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ABSTRACT1

Results on the formation of multi-agent teams are reviewed
and extended. Conditions are specified under which it i s
individually rational for agents to spontaneously form
coalitions in order to engage in collective action. In a
cooperative setting the formation of such groups is to be
expected. Here we show that in non-cooperative environ-
ments—presumably a more realistic context for a variety of
both human and software agents—self-organized coalitions
are capable of extracting welfare improvements. The Nash
equilibria of these coalitional formation games are demon-
strated to always exist and be unique. Certain free rider
problems in such group formation dynamics lead to the pos-
sibility of dynamically unstable Nash equilibria, depending
on the nature of intra-group compensation and coalition size.
Yet coherent groups can still form, if only temporarily, as
demonstrated by computational experiments. Such groups of
agents can be either long-lived or transient. The macroscopic
structure of these emergent 'bands' of agents is stationary in
sufficiently large populations, despite constant adaptation at
the agent level. It is argued that assumptions concerning
attainment of agent-level (Nash) equilibrium, so ubiquitous in
conventional economics and game theory, are difficult to
justify behaviorally and highly restrictive theoretically, and
are thus unlikely to serve either as fertile design objectives or
robust operating principles for realistic multi-agent systems.
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1. INTRODUCTION
Coalition formation among self-interested agents is a subject
of long-standing of interest among researchers in the social
sciences, particularly economics and game theory, and more
recently in computer science and multi-agent systems (MAS).
Here we will explore a class of models that relax conventional
assumptions concerning rationality and equilibrium, focusing
instead on adaptive behavior that may or may not lead to
stable equilibria. From the perspective of the social sciences a
primary motivation for this work stems from the observation
that .real people do not behave in ways that comport closely to
the tenets of rationality. This, combined with the fact that
game theoretic results on coalition formation seem to have
little empirical relevance, leads one to hope that more realistic
specifications of individual behavior will yield salient
empirical modelss. Alternatively, a motivation closer to MAS
originates with the desire to assess the possibility that
autonomous software agents could organize themselves—self-
organize—into coalitions ('roving bands') that would then
attempt to bargain collectively in e-commerce markets and
exchanges. Consider the case of a price-discriminating
supplier selling a homogeneous good with near zero marginal
cost (e.g., airline seats) to agents having heterogeneous
valuations. Perfect price discrimination results in agents with
high values paying more than agents with lower values. We
investigate circumstances in which it is welfare-improving for
agents, whether heterogeneous or not, to engage in collective
bargaining with the supplier.

Conventional game theory has both positive and normative
functions in the social sciences. To the extent that it employs
unrealistic assumptions about human behavior, game theory i s
primarily normative, describing how a perfectly rational agent
should behave so as to extremize its welfare (e.g., maximize
profit). Insofar as the synthesis of well-functioning multi-
agent systems utilizes highly rational agents, conventional
normative-style game theoretic results are potentially
applicable in the design of such systems. However, the
positive (descriptive) utility of such results is very
ambiguous in the context of human agents, due to the
unrealistic behavioral axioms on which the theory is based.
This state of affairs has led in recent years to the development
of a more evolutionary, adaptive-agent game theory [70],
providing more plausible mechanisms by which results based
on perfectly rational agents (e.g., attainment of Nash
equilibrium) might be achieved by boundedly rational actors.
But this work also demonstrates that many of the conventional
results are deeply problematical—e.g., impossibility of
learning certain equilibria, exponential complexity of
designing efficient mechanisms. Increasingly, these
evolutionary approaches provide novel empirical
explanations of multi-agent institutions [3].

There is no little irony in the adoption of game theoretic
methods by the distributed AI (DAI) and multi-agent systems
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(MAS) communities. For within the social sciences there exists
a group of 'early adopters' of MAS technology whose main
goal is to use such systems precisely to circumvent the kinds
of highly idealized and unrealistic assumptions that are
conventional in game theory specifically and the formal social
sciences generally (see [4, 26, 44] for additional background
on the use of MAS in the social sciences).

