course these fore-
casts are inputs to a forward-looking Taylor rule. In the same spirit, Eric 
Ghysels, Denise Osborn, and Paulo Rodrigues (2006) do a Monte Carlo 
simulation comparing the ability of different models to forecast artificially 
simulated NSA data. William Bell and Ekaterina Sotiris (2010) consider 
forecasting as an objective for seasonal adjustment, and indeed, Julius 
Shishkin (1957, p. 222) made this case more than half a century ago:

A principal purpose of studying economic indicators is to determine the stage 
of the business cycle at which the economy stands. Such knowledge helps in 
forecasting subsequent cyclical movements and provides a factual basis for taking 
steps to moderate the amplitude and scope of the business cycle. . . . In using 
indicators, however, analysts are perennially troubled by the difficulty of separating 
cyclical from other types of fluctuations, particularly seasonal fluctuations.

It is also true that the seasonal adjustment process itself directly implies 
a forecast for the future time series. However, in practice, forecasters almost 
invariably simply download data and fit time series models directly to these 
data. Taking this practice as given, I aim to see what seasonal filter it is best 
to have applied, addressing the question in a standard pseudo-out-of-sample 
forecasting exercise.

Before continuing to the forecasting exercise, note that the X-12 seasonal 
filter considers only a few specific possible choices of weights. Considering  
how statisticians and econometricians tackle other nonparametric problems, 
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it would seem more natural to select some kernel function and then pick the 
bandwidth from a continuum of possible values according to some criterion.19 
Nevertheless, in this paper I restrict attention to filter choices available within 
the X-12 program. 

II.C.  Univariate Forecasting

Let yt (j) denote the value of total nonfarm payroll employment at time t,  
summing each of the CES disaggregates using the jth seasonal adjustment 
filter. I treat this as stationary in log first differences (following, for example, 
Stock and Watson 2002) and consider the AR model for the log first differ-
ences of this series:

y j y j ut i t i t
i

p
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where ut is an iid error term. I estimate equation 1 in a recursive out-of-
sample forecasting scheme with data from 1990:01 up to month t (which 
ranges from 2000:01 to 2012:04), using seasonal adjustment applied to the 
sample from 1990:01 to month t and with the lag order p selected by the 
Bayesian information criterion.20 I then construct the implied forecast of SA 
employment growth over the next h months, log [yT+h(j)] - log [yT(j)], and 
call this ĝT,T+h(j). I convert this into a forecast of NSA employment growth as
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where l = 12ceil(h/12) and ceil(.) denotes the argument rounded up to the 
next integer. This latter forecast is then compared to the actual realized 
value of NSA employment growth over the subsequent h months. If h = 12, 
equation 2 reduces to ĝT,T+12(j) as above.

The seasonal filters that I consider in this exercise are all the alterna-
tives in the X-12 program: 3 × 1, 3 × 3, 3 × 5, 3 × 9, 3 × 15, stable, and 
the default. Recall from subsection II.A that the default settings, which are 

19.  Also, the weights in the X-12 seasonal filter are always nonnegative. In other non-
parametric problems, researchers often use higher-order kernels that can be negative in the 
tails. It may be somewhat counterintuitive, but this turns out to reduce bias (Bartlett 1963; 
Silverman 1986) and might in principle be helpful in the context of seasonal adjustment. 
Nevertheless, to my knowledge the possibility has never been explored.

20.  The 152 disaggregates that go into total nonfarm payrolls are all reported only as far 
back as 1990:01.
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described in the appendix, amount in the context of the CES to using 3 × 5 
for most series and 3 × 3 for nearly all of the others.21 In addition, I consider 
three other alternatives, as follows.

First alternative: Simply using NSA data.
Second alternative: Using NSA data but augmenting equation 1 with 

seasonal dummies. This is the optimal way of doing seasonal adjustment 
if the seasonal effects are constant over time and simply amount to level 
shifts depending on the current month.

Third alternative: Doing seasonal adjustment using, instead, the basic 
structural model, described in subsection I.F, estimated recursively through 
the Kalman filter.

For forecasts made as of time t, the seasonal adjustment is implemented 
only using data up to time t and the parameters are estimated using only 
these data. However, this is still not a genuine real-time forecasting exer-
cise, as I do not have real-time data on NSA employment disaggregates. 
Although the seasonal adjustment is done recursively, the current vintage 
of NSA employment data is used (both for disaggregates and for the aggre-
gate data).

Table 1 reports the root mean square prediction error (RMSPE) for each 
seasonal filter at forecast horizons of h = 1, 6, and 12 months. Table 1 also 
reports tests of the hypothesis of equal root forecast accuracy comparing 
(i) forecasts using NSA data and all other forecasts and (ii) forecasts using 
the X-12 default seasonal filter and all other forecasts. The test of equal 
forecast accuracy uses the approach of Diebold and Mariano (1995).

Forecasting is consistently much more accurate using SA data. This seems 
intuitive. For example, strong growth in retail sales in October might suggest 
that the economy has momentum; the same data in December would not. 
This is just one of a number of contexts in time series where decomposing 
data into components with different dynamics helps with forecasting. As 
another example, breaking out inflation measures into core inflation and 
food and energy inflation helps in predicting total inflation, because food 
and energy inflation is much less persistent (Faust and Wright 2013). In 
the volatility forecasting literature, Torben Andersen, Tim Bollerslev, and 
Francis Diebold (2007) find that separating volatility into smooth compo-
nents and jumps gives better predictions, because the two parts of volatility 
have different persistence patterns.

21.  The implementation of the X-12 is in all respects carried out exactly as by the BLS, 
except for the choice of seasonal filter (such as whether the model is additive or multiplicative).
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Table 1.  Out-of-Sample Forecasting of Payroll Employment in a Univariate 
Autoregression Using Different Seasonal Filters

1 month 6 months 12 months

RMSPEs
NSAa 0.24 1.29 2.42
X-12 default 0.14 0.77 1.73
3 × 1 0.14 0.78 1.74
3 × 3 0.14 0.77 1.73
3 × 5 0.14 0.76 1.71
3 × 9 0.13 0.74 1.70
3 × 15 0.14 0.74 1.69
Stable 0.15 0.72 1.66
NSA+Duma 0.15 0.78 1.82
Model 0.14 0.72 1.68

Diebold-Mariano p-valuesb

NSA v. X-12 default 0.00 0.00 0.00
NSA v. 3 × 1 0.00 0.00 0.00
NSA v. 3 × 3 0.00 0.00 0.00
NSA v. 3 × 5 0.00 0.00 0.00
NSA v. 3 × 9 0.00 0.00 0.00
NSA v. 3 × 15 0.00 0.00 0.00
NSA v. stable 0.00 0.00 0.00
NSA v. NSA+Dum 0.00 0.00 0.00
NSA v. model 0.00 0.00 0.00
X-12 default v. 3 × 1 0.05 0.01 0.11
X-12 default v. 3 × 3 0.72 0.09 0.49
X-12 default v. 3 × 5 0.02 0.00 0.03
X-12 default v. 3 × 9 0.02 0.00 0.03
X-12 default v. 3 × 15 0.80 0.01 0.12
X-12 default v. stable 0.15 0.03 0.01
X-12 default v. model 0.84 0.01 0.20
3 × 1 v. stable 0.50 0.01 0.01

Note: This table reports the out-of-sample root mean square prediction error (RMSPE) of 100 times 
log aggregate employment change over horizons h = 1, 6, 12 months from estimation of a univariate 
autoregression using each of the possible approaches to seasonal adjustment (at the disaggregate level). 
For each horizon, the smallest RMSPE is shown in bold. The model is the trend+seasonal+noise basic 
structural model, as described in the text, and the remaining seasonal filters are variants of the X-12.

a. NSA means no seasonal adjustment; NSA+Dum means no seasonal adjustment but includes seasonal 
dummies.

b. The p-values included are from Diebold-Mariano tests of equal predictive accuracy.



Jonathan H. Wright	 89

The performance of the forecasts using seasonally adjusted data is gen-
erally comparable, but the forecasts are somewhat more accurate using 
nonstandard seasonal filters that force the seasonal effects to be relatively 
stable rather than using the X-12 default filter. These are the 3 × 9, 3 × 15, 
and stable filters.22

In some cases, the improvement is statistically significant. The fore-
casts augmented with dummy variables do not perform very well. But the 
model-based forecasts are at or close to the top of the ranking of forecast 
performance. A useful comparison is between the 3 × 1 and stable filter, 
since these are the filters with the most and least flexible seasonals. The 
stable filter provides significantly more accurate forecasts than the 3 × 1 
filter at the h = 6 and h = 12 horizons, though the two are similar at the 
h = 1 horizon.

Two main conclusions can be drawn from this forecast exercise. First 
and foremost, it is important to seasonally adjust. Second, using relatively 
high bandwidth filters or the simple model-based filter is generally the best 
approach to seasonal adjustment. This is a very simple model that omits 
many of the bells and whistles that are present in the X-12. It is quite 
possible, though by no means guaranteed, that richer models will provide 
SA data that are better for forecasting purposes. I leave this possibility for 
future investigations.

The best forecasts are apparently obtained using either a simple state-space 
model or using versions of the X-12 filter with relatively stable seasonals. 
These two findings are not in conflict. The estimated state-space models 
(using the full sample) are different for each of the 152 disaggregates, but 
they generally imply seasonal filters that spread weight across many years. 
This is further support for the argument that if one is using the X-12, the 
seasonals should not be allowed to be quite as variable as in the current 
default settings.