The motivations for using game theory in MAS are clear
enough, particularly as a tool for analysis of the performance
of systems of self-interested agents [65]. What seems much
more dubious is the adoption of the cognitively, behaviorally
and socially narrow definition of ‘agent’ implicit in
conventional game theory. This is especially ironic insofar as
the structure and specification of software agents permits the
kinds of adaptive, non-equilibrium behavior that are outside
the norms of the theory.

In this paper we take a stand for a more evolutionary game
theoretic formulation of coalition formation.2 In particular,
agents are postulated to be heterogeneous, boundedly rational,
and capable of engaging in interactions outside of
equilibrium. It will be argued that assuming micro-level
(agent) equilibrium, as is the norm in conventional game
theory [7, 8, 24], is highly restrictive theoretically and often
false empirically. Similarly with rationality—while the
purposiveness of human subjects is usually clear in
experimental settings of both the cognitive science and
behavioral economics varieties, there is also great evidence
that people systematically depart from purely rational
behavior. Of course, it is the restrictive nature of the
equilibrium and rationality assumptions that are the primary
basis for their widespread use, not their realism. Highly
restrictive assumptions make it possible to deduce the
properties of a model formally and to prove theorems. But the
empirical relevance of such theorems are only as good as the
assumptions upon which they are based.

Faced with models featuring full blown heterogeneous,
boundedly rational actors interacting out of equilibrium, we
invoke the technology of multi-agent systems to bypass the
limits on pure analytical deduction, in effect using the
computer as an engine of mechanical deduction. We answer a
host of questions in this way, such as 'What kinds of aggregate
phenomena exist when agents have such and such behavior?'
and 'Which specifications of agent behaviors yield
statistically indistinguishable behavior at the population
level?'

In particular, this paper explores the dynamical formation of
multi-agent teams, theoretically, computationally, and to a
lesser extent empirically, while presenting some thoughts on
the ultimate relevance of the results for the design and
synthesis of well-functioning systems of agents in the service
of practical ends.  We find that heterogeneous agents who are
purposive but sub-rational and who interact directly with one
another away from equilibrium are capable of arranging
themselves into groups or teams that have population-level
statistics that closely resemble firms in actual industrial
economies. It is demonstrated that each of the features of the
micro-specification is necessary in order to obtain the main
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results—homogeneous agents produce empirically
unreasonable group size distributions, while the highly
dynamic nature of the economic environment precludes fully
rational agents from ever being able to deduce very much
about the economy in which they live.  It is then argued from
sufficiency that since real human agents organize themselves
into groups having such properties, and since we have
discovered how to make artificial agents behave in this way,
that this agent specification may constitute a useful starting
point for understanding multi-agent teams that may
spontaneously appear in real and artificial economic
environments, and perhaps provide useful design guidelines
for multi-agent organizations.

In the next section the general structure of this model i s
analyzed game theoretically. It is demonstrated that,
depending on the intra-group compensation mechanism, for
groups of any composition there is always a size above which
the Nash equilibrium in the group is unstable to infinitessimal
perturbations. This leads to a non-equilibrium theory of agent
groups, studied computationally in section 3
computationally. Section 4 summarizes the main results and
draws conclusions concerning general questions of the
endogenous formation multi-agent groups.

2. A DYNAMICAL THEORY OF TEAMS
Consider a group of agents who are collaborating to produce
or buy a good or service. Each agent i has an endowment, ei,
and a utility function, Ui, and contributes some amount, xi, of
its endowment to the team. Total contributions by team
members amount to X xi≡ ∑ ; X~i ≡ X - xi. The team uses these
inputs to create or acquire output having value Q(X). In return
for their contributions, agents receive compensation, either as
some fraction of the output or as income derived from its sale.
Compensation is a non-decreasing function of agent
contribution, xi, meaning simply that increased contributions
to production are not penalized. Agent utility is increasing in
the amount of compensation and the quantity of endowment
not contributed. The agents are heterogeneous with respect to
their relative interest in compensation vs. maintenance of their
endowment.