I also investigated using the univariate AR model to do recursive out-of-
sample forecasting for each of the 152 employment disaggregates separately. 
Table 2 reports the number of series for which each choice of seasonal filter 

22.  In this exercise, the seasonal adjustment is applied to the same sample as is being 
used in each step of the recursive forecasting exercise. For example, when forecasting using 
data from 1990:01 up to 2009:12, the seasonal filters are applied to the 20 years of data from 
1990:01 up to 2009:12. When one attempts to apply the 3 × 15 seasonal filter to a sample 
ending in 2006:12 or earlier, the X-12 program does not have enough data for the 3 × 15 filter 
and simply uses the stable filter instead. However, in longer samples, the 3 × 15 and stable 
filters are different. This is why the entries in table 1 for the 3 × 15 and stable alternatives 
are not the same.
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minimizes out-of-sample mean-square prediction errors. At each horizon, for 
more than half of the series, forecast accuracy is optimized by using the basic 
structural model or a higher bandwidth X-12 filter (3 × 9, 3 × 15, or stable).23

II.D.  Forecasting with a Factor Model

Next I turn to multivariate forecasting, using sectoral detail in employment 
disaggregates to forecast total employment. With a set of 152 employment 
disaggregates, a multivariate model that does not impose some additional 
structure will be overparameterized. I let {fit( j )}m

i=1 denote the first m static 
principal components of the monthly log first differences of 152 employment 
disaggregates, using the jth seasonal adjustment filter. I then consider the 
factor-augmented autoregression (FAAR) (Stock and Watson 2002):

y j y j y j f jt h t i t i
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I consider recursive out-of-sample forecasting of log [yt+h ( j)] - log [yt ( j)] 
using the FAAR, with the data starting in 1990:01, the first forecast being 
made in 2000:01 and the final forecast being made in 2012:04. The forecasts 

23.  Viewing forecasting as the objective leaves open the possibility that we might also 
want to control for other things in addition to seasonality—notably year-to-year weather 
fluctuations—which are not part of seasonal effects, as discussed in the introduction. In prac-
tice, an econometric model that takes account of recent weather in macroeconomic forecasting 
is likely to be unwieldy and overparameterized. However, for some series, such as construction 
employment, it might be useful to construct a series that is both seasonally adjusted and 
weather adjusted. The latter would involve taking the residuals from a regression of season-
ally adjusted data on deviation of weather indicators from norms for that time of year.

Table 2.  Number of Series for Which Each Filter Gives Best Out-of-Sample Forecasts

Filter 1 month 6 months 12 months

X-12 default 9 6 7
3 × 1 12 40 43
3 × 3 14 17 16
3 × 5 11 8 5
3 × 9 20 20 10
3 × 15 15 5 13
Stable 28 23 23
Model 43 33 35

Note: At each horizon, this table reports the number of CES series for which the smallest out-of-sample 
mean square prediction is given by each possible seasonal filter. There are 152 CES disaggregates.
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are then converted into implied forecasts of NSA employment growth using 
equation 2 and are compared with realized employment growth.

Comparisons of RMSPEs and tests of hypotheses of equal forecast accu-
racy are shown in table 3. The results are broadly similar to those in the uni-
variate case. The best forecasts are obtained using the 3 × 9 filter or stable 
implementations of the X-12 or basic structural model. Using the 3 × 9 filter 
rather than the X-12 default gives an improvement in forecast accuracy that 
is significant at the 10 percent level at the h = 1 and h = 6 horizons. Other-
wise, the gains in forecast accuracy from using the 3 × 9, stable, or model-
based filtering, rather than the X-12 default, are not statistically significant.

Table 3.  Out-of-Sample Forecasting of Payroll Employment in a FAAR Using Different 
Seasonal Filters

1 month 6 months 12 months

RMSPEs
NSA 0.23 1.27 2.05
X-12 default 0.13 0.74 1.72
3 × 1 0.13 0.75 1.75
3 × 3 0.13 0.74 1.73
3 × 5 0.13 0.73 1.72
3 × 9 0.12 0.72 1.71
3 × 15 0.13 0.73 1.77
Stable 0.13 0.73 1.69
NSA+Dum 0.14 0.83 1.75
Model 0.13 0.71 1.69

Diebold-Mariano p-values
NSA v. X-12 default 0.00 0.00 0.00
NSA v. 3 × 1 0.00 0.00 0.00
NSA v. 3 × 3 0.00 0.00 0.00
NSA v. 3 × 5 0.00 0.00 0.00
NSA v. 3 × 9 0.00 0.00 0.00
NSA v. 3 × 15 0.00 0.00 0.00
NSA v. stable 0.00 0.00 0.00
NSA v. NSA+Dum 0.00 0.00 0.00
NSA v. model 0.00 0.00 0.00
X-12 default v. 3 × 1 0.03 0.03 0.05
X-12 default v. 3 × 3 0.73 0.08 0.06
X-12 default v. 3 × 5 0.04 0.19 0.43
X-12 default v. 3 × 9 0.06 0.09 0.45
X-12 default v. 3 × 15 0.47 0.82 0.25
X-12 default v. stable 0.92 0.74 0.66
X-12 default v. model 0.97 0.17 0.48
3 × 1 v. stable 0.48 0.46 0.47

Note: See footnotes to table 1 for clarifying details.
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II.E.  Forecasting Other Series

In subsections II.C and II.D I found that for forecasting nonfarm pay-
rolls, the best predictions are obtained using either a simple state-space 
model or versions of the X-12 filter with relatively stable seasonals. One 
might wonder whether this is unique to nonfarm payrolls or is a broader 
feature of macroeconomic data.

To gather more evidence to answer this, I take the aggregate NSA 
values of six other monthly time series from 1960:01 to 2013:06 and apply 
the different seasonal filters to each of these aggregates. The series are 
the industrial production index (total and manufacturing), the CPI and PPI  
indexes, housing starts, and housing permits. To be clear, seasonal filtering 
is in practice undertaken at the disaggregate level—and that is not what  
I am doing here. But I am applying each seasonal filter in exactly the same 
way, allowing at least an apples-to-apples comparison. For each filtered 
series, I consider the AR model for the log first differences of this series 
as in equation 1 in a recursive out-of-sample forecasting scheme with data 
from 1960:01 up to month T (which ranges from 1970:01 to 2013:04), using 
seasonal adjustment applied to the sample from 1960:01 to month T. I then 
construct the implied forecast of SA growth over the next 12 months and 
assess this as a forecast of NSA growth.

The results are shown in table 4. The general conclusions from this exer-
cise are similar to those from tables 1–3. Seasonal adjustment is important; 
simply using dummies does not work. Within the seasonal filters that I 
consider, the differences are not overwhelming, but the best forecasts are 
obtained using the 3 × 9 or stable X-12 filter, except in the case of housing 
starts, where the model-based adjustment fares best. This is all broadly 
consistent with what I found for nonfarm payrolls in tables 1–3. Moreover, 
it applies over a very long forecast evaluation period and therefore miti-
gates any concern that the earlier findings were dominated by the Great 
Recession.

II.F.  Recent Employment Data with a Higher-Bandwidth Filter

In the foregoing, I have found some support for the idea of altering the 
X-12 filter by using a higher bandwidth and so preventing the seasonal 
factors from varying so erratically. This then begs the question of what 
payrolls data would have looked like if the CES had indeed used a higher 
bandwidth filter. To address this question, I re-did the X-12 seasonal adjust-
ment using the 3 × 9 filter instead of the X-12 default. Figure 10 plots 
the difference between aggregate employment using the 3 × 9 filter and 
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Table 4.  12-Month-Ahead Out-of-Sample Forecasting of Macroeconomic Aggregates in 
a Univariate Autoregression Using Different Seasonal Filters

IPTa IPMa CPIb PPIb STARTc PERMc

RMSPEs
NSAd 5.48 6.29 2.24 3.80 24.89 26.84
X-12 default 4.95 5.61 2.13 3.90 24.84 26.26
3 × 1 5.05 5.75 2.22 3.99 25.22 26.20
3 × 3 5.00 5.63 2.19 3.95 24.66 26.12
3 × 5 4.93 5.55 2.16 3.95 24.84 26.18
3 × 9 4.87 5.54 2.12 3.75 24.85 26.10
3 × 15 4.87 5.54 2.13 3.75 24.82 26.13
Stable 4.99 5.76 2.13 3.68 24.83 25.99
NSA+Dum 5.23 5.91 2.22 3.72 25.51 27.34
Model 4.89 5.59 2.14 3.82 24.42 32.51

Diebold-Mariano p-valuese

NSA v. X-12 default 0.00 0.00 0.04 0.09 0.81 0.21
NSA v. 3 × 1 0.00 0.00 0.65 0.03 0.23 0.18
NSA v. 3 × 3 0.00 0.00 0.34 0.04 0.27 0.12
NSA v. 3 × 5 0.00 0.00 0.15 0.03 0.81 0.16
NSA v. 3 × 9 0.00 0.00 0.02 0.86 0.86 0.12
NSA v. 3 × 15 0.00 0.00 0.02 0.81 0.77 0.15
NSA v. stable 0.00 0.00 0.01 0.09 0.79 0.07
NSA v. NSA+Dum 0.00 0.00 0.21 0.01 0.07 0.42
NSA v. model 0.00 0.00 0.02 0.27 0.13 0.37
X-12 default v. 3 × 1 0.02 0.01 0.00 0.01 0.00 0.63
X-12 default v. 3 × 3 0.04 0.27 0.00 0.02 0.00 0.04
X-12 default v. 3 × 5 0.08 0.20 0.02 0.04 0.96 0.06
X-12 default v. 3 × 9 0.06 0.19 0.25 0.01 0.52 0.10
X-12 default v. 3 × 15 0.12 0.24 0.79 0.08 0.65 0.19
X-12 default v. stable 0.56 0.06 0.87 0.02 0.85 0.04
X-12 default v. model 0.24 0.65 0.79 0.24 0.13 0.33
3 × 1 v. stable 0.49 0.94 0.04 0.01 0.00 0.20

Note: This table reports the out-of-sample root mean square prediction error (RMSPE) of 100 times the 
log change of 6 different macroeconomic series over 12-month horizons from estimation of a univariate 
autoregression using each of the possible approaches to seasonal adjustment (at the aggregate level). For 
each series, the smallest RMSPE is shown in bold. The model is the trend+seasonal+noise basic structural 
model, as described in the text, and the remaining seasonal filters are variants of the X-12.

a. Industrial production index, total (IPT), and industrial production index, manufacturing (IPM).
b. Consumer price index (CPI) and producer price index (PPI).
c. Housing starts (START) and housing permits (PERM).
d. NSA means no seasonal adjustment, NSA+Dum means no seasonal adjustment but includes seasonal 

dummies.
e. The p-values included are from Diebold-Mariano tests of equal predictive accuracy.
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aggregate employment using the X-12 default. In this experiment, no spe-
cial adjustment is made for the Great Recession. Both filters are applied to 
the full sample from January 2003 to April 2013 at the end of the sample 
period; this is not a real-time seasonal adjustment exercise.

Using the 3 × 9 filter would have implied higher employment in late 
2009 and late 2010, and lower employment in early 2010 and early 2011, 
by roughly 50,000 in all cases. This is of course an entirely different experi-
ment from the judgmental intervention described in figure 3. Using a 
higher bandwidth filter makes the effect of the Great Recession on seasonals 
smaller but more persistent. It also makes the seasonal factors less respon-
sive to other shocks. Still, the fact that using a somewhat more stable filter 
would weaken (strengthen) the measured employment situation in the early 
(late) part of the year in the immediate aftermath of the Great Recession is 
qualitatively consistent with the findings presented in section I.

Employment (1,000s)

60

40

20

0

–20

–40

–60

Jan 2010 Jan 2011 Jan 2012 Jan 2013

Note: The vertical dotted grid lines denote year turns, so that the bars immediately to the right represent 
January data.

Source: Author’s calculations.

Figure 10.  Aggregate Employment Using 3 × 9 Filter Less Aggregate Employment Using 
X-12 Default, 2009–2013
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II.G.  Outlier-Robust Filters

Most causes of time variation in seasonal effects seem to consist of insti-
tutional, technological, or environmental factors that are unlikely to change 
suddenly. I conjecture that while NSA changes are “fat-tailed,” the changes 
to underlying seasonal factors are not. If that is right, then an optimal filter 
will be nonlinear in the sense of attributing a smaller share of huge shifts 
(like the aftermath of the Lehman collapse) to seasonals than would be 
the case for normal-sized fluctuations. It is essentially this idea that moti-
vates the manual intervention in the seasonal adjustment process around 
the Great Recession discussed in section I, but this same idea could to some 
extent be made an automatic part of seasonal filtering.

As discussed in the appendix, the X-12 does automatically detect 
outliers in a single month and restricts their impact on seasonal factors. But 
it is possible to go further in the direction of making seasonal filters outlier-
robust. William Cleveland, Douglas Dunn, and Irma Terpenning (1978) 
and Robert Cleveland and others (1990) discuss using seasonal moving 
medians instead of seasonal moving averages to downweight extreme 
observations. The idea might best be explored in the context of a state-
space model, one in which either the shocks to nonseasonal components 
could be specified to have fatter tails than the shocks to seasonal compo-
nents or else the distributions of the shocks to the different components 
could be estimated. As long as the nonseasonal components have fatter 
tails, extreme events will tend to have proportionately less impact on the 
seasonal factors. I do not explore the idea further in this paper, but note that 
it could perhaps mitigate—but certainly not eliminate—the difficulty of 
separating seasonal and nonseasonal components.

III.  Revisions to Seasonal Factors

Nearly all macroeconomic data are revised as more complete information 
becomes available. For example, in the CES the initial data are based on 
a survey, whereas later on as tax records become available they become 
an obvious source of revision. But seasonal adjustment is another impor-
tant source of data revisions. Dennis Fixler, Bruce Grimm, and Anne Lee 
(2003) show that revisions to the seasonal factors in the National Income 
and Product Accounts (NIPA) can be large.24 The X-12 program contains 

24.  They wrote this paper before BEA stopped publishing NSA data.
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diagnostics on revisions to seasonal factors. Nonetheless, revisions to sea-
sonal factors often go unnoticed.

An obstacle to doing empirical work on revisions to seasonal factors is 
that only very limited real-time data are readily available on NSA series. 
For example, the flagship real-time data set of the Federal Reserve Bank 
of Philadelphia keeps only SA data. However, the BLS has recorded the 
month-over-month changes in total nonfarm payrolls, both SA and NSA, 
as first reported, going back to 1979 on its website.

Over the period since 1979, the standard deviations of revisions (from 
first-release to current-vintage) to NSA and SA month-over-month changes 
in total nonfarm payrolls are 93,000 and 111,000, respectively. Defining the 
seasonal adjustment factor as the NSA month-over-month change less the SA 
counterpart, the standard deviation of revisions to the seasonal adjustment 
factor is 81,000.

Revisions to seasonal factors are quite large and come from at least three 
sources. First, revisions to NSA data should naturally change the estimated 
seasonal factors.25 Second, early releases of SA data involve a forecast-
ing step to extend the data forward, plus an asymmetric filter where the 
extension is not long enough, whereas later vintages use only actual data. 
Third, the window over which seasonal factors are estimated changes over 
time. For example, CES data first released in 2013 use a window starting 
in January 2003 for computing seasonal factors. When these are revised in 
2014, the window used for computing seasonal factors will instead start in 
January 2004.

The use of forecast extensions, which began in 1980, reduces the mag-
nitude of revisions (Findley and others 1998). We should expect that the 
smaller the bandwidth used in the X-12 filter is, the larger the revisions to 
seasonal factors should be.

III.A.  Predictability of Revisions

It is a desirable property of any data that revisions should not be fore-
castable ex ante—otherwise, the statistical agency could have done a better 
job and users of the data can in principle benefit from making systematic 
corrections to the initially released data. As argued by Gregory Mankiw and 
David Runkle (1986) and Mankiw, Runkle, and Matthew Shapiro (1984), 

25.  The correlation between revisions to the seasonal factor and revisions to NSA data 
is fairly low at 0.19, indicating that revisions to seasonal factors are not only the mechanical 
consequence of revisions to NSA data.
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if the revision process consists only of incorporating additional information 
(“news”), then revisions should not be forecastable.

Define st as the seasonal factor for the month-over-month change in total 
nonfarm payrolls for month t as first released, and sF

t  as the seasonal factor 
for that same month, but as observed in May 2013. To assess the predict-
ability of revisions to seasonal factors, I consider the regression:

s s s st
F

t t t t( )− = α + β − + ε−(4) ,12

which is a regression for forecasting revisions to seasonal adjustment 
factors. If a = b = 0, then the revisions to the seasonal adjustment factor 
are unpredictable.

Table 5 shows the estimates of this regression for different sample peri-
ods. For every sample period, the estimate of b is significantly negative, 
and the point estimate is around -0.25. This means that if the seasonal for 
a particular month is revised upward from the same time in the previous 
year, around 25 percent of this increase will be “given back” in subsequent 
revisions.

In the past, the BLS used to set the seasonal factors in advance and then 
update them twice a year.26 Beginning in 2004, the BLS adopted concur-
rent seasonal adjustment. This means that the BLS now updates seasonal 
factors with the revisions of the data one and two months after the data are 
released, and then again with the annual revision each year, until they are 
frozen after five years. But as can be seen in table 5, the significance of b 
continues even in the short sample since concurrent seasonal adjustment 

26.  Other agencies still have practices of this sort, including the Federal Reserve Board 
in its generation of industrial production data.

Table 5.  Estimates of Equation 4

Sample period â b̂

1979:01–2013:02 -2.54
(3.46)

-0.24***
(0.05)

1979:01–1994:12 -0.40
(2.52)

-0.33***
(0.09)

1995:01–2013:02 -4.29
(5.98)

-0.19***
(0.06)

2004:01–2013:02 -10.63
(10.61)

-0.21***
(0.09)

Note: Newey-West standard errors, with a lag truncation parameter of 18, are in parentheses.
*** denotes significance at the 1 percent level.
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was adopted.27 This predictability of revisions seems to be a troubling prop-
erty of seasonal filters.