2.1 Compensation Proportional to Input
Specifically, if each agent has Cobb-Douglas preferences for
compensation and endowment, and if compensation i s
proportional to individual input, then utility can be written as
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where θi we shall term, heuristically, agent i's ‘preference for
income.’

In order to understand how agents, whether fully rational or
merely purposive, might behave in this economic
environment, it is next necessary to specify the structure of
production, i.e., how the various inputs are turned into output.
Here we shall give production the character of increasing
returns to scale—to total input—which can be motivated in at
least two different ways.

The first argument for increasing returns simply rehearses this
as the primary reason for the existence of teams or firms in the
first place, i.e., two agents working together can achieve more
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than the sum of their efforts working alone [1, 11, 14, 15, 49,
50, 66, 69]. Formally, this amounts to Q(xi + xj)      >      Q(xi) + Q(xj).
A simple parameterization of this is Q(X) = aXβ, where β ≥ 1
and a is a constant of proportionality; the limiting case of β =
1 amounts to constant returns to scale.

A different motivation for increasing returns gets more
inside the black box of technology and pricing and is closer to
the motivation of our agents as software objects deployed in
an e-commerce environment. Consider a homogeneous good
being supplied in large quantity by a price-discriminating
seller at heterogeneous prices. The seller is willing to give
quantity discounts in order to increase revenue and keep its
large capacity supply process in high utilization. Individual
agents show up and bid to purchase the good, usually in
relatively small quantities. Individuals bids are either
accepted or not, meaning low bids may never transact,
providing the supplier with a way to distinguish the high
value bidders. Specifically, say that the seller prices the good
inversely proportional to the quantity bid on, q, like q-(β−1)/β.
This is shown in figure 1 for various values of the parameter.
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Figure 1: Dependence of price on quantity for various values
of the parameter β

The seller’s revenue is then kq1/β, where k is a constant of
proportionality. If a group of agents were to bid X = kq1/β. they
would receive quantity Q(X) = aXβ, where a(k) is a constant.
The is the bidding group’s ‘production function,’ although i t
is perhaps somewhat unconventional to call it so.

These two distinct motivations yield the same function Q(X).
Substituting this relation into the expression for utility yields

U x e X a ax x X e xi
i i i i i i i i i

i
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β θ θ( ) = +( )



 −( )− −1 1

(2)

Purposive agents will seek to make contributions to
production that increase their utilities. Rational agents are
presumed to contribute exactly the amount that maximizes
utility. Our assumption of non-cooperative behavior means
that no binding side agreements are made between agents, that
each is free to act in its own self-interest; for a cooperative
approach to group formation see [35, 36].

1.1.1 Nash Equilibrium Within a Team
We will model agent behavior as intermediate between mere
purposiveness, e.g., gradient-like groping for utility
improvements, and full-blown rationality in which each agent
must have an internal model of every other agent, etc. Rather,
we will invoke a ‘best reply’ type of adjustment dynamic, as i s

common in evolutionary game theory. Each agent knows its
preferences and endowment, and the total team input in the
previous period. It then uses this information to compute the
best input in the next period, assuming that the overall input
by its teammates will not change. That is, it computes
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In the case of β = 2, use of elementary calculus reveals the
optimal contribution to be
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This expression is increasing in endowment and preference for
income, and decreasing in the contributions of the other
agents. That is, as other members of the team contribute more,
the best response is to contribute less; this is shown
graphically in figure 2.
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Figure 2: Dependence of optimal input on the contributions of
other team members; agent i's endowment is 100

The agent doing so takes advantage of the others’ efforts and
by virtue of increasing returns can increase its individual
welfare by saving some of its input. Thus there is an essential
tension between cooperating for the good of the team and free-
riding [12, 34]. In the limit as  X~i → ∞, the optimal input level
is simply θiei.

1.1.1.1 Existence and Uniqueness of Equilibrium
For the input adjustment mechanism given by the previous
expression, it can be shown that a unique Nash equilibrium
exists. This is a direct consequence of the contraction mapping
theorem. Since individual input levels are monotone
decreasing in the team input3, and thus decreasing in the
inputs of all other agents, iterating equation (4) converges
geometrically to a fixed point, which is necessarily unique.
Thus, any group of agents having any composition will always
have a Nash equilibrium in inputs from its members. No agent
must know, a priori, what the Nash equilibrium of its group is,
but by each agent making stepwise improvements in its input
there results a Nash equilibrium.