Moreover, it is possible that the regression estimates provide forecasters 
with a rule of thumb to anticipate revisions to seasonal factors. To inves-
tigate how usable this rule of thumb would be, I run a recursive forecast-
ing exercise, estimating equation 4 for each month from January 2003 to 
December 2011, in each case using data from at least six years earlier. 
The motivation for this is that because the BLS re-estimates seasonal fac-
tors five times and then freezes them, the final seasonal adjustment factors 
should effectively be observed with about a 6-year lag. This approximates 
a regression that a researcher could have used in real time. I then use the 
estimated coefficients to forecast the revision to the seasonal factors for 
that month. In table 6, I report the root mean square prediction error of 
the resulting forecasts of st

F - st, along with the root mean square prediction 
error of the forecast that the revision to the seasonal factors will be zero. 
Estimation of equation 4 reduces the root mean square prediction error by 
about 5 percent. However, using the test of Diebold and Mariano (1995), 
this improvement is not statistically significant at conventional significance 
levels.28 Thus while the estimate of b in equation 4 is significantly negative, 
the jury is still out on whether it is negative enough and stable enough to 
give forecasters a usable way of anticipating revisions to seasonal factors.

There is another way that revisions to published seasonal factors are likely 
to have some predictability, noted in Dean Croushore (2011). The current 

27.  The BLS switched from X-11 to X-11 ARIMA in January 1980 and to X-12 ARIMA 
in January 2003. The last subsample post-dates both of these changes.

28.  This is a nested forecast comparison, in the sense that one model is a restricted 
version of the other. I follow the recommendation of Clark and McCracken (2013) in con-
structing the test statistic using a rectangular window with lag truncation parameter equal to 
the forecast horizon, and the small-sample adjustment of Harvey, Leybourne, and Newbold 
(1997), and then I compare the test statistic to standard normal critical values.

Table 6.  Root Mean Square Prediction Error of Forecasts of Revision  
to Seasonal Factors

Using recursive estimation of equation 4 67.3
Predicting no revision 71.1

Diebold-Mariano test   1.07

Note: This table reports the root mean square prediction error of forecasts of s F
t - st in equation 4 from 

January 2003 to December 2011. The first row uses recursive estimation of equation 4, as discussed in the 
test. The second row just takes the forecast as being equal to zero. The final row is a test of the hypothesis 
of equality of forecast accuracy, using the statistic proposed by Diebold and Mariano (1995).
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practice of the BLS is to publish revised seasonal factors only if the NSA 
data for that month are also being revised. For example, the CES data for 
each January are first published in early February and are then revised in 
early March and April, with the seasonal factors being recomputed at each 
of these dates. But the seasonal factors are then frozen until the benchmark 
annual revision comes out with the employment report for the following 
January. A researcher running the seasonal filters just before the annual 
revision would surely be able to anticipate most of the revision to seasonal  
factors, although I cannot demonstrate this conclusively as there is no source 
of real-time data on the 152 NSA employment disaggregates. It may seem 
odd for the BLS to revise SA data without changing NSA data for that 
same month. Still, it also seems much more logical to revise all the SA data 
every time a new observation comes in, rather than artificially constraining 
the process to update seasonal factors for only the previous three months.  
(The BLS clearly recomputes the seasonal factors every month. It just 
chooses not to publish revisions going back more than three months, other 
than in the annual benchmark revision.)

The current practice of the BLS is especially problematic when one 
thinks of the second revision of month-over-month payroll changes. As 
an example, early each July, the public receives the second revision of 
April data, which use seasonal filters that incorporate all the data through 
June. But the month-over-month payroll change is the difference between 
this and the March data, which use seasonal filters incorporating only the 
data through May. Thus the second revision of month-over-month payroll 
changes is effectively an apples-and-oranges comparison. This practice 
may be making second revisions to payrolls data unnecessarily noisy. To 
investigate this possibility, I consider the regression

f i r rt t t t t= β + β + β + β + ε(5) ,0 1 2 1 3 2

where ft is the current vintage SA month-over-month total payrolls change 
for month t, it is the SA payrolls change for that same month as initially 
released, and r1t and r2t are the first two revisions. If each vintage of the 
data represents the conditional expectation of the final number, then we 
should have b1 = b2 = b3 = 1 (Patton and Timmermann [2012] use exactly 
this reasoning in a different context). I run the regression over the period 
June 2003–October 2012: June 2003 is the date that concurrent seasonal 
adjustment began and October 2012 is the last month for which data have 
undergone a revision beyond the second monthly update. The results are 
shown in table 7. In this regression, b1 is significantly above one, implying 
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that unusually high/low initial data tend to be revised up/down further. This 
is also found by Aruoba (2008), and it might owe to the CES birth/death 
model being too pessimistic at times when employment is expanding rapidly 
and vice versa.

Turning to the coefficients on the revisions, b2 is not significantly differ-
ent from 1, while b3 is estimated to be below 0.5 and significantly different 
from 1. That indicates that the second revision is in some way adding noise. 
I conjecture that the staggered timing of the computing of seasonals may 
be part of the story.

The issue could readily be resolved by updating the published season-
ally adjusted data every month. I do not know why BLS does not do this. 
Perhaps the agency worries that changing the SA data even for the months 
when NSA data are not being revised might confuse users. If so, I think 
their concern has the matter backwards. The users who are paying attention 
to revisions are more likely to be confused by the full set of seasonals not 
being updated each month. Or perhaps the BLS’s practice is based on saving 
publishing costs. If so, this too is hard to justify, since today data can be and 
often are simply posted online, rather than being published in hard copy; 
the marginal cost of posting the available data online is zero.

IV.  Conclusions and Recommendations

In any seasonal adjustment filter some cyclical variation will be mis
attributed to seasonal factors and vice versa. The problem is inherent in any 
decomposition of time series into unobserved components. It has resurfaced 
recently, because the timing of the sharp downturn during the Great Reces-
sion appears to have distorted seasonals. In this paper, I find that at first, this 
effect pushed reported SA nonfarm payrolls up in the first half of the year 
and down in the second half of the year, by a bit more than 100,000 in both 
cases. But the effect declined in later years and is quite small at the time 

Table 7.  Estimates of Equation 5

Coefficient Estimate Standard Error

b0 -13.12 10.59
b1 1.17   0.02
b2 1.00   0.14
b3 0.49   0.13

Note: Newey-West standard errors, with a lag truncation parameter of 18, are in parentheses. The sample 
period is June 2003–October 2012, as explained in the text.
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of writing. Statistical agencies may not wish to incorporate adjustments to 
prevent the extreme pace of job losses from November 2008 to March 2009 
from having much effect on seasonals, but end-users should do so.

Apart from the issue of the impact of the Great Recession on seasonal 
factors, my main recommendation from this research is that seasonal adjust-
ment should be based on filters with a higher bandwidth—in which seasonal 
factors vary less over time—than is the practice in the current X-12 pro-
gram, or else should be based on estimation of a suitable state-space model. 
Model-based adjustment will generally make the seasonal factors more 
stable. It is also more transparent, and it produces confidence intervals for 
seasonal factors (as discussed in subsection I.F) as a by-product. Within 
the family of filters that are based on taking weighted moving averages 
of data in the same period of different years, it would be better to pick the  
bandwidth from a continuum of possible values according to some criterion, 
rather than constraining the researcher to the six particular bandwidth choices 
that are available within the X-12 program.

Statistical agencies at present estimate seasonal factors over fairly short 
rolling windows. For example, the BLS uses the latest 10 years of data. If 
seasonal adjustment uses a small bandwidth, then the length of the sample for 
computing seasonal factors is not very consequential—it is a redundant way 
of making sure that seasonal factors forget the past quickly. But if a larger 
bandwidth is used, then the sample span is more important, and 10 years 
seems likely to be too short. It may be preferable to drop data from before 
2003, because the CES made a major change in its industrial classification 
system in that year. But even with this constraint, in the future the sample for 
seasonal adjustment could start in 2003 and have a span longer than 10 years.

The three other changes to the practice of seasonal adjustment that  
I would propose are (i) for statistical agencies to always provide unadjusted 
data, (ii) for these agencies to publish a full history of revised seasonal factors 
with every data release (not just at the time of annual benchmark revisions), 
and (iii) to make the seasonal adjustment process entirely replicable by 
outside researchers. In the case of the CES, replication is not presently 
possible for three reasons: (i) because the BLS publishes only rounded 
disaggregate data, (ii) because real-time data on NSA disaggregates are not 
available, and (iii) because some of the disaggregates that go into computing 
total nonfarm payrolls are not published until the first revision, even though 
the BLS clearly has these data at the time of the initial release.

The issues with seasonal adjustment that I have discussed in this paper 
are entirely standard in mainstream modern econometrics. These issues 
include bandwidth choice, the benefits of forecasting by use of disaggregates 
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when their dynamics are different, and the trade-off between model-based 
and nonparametric estimation. Seasonal adjustment is a crucial and mas-
sively underappreciated task. Going forward, I hope that it can be better 
integrated into econometrics, can make more use of the insights that have 
been developed in closely related problems, and can be studied more thor-
oughly by econometricians and empirical macroeconomists.