                                                                        
3 This will be made more precise in the next section.
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It can also be shown that agents under-contribute input at the
Nash equilibrium  in comparison to the Pareto optimal inputs
[33]. It is easiest to see this with homogeneous agents.

1.1.1.2 Identical Agents
Here we consider that each agent has the same endowment, e,
and preferences, θ, and that there are N agents in the group. In
this situation we substitute (N-1)x for X~i into (4) and solve for
x, yielding

x e N
e N

N
Nash θ

θ

θ
, ,( ) =

+( )
+

1
. (5)

This Nash equilibrium is symmetric, i.e., like agents behave
identically. Now it is easy to see that in the limit of infinite
group size the Nash effort level is θe.

If instead we substitute (N-1)x = X~i into (3) and then maximize
utlity we obtain the symmetric4 Pareto optimal input
contribution levels of

x e
ePareto θ

θ

θ
,( ) =

+

2

1
. (6)

It is not hard to show that the Pareto optimal inputs are always
larger than the Nash levels, and tedious but demonstrable that
agent welfare is greater for inputs given by (6) versus those
produced by (5). However, Pareto input levels are not
individually-rational—if a group is placed in any Pareto
optimal configuration, each agent finds it welfare-improving
to unilaterally reduce its contribution until the Nash level
obtains.

1.1.2 Stability of Nash Equilibrium
Despite the ostensibly strong result regarding the existence
and uniqueness of Nash equilibria in any group, and that this
can be achieved via best reply type dynamics, it remains to be
shown that such results are robust to a variety of
perturbations, e.g., noise. This is possible in the present case
due to the continuous nature of the action space involved.

Let us first be explicit about how input is adjusted:
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To assess the stability of this system the Jacobian matrix must
be computed and its eigenvalues determined. This calculation
is straightforward, yielding for i ≠ j,
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while the entry is 0 for i = j. Clearly each of these is negative.
Now, given that the rows of the Jacobian are identical, the
dominant eigenvalue is just (N-1) the smallest (most negative)
entry. It can be shown that

                                                                        
4 There are other, asymmetric Pareto optimal configurations as
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meaning that the Nash equilibria are always stable.

1.2 Proportional Reward + Equal Shares
In most team production environments it is usually either
difficult or impossible to accurately assess individual
contributions to production in a timely manner [22, 25, 27, 58,
64]. Imagine a baseball or soccer (football) team, for which
certain statistics are kept—runs batted in, batting average with
men in scoring position, or goals scored/game—but for which
it is not generally possible to disaggregate the final
outcome—games won—into purely individual contributions.

Even in the case of multi-agent bidding on a homogeneous
good, there may be costs at the group level that serve to reduce
overall consumable output, leading to non-trivial cost
allocation problems, e.g., should the overhead be allocated
according to equal shares or in proportion to inputs?

Such considerations lead us to view the previous subsections
compensation function to be a very special case, and one
wonders how the introduction of more realistic features will
alter the results. To accomplish this we specify that overall
compensation in any particular group will be a linear
combination of proportional reward and equal shares. This
results in agent utility having the form
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where α specifies the specific mixture of compensation.
Substituting the increasing returns production function gives
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1.1.1 Nash Equilibrium Within a Team
We solve for Nash equilibrium as before, with each agent
taking the other agents’ inputs as given. This yields the
following rather unwieldly expression:
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where λ = 1 + α(N - 1) and µ = λ + 1 - α. Next we show
graphically how the optimal effort level depends on other
agent effort. Figure 3 is directly analogous to figure 2 above,
with an equal mixture of the two compensation systems, i.e., α
= 1/2.
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Figure 3: Dependence of optimal input on the contributions of
other team members; agent i's endowment is 100 and N = 10

The fact that each of the lines in figure 3 has negative slope,
while the analogous lines plateau in figure 2, means that
agents with this compensation will always have a tendency to
free ride as their group size grows.