Appe    n d i x

Description of the X-12 ARIMA Algorithm

This appendix describes the X-12 adjustment process using the default 
settings, as it applies to monthly data. Let yt be the monthly time series that 
is to be seasonally adjusted. The idea of the X-12 algorithm is to estimate a 
decomposition of the series into trend, seasonal, and irregular components. 
The decomposition could be multiplicative or additive, at the user’s discre-
tion. Multiplicative means that the series is the product of trend, seasonal, 
and irregular components; additive means that it is their sum. There are 
two further options in X-12: log-additive and pseudo-additive, but I omit 
these. Before beginning, the raw data may be adjusted for special effects 
(in the context of the CES, this include strikes or the buildup in federal 
employment around the decennial census). The algorithm then involves the 
following iterations: First on iteration A, the time series is specified to be of 
a seasonal ARIMA form, such that:

L L L L y x L Ld D

t t t( )( ) ( )( ) ( ) ( ) ( )ϕ Φ − − − β′ = θ Θ ε1 1 ,12 12 12

where xt are user-chosen regressors; L denotes the lag operator; j(L), 
F(L12), q(L), and Q(L12) are polynomials of orders p, P, q, and Q respectively;  
d and D are integer difference operators; and et is an iid error term. Regres-
sors for Easter, Labor Day, and Thanksgiving are built in. For the CES, a 
regressor for the number of weeks since the last survey (always 4 or 5) for 
each month except March is also included. March is excluded because 
the number of weeks since last survey will be 4 (except for once every 
seven leap years). Regressors that capture outliers, level shifts, or “ramps” 
(as employed by Kropf and Hudson [2012]) may also be included. The 
model is then estimated by maximum likelihood and used to generate fore-
casts of future values of yt and backcasts. In this step, yt may be replaced by 
a nonlinear transformation, such as the log. If b̂ denotes the estimator of b, 
then the data are replaced by yt - b̂ ′xt.
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The next iteration, iteration B, involves the following steps:
(1)  An initial estimate of the trend is computed as

T y y y yt t t t t…= + + +( )
− − + +
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(2)  An initial detrended series is computed as ỹ (1)
t   = yt / Tt 

(1) for a mul-
tiplicative decomposition or ỹt 

(1) = yt - Tt 
(1) for an additive decomposition.

(3)  Compute an initial preliminary seasonal factor from the 3 × 3 sea-
sonal filter:
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(4)  Compute an initial seasonal factor as:
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for an additive decomposition. This ensures that the seasonal factors approx-
imately average to one over the course of the year.

(5)  Compute the initial seasonally adjusted data as yt
SA(1) = yt / St

(1) for a 
multiplicative decomposition of yt

SA(1) = yt - St
(1) for an additive decomposition.

(6)  Compute a new estimate of the trend from the Henderson filter:

T h yt j t j
SA
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H
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and H is chosen from 4 or 6 (giving a 9 or 13-term filter) based on the ratio 
of the absolute value of the irregular component to the absolute value of 
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the trend (the I/C ratio), as decomposed above. If this ratio is smaller than 1, 
then set H = 4, otherwise H = 6.

(7)  A new detrended series is computed as ỹt
(2) = yt / Tt

(2) for a multiplica-
tive decomposition or ỹ (2)

t = yt -Tt
(2) for an additive decomposition.

(8)  Compute a preliminary seasonal factor from the 3 × 5 seasonal filter:
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(9)  Compute a final seasonal factor, St
(2) as in step 5, and then the finally 

seasonally adjusted data, yt
SA(2), as in step 4.

(10)  Compute a final estimate of the trend as

T h yt j t j
SA

j H

H

∑=( ) ( )
+

=−

,3 2

where hj is determined as in step 6.
(11)  Compute the irregular component, It

(3), of the series as yt
SA(2) / Tt

(3) or 
yt

SA(2) - Tt
(3) for multiplicative and additive decompositions, respectively.

(12)  Next I turn to the “trading day” adjustment that the user may 
apply in some circumstances.

Let Djt be the number of days of day-of-the week j in month t (j is indexed 
from 1 to 7). Let Nt denote the number of days in month t and N̄ denote the 
average number of days per month.

For the multiplicative decomposition, estimate the equation

NI N D D et t j jt t
j
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=

3
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6

by OLS, letting b̂ j denote the estimate of bj. Then divide the irregular 
component by

N
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For the additive decomposition, instead estimate the equation
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(13)  Compute a 60-month rolling standard deviation of the irregular 
component, ŝt

(1). Recompute this 60-month rolling standard deviation of the 
irregular component dropping any observations for which It

(3)  > 2.5 ŝt
(1). 

Call this rolling standard deviation ŝt
(2). Define the weighting function

w
I

t
t

t

= −
σ













( )

( )
min max 0, 2.5

ˆ
,1 .

3

2

If wt < 1, replace It
(3) with the average value for that month over the 

60-month window, weighting the month in the current year by wt and the 
same month in other years by 1(wt = 1). The data are then replaced with  
the sum/product of the trend, seasonal, and irregular components, as currently 
computed, in the additive/multiplicative decompositions, respectively.

The next iteration, the C iteration, involves repeating steps 1–13 again. 
However, on the C iteration, in step 6, H = 4 if the I/C ratio is below 1, 
H = 6 if the I/C ratio is between 1 and 3.5, and otherwise H = 11.

On the final iteration, the D iteration, the series are run through steps 
1–9 one last time. However, on the D iteration, step 6 is modified as in 
the C iteration. Also, the filter chosen in step 8 will be the 3 × 3, 3 × 5, or 
3 × 9 filter, depending on the value of the I/S ratio, which is the ratio of 
the absolute value of the irregular component to the absolute value of the 
seasonal component. If this ratio is below 2.5, the 3 × 3 filter is used. If it 
is between 3.5 and 5.5, the 3 × 5 filter is used. If it is above 6.5, the 3 × 9 
filter is used. If it does not fall into any of these three regions, then the last 
year of data is deleted and the procedure is re-run. This algorithm is iter-
ated until one of the three filters is selected or five years’ data have been 
dropped, whichever comes sooner. If in the end no filter has been selected, 
the 3 × 5 filter is employed. Instead of the default setting described here, 
the seasonal moving average filter in the X-12 process can be fixed at the 
3 × 1, 3 × 5, or 3 × 9, or 3 × 15 or stable alternatives, as considered in sec-
tion II of the paper.

In the A iteration, the user decides how far to extend the series forward 
and backward. Depending on this choice, there may not be enough data 
for the seasonal filters in steps 3 and 8 of the B, C, and D iterations to 
be applied at the start and end of the sample. In this case, the filters are 
replaced with asymmetric filters, which are provided on page 45 of Domi-
nique Ladiray and Benoît Quenneville (1989). For example, the asymmet-
ric 3 × 3 filter with no future data available puts weights of 11/27 on the 
current and previous year and a weight of 5/27 on the second previous year. 
The estimates of the trend in steps 1 and 6 likewise need to be adjusted, as 
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also discussed in Ladiray and Quenneville’s book. The CES implementa-
tion of the X-12 ARIMA seasonal adjustment process does no backcasting 
and allows forecasts to extend the series by only 24 months. Thus asym-
metric filters will apply at the start and end of the sample.

The final seasonally adjusted data consist of the original data divided by/
less the seasonal factor in the multiplicative/additive model, respectively.
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Comments and Discussion

COMMENT BY
JAMES H. STOCK1    The organizers deserve our thanks for bravely put-
ting a paper on seasonal adjustment on the Brookings Panel. Although sea-
sonal adjustment is a classic topic in time series econometrics, recently 
it has been a bit of a research backwater. It is high time for the topic to 
get some publicity. The hook for Jonathan Wright’s paper is the extent 
to which seasonal adjustment choices shade our understanding of job 
losses during the Great Recession and job gains during the recovery. But 
the paper goes beyond this important albeit narrow question and shows 
that there are methodologically interesting problems to tackle in seasonal 
adjustment, that those problems matter, and that methodological work in 
this area can improve seasonal adjustment in practice. I hope the paper 
stimulates time series econometricians and statisticians to return to the 
methodological issues of seasonal adjustment.

One of Wright’s broader conclusions is that the conventional X-12 filter 
allows for too much time variation in the unobserved true seasonal factors. 
If so, then the filter used to estimate the seasonal factors is shorter than 
optimal, in the sense that the mean squared error of the estimated seasonal 
factors is larger than necessary because of an overemphasis on reducing 
bias at the expense of increasing variance. Using a filter that is too short 
results in seasonal factors that are overly sensitive to data in the period at 
hand, ascribing non-seasonal fluctuations to seasonal ones. The under
lying question is how much time variation there actually is in the seasonal 
factors. Most of my discussion focuses on this question and in turn on the 
optimal filter for estimating those seasonal factors.

1.  I thank John Coglianese for research assistance in preparing these comments.
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Before turning to those comments, however, let me stress that from  
a practical perspective the details of seasonal adjustment do matter, espe-
cially for those who closely follow economic developments in real time as 
we do at the Council of Economic Advisers. You can see the importance 
of seasonal adjustment mechanisms in Wright’s figure 10, which shows 
that using the X-12 default and X-12 3×9 filters yields seasonally adjusted 
monthly changes in total employment that differ in a number of months 
by more than 40,000 jobs and in one month by more than 70,000 jobs. 
While the standard deviation of the difference between the two season-
ally adjusted series is substantially less than the standard deviation of 
either of the series alone, the gaps are large enough that they would make 
a difference to real-time interpretations of economic performance in a 
given month.

Also from a practical perspective, I would like to underscore another of 
Wright’s findings, which is that the uncertainty associated with estimating 
monthly seasonal factors is very large. The monthly jobs data are fore-
cast by professional economists and are reported on very closely. When 
Wright estimates the seasonal factors using a state-space model, the  
Kalman smoother standard error is approximately 50,000 jobs per month. 
This is less than the standard deviation of first-to-current vintage revisions 
in the seasonal factors, which he estimates to be 81,000 over the post-1979 
sample. These standard deviations are only for the seasonal factors and 
thus do not account for revisions to the raw data. In fact, Wright finds that 
the post-1979 standard deviation of the first-to-current vintage revisions to 
monthly total seasonally adjusted job changes is 110,000.

These standard deviations are very large and have at least two impli-
cations. First, they should be kept in mind when the media reports, for 
example, that jobs numbers exceeded survey expectations by 25,000 or 
fell short by 11,000. Second, they underscore that it makes sense, from a 
statistical perspective, to look at changes over the past 3 months—or even 
over the past 12 months. Changes over the past 12 months are particularly 
reliable both because the sampling variability is reduced and because the 
seasonal factors net out to zero for 12-month changes, except for time vari-
ation in the seasonal factors. Perhaps the press could report these expecta-
tion gaps in standard deviation units, for example, so that jobs would be 
reported as falling short of expectations (using my example above) not by 
11,000 but by one-eighth of a standard deviation. Although this suggestion 
is tongue-in-cheek, the underlying point is a serious one: those who follow 
these statistics closely should be fully aware of the very large uncertainty 
from sampling and estimating seasonal factors that is associated with these 
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estimates, and one simply must not read too much into any one month’s 
change taken in isolation.

Let me now turn to the methodology. One of the challenges of work-
ing on seasonal adjustment is defining what a seasonal is. Statisticians and 
econometricians are very good at estimating something that is well defined, 
where well defined means that it is an identified property of a probability 
distribution. In many cases, the hardest part of the econometric problem 
is being precise about what one is trying to estimate. The explosion of 
work on estimating causal effects is an example. Econometricians had a 
gut notion of what causality meant, but it wasn’t until this was formalized 
into a set of concrete conditions, such as by the Rubin causal model, that 
the problem of causal inference in observational data became susceptible 
to rigorous econometric study.

Seasonal adjustment faces the problem that the estimand is not well 
defined nonparametrically. Wright uses the definition that the seasonal is 
the part of the series that is predictable using the calendar alone. This defi-
nition has intuitive appeal, and for a stationary time series Xt it suggests the 
estimand, E(Xtmonth) - E(Xt). If the seasonal is time varying, then the con-
ditional and possibly unconditional expectation might depend on t, so this 
estimand might be modified to Et(Xtmonth) - Et(Xt). This estimand justifies 
estimating the seasonal factor using a moving average of observations for 
the given month, as is done in X-12. One weakness of this definition is that 
it assumes the seasonal factor to be independent of the other components 
of the series; otherwise, Et(Xtmonth) would have omitted-variable bias. 
Arguably, this assumption is hard to reconcile with economic theory. For 
example, a persistent shift in retooling schedules or a persistent increase 
in full-time post-secondary enrollment induced by a recession would be a 
change in seasonal factors arising from a cyclical shock, in which case the 
stochastic seasonal and cyclical components would not be independent.

Parametric treatments, including ARIMA and unobserved components 
models (as in Harvey 1989) make the independence assumption as well as 
specific modeling assumptions to identify the seasonal factor. An alternative 
definition, which does not assume independence, is that seasonally adjusted 
series should have a smooth spectral density function at seasonal frequen-
cies, so the job of seasonal adjustment is to remove the seasonal spike. This 
nonparametric definition works for stationary series with a deterministic 
seasonal factor, but it requires modification for time-varying seasonal fac-
tor, which raises the problem of leakage. Moreover, whatever the definition, 
if the seasonal factor is time-varying it cannot be consistently estimated, so 
the “true” seasonal factor is never observed, even in the fullness of time.
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Let me turn to the question of the extent to which the seasonal factors 
are time-varying. This question makes sense—that is, the time-variation 
is identified—in the context of a state-space model and in the context of 
a specific family of filters that allow for different bandwidths. It is also 
amenable to empirical analysis.

To illustrate the issues, my figure 1 shows two of the 152 non-seasonally- 
adjusted (NSA) component payroll employment series. First, consider 
monthly employment at museums, historical sites, zoos, and parks (upper 

Figure 1.  Non-Seasonally-Adjusted Monthly Employment, 1990–2014
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2.  The apparent shift in these seasonals might be related to the reporting changes, not 
to structural economic changes. If so, then a structural-break approach might be a more 
appropriate modeling strategy than the slowly evolving seasonal approach used below.

panel). Not surprisingly, more people go to parks and zoos during summer 
vacation than in January, and this employment series is highly seasonal. 
More to the point, the seasonal patterns clearly have been varying, and 
the seasonal employment changes are larger now than they were 20 years 
ago. This doesn’t seem to be just an artifact of viewing seasonal factors 
in job numbers as opposed to logarithms, because the pattern appears 
to have shifted rather abruptly in the mid-2000s.2 In contrast, monthly 
employment in nonmetallic mineral product manufacturing (lower panel) 
shows little evidence of time-varying seasonal factors, at least by visual 
inspection.

These two series raise the question of how one might best measure the 
time variation in the seasonal factors and use this to inform the filter. Wright 
presents one clever way, by casting this question in terms of forecast-
ing NSA changes in employment. His exercise is easiest to understand at 
the 12-month horizon: if the seasonal factors were constant, the 12-month 
change in SA employment would be the same as the 12-month change in 
NSA employment. If seasonal factors were time-varying, then the change 
in NSA employment would equal the change in the seasonal factors plus 
the change in SA employment. If the seasonal factors followed a random 
walk, then the change in the seasonal factors would be unforecastable, so 
seasonal adjustment filters could be compared by comparing the ability of 
the resulting SA series to forecast 12-month NSA changes. This provides 
a way to compare filters and in particular to estimate the bandwidth on a 
series-by-series basis.

As a method of determining which filter to use, this method has the vir-
tue of being nonparametric, but it might not be particularly efficient either 
as an estimator or as a test for time-varying seasonal factors. Because the 
purpose of seasonal adjustment is generally not for forecasting NSA data 
but rather to provide as precise an estimate (for example, lowest mean 
squared error) of the seasonally adjusted series as possible, the task of 
connecting Wright’s forecast approach to the original seasonal adjustment 
problem needs to be done. In particular, the best filter for solving Wright’s 
problem may or may not be the best filter to solve the original seasonal 
adjustment problem.

A second approach would be to estimate state-space models of the type 
used here by maximum likelihood. This approach has the advantage of 
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estimating the parameters for the model-optimum filter, which is given 
by the Kalman smoother with the true parameters. Although I have not 
seen the details worked out, my suspicion is that this estimator would be 
subject to the econometric problems associated with the estimation of the 
variance of a random walk intercept, which is the so-called pileup problem 
at zero. This problem is the state-space counterpart of the unit root pileup 
problem that is familiar in estimating a moving average with a unit or near-
unit root. If so, the maximum likelihood estimator of the state-space model 
parameters might not produce well-behaved Kalman smoother estimates.

These considerations suggest looking for a different way to tackle this 
question of quantifying the time variation in the seasonal factors, one that 
both is efficient and has well understood properties for inference without 
the pileup problem. One way to do this is to invert a test for parameter con-
stancy, in particular, the test for constant seasonal factors developed by Fabio 
Canova and Bruce Hansen (1995). They test the null hypothesis that the sea-
sonal factors are nonrandom against the alternative that the seasonal factors 
(that is, the coefficients on seasonal dummies) follow a random walk. This 
test is a member of the broader family of tests for persistent time-varying 
parameters. Canova and Hansen’s model is the unobserved components 
model, yt = µ + f ′t gt + et, where gt = gt-1 + ut, where ut is serially uncorre-
lated with mean zero and variance t2I11, where I11 is the 11-dimensional 
identity matrix (12 monthly indicators minus one for identifying the 
mean) and where et is mean zero and stationary but possibly serially corre-
lated.3 Their heteroskedasticity- and autocorrelation-robust test statistic, L, 
tests the null hypothesis that t2 = 0 against the alternative that t2 > 0.

My table 1 summarizes the results of applying this Canova-Hansen test 
to the 152 NSA series that aggregate up to total employment. Fully 48 per-
cent of the series reject the null of constant seasonal factors at the 5 percent 
significance level. For employment in leisure and hospitality, all the series 
reject; for employment in finance, only 30 percent of the series reject.

The next step is to move from test results to estimation of the extent 
to which there is seasonal variation. An advantage of working within 
the framework of tests for random walk components is that this can be 
done by inverting the test statistic. The technology to do this exists for 
a pure random walk component, that is, a random walk component at 
frequency zero, and I believe that this should be possible for a random 

3.  Canova and Hansen (1995) include the possibility of additional regressors; however, 
the implementation here has no additional regressors.
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walk at the seasonal frequency. Specifically, under the null, the Canova 
and Hanson (1995) test statistic has a Cramer-von Mises–type distribution 
with 11 degrees of freedom. The results of Stock and Watson (1998) for a 
random walk at frequency zero suggest that, under a local alternative in 
which the innovation variance is proportional to l/T, where T is the sample 
size and l is a constant, the L-statistic will have a noncentral version of 
the Cramer-von-Mises–type distribution. As a result, for a given series the 
L-statistic can be inverted to provide a median-unbiased estimator of the 
local variance parameter l, and can also be used to compute asymptotic 
confidence intervals.