1.1.1.1 Existence and Uniqueness of Equilibrium
As in the previous case, the general character of equilibrium
can be easily obtained through the contraction mapping
theorem, guaranteeing that in any group the adjustment
dynamics will quickly (geometrically) converge to the unique
Nash equilibrium configuration.

1.1.1.2 Identical Agents
For a homogeneous agent population, substituting (N-1)x for
X~i leads to the following symmetric Nash equilibrium:

x e N
e

N N
Nash θ α

θ λ

θ λ
, , ,( ) =

+( )
+ + −( )

1

1

Note that in the case of α = 1, which implies λ = N, the
previous result on identical agents is recovered. The
symmetric Pareto optimal solutions are the same as before, and
again involve more effort than the Nash configuration while
not being individually-rational:

1.1.2 Stability of Nash Equilibrium
It can be shown that for any distribution of agent types in a
group there exists a maximum group size beyond which
individual agent contribution adjustment dynamics are
dynamically unstable. That is, if a group is larger than its
maximum stable size, any perturbation of the Nash level of
contributions leads to a series of individual adjustments on
the part of all the agents that has no rest point.  To say this yet
another way, the Nash equilibrium exists in such
circumstances but it is unstable.

As before, compute the eigenvalues of the Jacobian matrix by
differentiating the expression for Nash input level with respect
to other agent input. This gives a very complicated result but
one for which it can be shown that

lim
*

N

i

j

x

x→∞
<

∂

∂
0 .

Therefore, for large enough N the dominant eigenvalue will be
less than –1 and the Nash equilibrium unstable. So there exists
a maximum stable group size, Nmax, such that for N > Nmax the

group is dynamically unstable to infinitesimal perturbations.5

The stability boundary is shown in figure 4 for various α.
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Figure 4: Stability diagram for mixed compensation, various
α; region below and to curves represent stable group sizes

Conceptually, the existence of unstable Nash equilibria means
simply that the behavior of the agents in the model is not
static. Rather, the agents rearrange themselves into some
configuration that may possess stationary aggregate behavior,
even though the individual agents are perpetually adjusting
their behavior, adapting to new circumstances [30].
Unfortunately, it is very difficult to analyze such intrinsically
transient circumstances analytically. At least one reason for
the pervasive focus of conventional game theory on static
(Nash) equilibria is certainly due to the mathematical
difficulties surrounding the systematic analysis of dynamical
models. While game theoretic models having non-static
solutions—sometimes called equilibria, although this
terminology is certainly problematical—have been around for
a long time (e.g., [56], [28]), today there is no generally
applicable solution concept for them [59, 60].

3. REALIZATIONS WITH AGENTS
Since the Nash equilibria in this model are dynamically
unstable, explication of the comparative statics of such
equilibria is not informative. However, because the overall
system of agents is highly nonlinear, it is also not the case
that the unstable group dynamics 'blows up' in the sense that
some quantity or another accelerates out toward infinity.
Rather, in the same way that a fluid flow arranges itself into
eddies as it moves into the turbulent regime, becoming
irregular at the microscopic level while possessing stationary
macroscopic statistics, the population of agents will arrange
itself into self-organized groups that persist for some time
before declining and ultimately exiting. But what are the
characteristics of these endogenously formed groups?

Mathematical analysis of these transiently-lived groups i s
surely very difficult. Instead, we study this with a multi-agent
system. Each agent has a Cobb-Douglas utility function and
starts life working alone, as a singleton. Then each period each
agent has an equal probability of awakening, in which case i t
recomputes its best input level for the following period,
taking last period’s behavior as given. It also selects a team at

                                                                        
5 Another model of organizations on the edge of stability i s

[42].
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random and considers how much utility it would derive from
working there at its best effort level, and then chooses the
option yielding the most utility overall [21]. The base case
parameterization of the model is shown in Table 1.