With multiple series, as we have here, it is reasonable to imagine that 
each series has its own noncentrality parameter. Thus the empirical distri-
bution of L-statistics based on the 152 series would be a mixture of non-
central Cramer-von-Mises–type distributions, where the mixing is over the 
local parameter l. As an initial step, figure 2 shows the empirical distribu-
tion of asymptotic p-values of the 152 series (a monotonic transformation 
of the L-statistic) and, in lighter lines, simulated versions of the theoretical 
asymptotic distribution of the p-values for different local parameters l. 
The asymptotic distributions given by the lighter lines are for single fixed 
values of l, that is, without any mixing. Surprisingly, this chart suggests 
that the local asymptotic distribution for l = 0.03 provides a good fit, at 
least for the approximately 70 percent of series with p-values less than 0.2. 
For larger p-values, the l = 0.03 local asymptotic distribution fits less well, 
which suggests that perhaps mixing in smaller values of l is appropriate. 

Table 1.  Results of Canova-Hansen (1995) Test for Time-Varying Seasonal Factors
Applied to 152 employment series, monthly, January 1990–August 2013

Employment category
Percent rejections at  

5 percent significance level

All   48
Leisure and hospitality 100
Government   83
Trade   61
Manufacturing   60
Professional and business services   58
Construction   38
Education and health   35
Finance   30

Notes: The null hypothesis is constant seasonal factors, and the alternative is that the seasonal factors 
(the coefficients on seasonal dummies) follow a random walk. The Canova-Hansen (1995) test was 
implemented with no regressors and with a Newey-West variance matrix, with a bandwidth of 12.
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As a matter of calibration, the value of l = 0.03 corresponds to the standard 
deviation of the drift in the seasonal factors, over the course of 10 years, 
being approximately one-fourth the monthly standard deviation of the 
non-seasonal component. This strikes me as a relatively small amount 
of drift.

These preliminary results suggest that inverting tests could provide a 
useful way to quantify the time variation of the series. One could imagine, 
for example, an empirical Bayes approach in which a prior based on the 
estimated mixing distribution alluded to above was used in conjunction 
with information on a specific series to provide an estimate of l. Additional 
calculations would be needed to translate the series-specific estimate of l 
into the optimal seasonal bandwidth.

Source: Author’s calculations. See the notes to table 1.
Notes: Function is computed using the 152 disaggregated monthly changes in seasonally adjusted 

employment (dark line). Light lines are the asymptotic distribution under the local alternative that τ² is 
proportional to λ/T, where λ is a constant and T is the sample size, for the indicated values of λ. The 
dashed line is the 45° line.
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Figure 2.  Empirical Cumulative Distribution Function of p-Values of the Canova-Hansen 
(1995) Test Statistic
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The results here, while preliminary, point in the same direction as 
Wright’s, which is that the time variation in the seasonal factors might 
not be that large, at least on average across these series. If so, then using 
larger bandwidths than the X-12 ARIMA bandwidth would be justified. 
Of course, this conjecture needs to be studied in further research: the indi-
cations in this direction presented here and using Wright’s forecasting 
approach are preliminary. I would encourage the academic community to 
start bringing to bear the many developments in time series econometrics 
to this important but neglected topic.
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COMMENT BY
RICHARD B. TILLER and THOMAS J. NARDONE    The occurrence of the most 
severe recession of the post-World War II era has made seasonal adjust-
ment a hot topic, as evidenced by this session of the Brookings Panel 
on Economic Activity. Historically, most major innovations in seasonal 
adjustment were introduced by government agencies, such as the U.S. 
Bureau of the Census (Shiskin 1957; and Findley and others 1998), Sta-
tistics Canada (Dagum 1980), and the Bank of Spain (Gómez and Maravall 
1996). Government agencies continue to be the major source of seasonal 
adjustment (SA) research. In contrast, the mainstream community of aca-
demic economists and econometricians has neglected this field of study. 
This is a critical oversight, in the view of Jonathan Wright, whose paper we 
hope will generate further interest and discussion by independent research-
ers and provide feedback to statistical agencies on how their methods and 
practices might be improved.

The paper deals with two principal issues concerning SA practice by 
government agencies, using as an example the Bureau of Labor Statistics 
(BLS) employment and unemployment estimates. The first issue concerns 
bias, principally in the post-recession Current Employment Statistics 



120	 Brookings Papers on Economic Activity, Fall 2013

(CES) SA estimates. Such a bias, if it exists, may have misled data users, 
especially policymakers such as those at the Federal Reserve. If it exists, it 
also raises the issue of how appropriate it would be for a statistical agency 
to make a judgmental intervention and whether an intervention could be 
undertaken quickly enough to make much difference.

The second major issue concerns the more general question of how to 
improve bandwidth selection of the seasonal filter selected by X-11. This 
highly technical issue has important methodological implications, which 
go beyond the bias issue and affect how BLS might improve the way it 
handles SA in general.

The Question of Bias  Turning to the first issue, the paper concludes 
that a trend-cycle bias in the seasonal factors has caused SA CES employ-
ment during the post-recession years to show strong growth in the early 
spring and weaker growth later in the year. A similar but much weaker bias 
is claimed to exist in the SA unemployment rate.

The author’s use of the term bias is unfortunate, since this can easily 
be confused with the statistical concept of systematic errors in the estima-
tors of the “true” values. While the paper does briefly acknowledge a key 
caveat—the identification problem well known in the SA literature (Bell 
and Hillmer 1984)—it is worth repeating here with more emphasis. Since 
seasonal adjustment involves the estimation of unobserved components, 
there is no such thing as “true values” in this context. All that is observed 
are estimates, and different methods produce different estimates. How a 
data user chooses among the alternatives depends on that user’s specific 
purpose for analyzing the data.

Like seasonality, aberrations due to the Great Recession are not observ-
able, and there are many different ways of estimating them depending  
on the user’s objectives. In the seasonal adjustment software used by 
BLS there are standard methods for doing this. Footnote 4 of the paper 
refers to the treatment of outliers in the original X-11 software but does 
not mention the more powerful tools that have been available since the 
development of X-12 in the 1990s. For this reason it is worthwhile to 
briefly review the standard approach.

The standard approach used by BLS for its national employment and 
unemployment series is X-12, an enhanced version of X-11. Designed 
to fit local cubic polynomials, the standard X-11 Henderson trend filters 
(Dagum 1980) used in X-12 can closely approximate business cycle behav-
ior involving accelerations, decelerations, and turning points. These filters 
cannot handle economic shocks resulting in large discontinuous level shifts 
in the data. The REGARIMA section of this software provides power-
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ful model-based tools for identifying and correcting for a wide variety of 
distortions (Findley and others 1998). Large level shifts in the data can be 
easily identified in an automated way by the outlier option of REGARIMA 
provided they do not occur too close to the end of the series.

The BLS studies cited by the author—Jurgen Kropf and Nicole Hudson 
(2012) for CES and Thomas Evans and Richard Tiller (2013) for the Cur-
rent Population Survey unemployment rate—did not find evidence that 
aberrations in the data caused serious distortions in the X-11 trend cycle 
estimates. When it comes to bias, the author’s focus is on the CES SA 
employment estimates. The standard X-12 methodology for removing 
the effects of aberrations due to the Great Recession is not examined in the 
paper. Such an investigation would have been useful in providing guidance 
to BLS, but apparently it was irrelevant to the author’s objective in pro-
ducing bias estimates. Rather, the author’s concern is with behavior in the 
estimates over a short period of time beginning in July 2008, two months 
before the bankruptcy of Lehman Brothers, and ending in July 2009.

The author’s contention is that the very steep drop in employment levels 
caused distortions in the CES SA estimates following the recession, and 
these distortions were confusing for specific uses of the data. This seems 
hard to objectify, hence the emphasis on a judgmental intervention that 
replaces, at the detailed industry level, 11 months of data with a fictitious 
linear decline. (The author also uses another method for discounting the 
recession data by treating them as missing, as was done by Evans and Tiller 
for the unemployment series).

By dampening some of the early year increases and late year declines, 
this intervention presumably would have made the data easier to interpret. 
Still, even after bias correction, interpreting monthly change in the esti-
mates requires caution, because there is uncertainty due to measurement 
error in the not-seasonally-adjusted (NSA) estimates and there is uncer-
tainty in the seasonal decomposition, which is especially high toward the 
end of the series. Unfortunately, users of the data often ignore the measures 
of reliability produced by BLS. The author rightly expresses concern with 
the way policymakers and financial markets react “to very modest payrolls 
surprises.”

The judgmental intervention used in the paper is retrospective. What 
could have been done in real time is not so clear. The author recognizes 
that during the second half of 2009 and the first half of 2010, when the 
bias effect was largest and most likely to cause confusion among data 
users, intervention may not have been feasible. Afterward the bias effect 
is diminished and more easily masked by the ever-present noise from 
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unavoidable estimation error. What is clear from the official estimates is 
that a doubling of the unemployment rate in about a year and the loss of 
8.7 million jobs within two years identifies the recession as the worst one 
in the post–World War II period and that the current recovery remains far 
from complete. Nothing suggested by the author alters that assessment of 
the recent business cycle.

Bandwidth Selection in the Filter  The paper’s second major issue 
concerns the way in which X-11 selects the bandwidth or length of the sea-
sonal filter. Drawing on research by Raoul Depoutot and Christophe 
Planas (1998), Wright finds in the analysis of his own ARIMA fits to 
the CES series that X-11 selects shorter filters than may be desired in 
comparison to an ARIMA model-based approach to seasonal adjustment. 
If filter selection is done in a more optimal way by using the model-based 
method, either as a guide or substitute for X-11, longer filters would be 
selected that produce more stable estimates of SA factors. These findings 
are consistent with many other studies, including a BLS study referenced 
in the paper (Tiller, Chow, and Scott 2007). However, while longer sea-
sonal filters are more robust to trend-cycle aberrations, they do not reduce 
the author’s bias estimates by much. The author does present evidence of 
other benefits, such as better user forecasts and smaller initial revisions (but 
a longer revision period). Moreover, with the direct use of a model-based 
approach, there is the additional benefit of having standard errors for the 
estimated components of the seasonal adjustment.

Concerning the Recommendations  The paper makes a number of rec-
ommendations regarding methodology and policy. The seasonal filter 
bandwidth should be selected in a more optimal way, Wright argues, 
and this will lead to longer filters. For this to work in practice, the author 
points out that the data span should not be arbitrarily restricted to 10 years, 
as is the current practice in the CES program.

However, there are practical limitations, since filters requiring more than 
10 years of data are not feasible with short series and may not be desirable 
for longer series with major structural breaks.

The question of how to deal with recessionary distortions to the sepa-
ration of seasonality from the trend-cycle is a difficult one, and there is 
a long-standing history of concern over it, as evident in Julius Shiskin’s 
comment on it in 1957, which the author quotes. The author recognizes that 
a judgmental intervention is not necessarily an appropriate recommenda-
tion. For statistical agencies technical issues are easier to deal with, while 
judgmental interventions raise the issue of transparency, especially if 
they are attempted in real time. The author rightly questions whether it is 
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appropriate for a statistical agency to make such subjective adjustments 
during a period when there is so much uncertainty about the future course 
of the economy. For statistical agencies, the author recommends that the 
NSA data be made available so that sophisticated users can apply their 
own filters and make their own risky bets about the future. The official 
SA estimates, based on automated methods with limited interventions,  
provide in the author’s words “a usable baseline measure” for more gen-
eral uses of the data and a comparison for researchers who do their own 
seasonal adjustments.

We strongly agree with the author that independent researchers should 
have the NSA data needed to explore alternatives to the official estimates. 
In fact, it has been a long-standing policy by BLS to make these data avail-
able. Unfortunately, independent researchers have seldom shown interest in 
seasonal adjustment methodology. We applaud the author’s admonishment 
of his colleagues to become more involved. Such an involvement would 
be beneficial to BLS as well, especially if it could lead to the development 
of more transparent methods for adjusting for trend-cycle aberrations to 
improve the interpretability of the data.

Finally, the author recommends that BLS produce and publish the full 
set of revised seasonal factors every month and make the SA process repli-
cable by outside researchers. It may not be feasible for the BLS to publish 
the full history of revisions, but BLS can explore other ways of making 
this information available. Also, BLS is willing to work with researchers to 
make sure they have what they need to replicate official estimates.

In conclusion, no SA estimate is the “correct” one for all conceiv-
able uses of the data. As a government statistical agency, BLS emphasizes 
objectivity and transparency and is conservative in the use of judgments 
that affect estimates. BLS agrees that users with specific needs may have to 
apply their own filters or models to produce alternative estimates.

We have benefited from the author’s review and constructive recom-
mendations. We applaud his call for more involvement of econometricians 
in seasonal adjustment. We believe BLS SA estimates provide timely, accu-
rate, and relevant information even during significant events. Users of eco-
nomic data should always consider reliability of estimates; informed users 
make better decisions.

References for the Tiller AND NARDONE Comment

Bell, William R., and Steven C. Hillmer. 1984. “Issues Involved with the Seasonal 
Adjustment of Economic Time Series,” Journal of Business & Economic Sta-
tistics 2: 291–320.



124	 Brookings Papers on Economic Activity, Fall 2013

Dagum, E. B. 1980. The X-11-ARIMA Seasonal Adjustment Method, Number 
12–564E. Ottawa: Statistics Canada.

Depoutot, Raoul, and Christophe Planas. 1998. “Comparing Seasonal Adjustment 
Extraction Filters with Application to a Model-Based Selection of X-11 Linear 
Filters.” Working Paper, Eurostat.

Evans, Thomas D., and Richard T. Tiller. 2013. “Seasonal Adjustment of CPS 
Labor Force Series during the Latest Recession.” Unpublished Working Paper. 
Washington, D.C.: Bureau of Labor Statistics.

Findley, David F., Brian C. Monsell, William R. Bell, Mark C. Otto, and Bor-
Chung Chen. 1998. “New Capabilities and Methods of the X-12-ARIMA  
Seasonal-Adjustment Program.” Journal of Business and Economic Statistics 
16, no. 2: 127–52.

Gómez, Victor, and Agustín Maravall. 1996. “Programs TRAMO and SEATS. 
Instructions for the User.” Working Paper no. 9628. Madrid: Servicio de Estu-
dios, Bank of Spain.

Kropf, Jurgen, and Nicole Hudson. 2012. “Current Employment Statistics Seasonal 
Adjustment and the 2007–2009 Recession.” Monthly Labor Review 10: 42–53.

Shiskin, Julius. 1957. “Electronic Computers and Business Indicators.” Journal of 
Business 30: 219–67.

Tiller, Richard T., Daniel Chow, and Stuart Scott. 2007. “Empirical Evaluation of 
X-11 and Model-Based Seasonal Adjustment Method.” Working Paper. Wash-
ington, D.C.: Bureau of Labor Statistics.

GENERAL DISCUSSION    Edward Glaeser pointed out that problems 
with seasonality adjustments are a major concern among those analyzing 
the housing market. He noted that some economists have suggested basing 
adjustments on previous boom and bust cycles rather than on temporally 
proximate years. His suggestion was that the Bureau of Labor Statistics 
(BLS) produce multiple seasonally adjusted numbers in order to indicate 
the degree of uncertainty regarding the adjustments.

David Wilcox reported that the Federal Reserve was well aware of the 
possible distortions of seasonal factors related to the recent recession. In 
fact, it had decided to change its methods for seasonally adjusting the 
industrial production data that it publishes, precisely in order to insulate 
them as much as possible from these distortions.

Justin Wolfers found Wright’s results very compelling, particularly 
regarding the X-12 seasonal adjustment used by the BLS. Until this paper 
he had not realized that this method places most of the weight on the 
previous two years and the following two years, so that when making 
seasonal adjustments in real time using the X-12 filter only three years 
of data are considered and whatever may have happened before that tight 
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frame is thrown out. Wright’s alternative approaches, using wider time 
spans, surpassed the BLS approach every time, as Wolfers understood the 
paper. In short, the BLS should begin using these alternative methods as 
soon as possible.

Steven Braun agreed with Wolfers that the limitation of considering 
only three years’ worth of data in the X-12 filter made alternative season-
ality adjustments attractive. He also pointed out that the choice of optimal 
bandwidth would depend on whether one wanted to emphasize the middle 
or the end of the data series.

David Romer thought that the BLS was actually cognizant of the sea-
sonality adjustment problems and of the strong case for using a wider 
bandwidth, especially since the agency’s internal studies also seem to be 
pointing in that direction. He also wondered whether there was something 
about the BLS’s review process that caused it to use a bandwidth that was 
too short. Meanwhile, he urged the agency to make two other changes: to 
make its non-rounded numbers publicly available and to make the real-
time data easily available.

Richard Tiller responded by briefly describing the BLS’s methods and 
general approach. First, the agency is largely in agreement with Wright 
on the bandwidth issue. In fact, researchers at the BLS also use longer 
seasonal filters than the X-12, as identified by model-based methods, in 
their research. The use of longer filters, however, did not reduce estimates 
of “bias” by much in either the author’s results or in the BLS’s research. 
Second, subjective intervention, when not supported by diagnostic test 
results, can be risky for a statistical agency to do. He added that the BLS 
acknowledges that different economists may have more effective sea-
sonal filters appropriate to their subject matter, and that is why the agency 
always releases unadjusted data as well.

Thomas Nardone responded to Romer’s other suggestions. He noted that 
the BLS was planning to make previous vintages of the CES data avail-
able. He added that the seasonality adjustments are reviewed annually at 
BLS. As a federal statistical agency, BLS has an obligation to be transpar-
ent about its methodology and any changes made to it. For that reason, 
BLS tends to be cautious by nature, and the seasonal adjustments in 2009 
were consistent with this conservative approach.

David Romer spoke up a second time to add that in his view, the BLS’s 
emphasis in revising its seasonality adjustments should not be on cor-
recting the data from the Great Recession, because ad hoc adjustments to 
data tend to raise very politically sensitive questions. At the same time, he 
felt the BLS may want to look closely at its own review process since its 
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current seasonal adjustment methods do not appear to follow the thrust of 
what both external studies and its own internal studies are finding.

Jonathan Wright agreed with the discussants that the establishment sur-
vey was noisy and he agreed that the seasonality adjustment was only one 
part of the noise. He emphasized the usefulness of real-time projections 
and noted that his proposed seasonality adjustment could not have been 
undertaken in 2008 or 2009 to understand ongoing data. However, had  
it been implemented in late 2009, after the recession was over, it could 
have been used to better understand incoming data from then up to the 
end of 2012.