Table 1. Base case configuration of the MAS implementation
of the team formation model

Parameter Value

a 1

β 2

A 106

θi Uniform (0, 1)

ei 1

After an initial transient epoch, the model enters into a
stationary configuration in which, at the population level
there result stationary distributions of agent input levels and
utilities, group sizes and lifetimes, as well as group growth
rates and related statistical measures. This aggregate level
stationarity occurs despite constant flux and adaptation at the
agent level. Some of these statistics are summarized presently.

No group is stable in this model, since agents can join any
team where they can derive more utility, and successful teams
grow  beyond their stable size, However, there is a relatively
smooth distribution of group lifetimes, as shown in figure 5.

0 20 40 60 80
Lifetime

1. µ 10-7

0.00001

0.001

0.1

Frequency

Figure 5: Stationary distribution of group lifetimes realized

The distribution of groups by size in the model is highly
skewed, closely following a power law distribution having
slope of –1 in doubly log coordinates, as depicted in figure 6.

10 100 1000 10000
Size1. µ 10-8

1. µ 10-6

0.0001

0.01

Frequency

Figure 6: Stationary distribution of group size realized

The qualitative nature of these results is robust to alternative
parametric specifications of the model, although the
quantitative character does depend on specific parameters.

The fact that this model closely reproduces many of the
features of business firm data is perhaps its best defense.
However, having said this, the fact that the model utilizes
boundedly rational agents and is intrinsically out of
equilibrium places it at odds with conventional game theory.
If the model yielded only theoretical propositions having
unknown empirical relevance then it would seem that the
‘burden of proof’ would be to further demonstrate the value of
departing from convention.  However, insofar as the model i s
grounded empirically the ‘burden’ seems shifted onto those
who would defend static equilibria and hyper-rationality.

4. SUMMARY AND CONCLUSIONS
A dynamical theory of endogenous team formation and
evolution has been described. Conventional game theory i s
ill-suited to studying the kinds of meta-stable structures that
emerge and transiently survive in this model. MAS
realizations of the full transient structure of this model yield
interesting stationary structures and behavioral regularities at
the aggregate level. Given that these aggregate properties are
closely related to empirical properties of firms, we have argued
that to limit the focus of one's analysis to equilibria, while
certainly augmenting the mathematical tractability, is both
highly restrictive and unrealistic, and likely to render the
resulting models empirically false and operationally brittle.

The model of team formation has recently been extended to the
context of city sizes [6], another topic for which there i s
extensive empirical data to use as a target of our model-
building. Giving each firm a location, we stipulate that agents
who team up must all occupy the same location. Then, when an
agent moves to another location it must migrate physically to
the new firm’s location.  Lastly, when an agent starts up a new
firm it stays with high probability in its present location, but
with some small probability it selects a new location at
random. This simple re-specification of the firm formation
model is sufficient to yield a Zipf distribution of agent and
firm agglomerations over space. As is well known, the Zipf
distribution describes the size distribution of cities in most
industrial countries. This model is the first microeconomic
model to plausibly yield the Zipf distribution. Once again, an
intrinsically dynamical model succeeds where microeconomic
equilibrium models have failed.

While there is no coherent solution 'concept' for dynamical
situations in conventional game theory, it is also true that
there is no prohibition from investigating games in which
equilibrium solutions are never realized. For the purposes of
positive political economy studied above, we use a MAS to
resolve the dynamical behavior, in which there is perpetual
flux and adjustment at the micro level while stationary
aggregate performance obtains. To limit a game theoretic
analysis to merely Nash equilibrium is to severely
circumscribe the range of applicability of this otherwise fertile
theory. To base the analysis of multi-agent systems on
conventional game theory is to so restrict the possible
vocabulary of analysis as to impoverish the design of
operational systems. Why cannot groups of agents
spontaneously band together on the Internet to form a multi-
agent coalition for purposes of, for example, extracting better
pricing from a product supplier? Or would not a self-organized
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team of autonomous agents make a far more robust line of
attack against invaders than would a single strong but
potentially brittle agent?  In the end, as Simon’s critique [61]
of Rubinstein makes clear, progress in the positive social
sciences can only be had, ultimately, from empirical work, no
matter how beautiful is one’s mathematical theory.
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