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ABSTRACT

A model in which heterogeneous agents form firms is described
and empirically tested.  Each agent has preferences for both income and
leisure and provides a variable input ('effort') to production.  There are
increasing returns to cooperation, and agents self-organize into
productive teams.  Within each group the output is divided into equal
shares.  Each agent periodically adjusts its effort level to maximize utility
non-cooperatively.  Agents are permitted to join other firms or start up
new firms when it is welfare-improving to do so.  As a firm becomes
large, agents have little incentive to supply effort, since each agentÕs share
is relatively insensitive to its effort level.  This gives rise to free riders.  As
free riding becomes commonplace in a large firm, agents migrate to other
firms and the large firm declines.  It is demonstrated analytically that
there exist Nash equilibrium effort levels within any group, but these are
(1) Pareto-dominated by effort configurations that fail to be individually
rational, and (2) dynamically unstable for sufficiently large group size.
The out-of-equilibrium dynamics are studied by an agent-based
computational model.  Individual firms grow and perish, there is
perpetual adaptation and change at the micro-level, and the composition
of each firm at any instant is path-dependent.  However, at the
aggregate-level stationary firm size, growth rate and lifetime distributions
emerge.  These are compared to data on U.S. firms.  In particular, the
power law character of empirical firm size distributions is reproduced by
the model.  Log growth rates are distributed as a Laplace (double
exponential) distribution, while the standard deviation in growth rates
scales (decreases) with firm size, both in agreement with recent empirical
analyses.  Constant returns obtain at the aggregate level, in contrast to the
increasing returns of the micro-level.  A portrait of this agents-within-
firms economy is developed by analyzing typical firm life cycles, typical
agent careers, and through cross-sectional analysis.  The model
parameterization is systematically investigated.  Right-skewed size
distributions are robust to a variety of alternative specifications of
preferences, compensation, interaction structure, and bounded
rationality.  The role of residual claimants within firms is briefly explored.
Finally, it is argued that any theory of the firm based on microeconomic
equilibrium is unlikely to explain the empirical data on firm sizes, growth
rates, and related aggregate regularities.  In the multi-agent perspective
developed here, successful firms are ones that can attract and retain
productive workers,  a picture very different than the conventional profit
maximizing view of firms.

Keywords: endogenous firm formation, increasing returns, bounded
rationality, unstable Nash equilibria, power law size distribution, double
exponential growth rate distribution, agent-based computational model,
non-equilibrium game theory, path-dependence, economic complexity,
group selection
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1 Introduction
This essay describes a model in which firms self-organize within a

heterogeneous population of boundedly rational agents who interact locally.
In the terminology of Epstein and Axtell [1996], firms ÒgrowÓ from the
bottom-up.  In particular, we study a team production environment
characterized by increasing returns and various rules for dividing group
output.  Placing agents who are local utility-maximizers in such an
environment proves sufficient for the emergence of multi-agent groups.
Such groups, it will be seen, have characteristics that are suggestive of firms.

There are two primary motivations for building a model in which
firms emerge.  First, to the extent that the received theory of the firm is
concerned with why and how firms happen,1 a model in which firms emerge
can be used to test the extant theory, and to assess its generality by relaxing
assumptions of the theory.  For example, do theoretical claims concerning
what constitutes the core elements of firms, such as economizing on
transaction costs, represent statements about necessity or sufficiency?  What
happens as rationality assumptions are progressively relaxed?  As complete
rationality gives way to bounded rationality and finally to mere
purposiveness, at what point are firm-like multi-agent organizations no
longer observed?  Of crucial importance, are the various Ôtheories of the firmÕ
even sufficiently well specified that one can build more or less complete
microeconomic models of them?2  A living model, in which some firms
grow and prosper while others do not, can function as a laboratory in which
systematic experiments, designed to test some aspect of the theory, are
conducted.  At the very least such experiments will shed light on the
strengths and weaknesses of the extant theory.  However, a working model
could do much more, perhaps serving as a catalyst for new conceptualizations
of the firm.

The second motivation for building a model of firm formation is to
contribute to the development of the methodology of agent-based
computational modeling.  Creating agent models requires explicit
specification of how agents interact at the micro level.  The resulting model is
then spun forward in time and one looks for pattern and structure to emerge
from the interactions of the agents.  Today, much is known about how to get
markets to emerge in artificial agent models (cf. Arthur et al. [1994], Epstein
and Axtell [1996], Chen and Yeh [1997], Kirman and Vriend [1998]).  Too,
computational organization theory has progressed as a modeling discipline by

                                                
1 Arguably, the theory of the firm, such as it exists today, is predominantly concerned with

intra-firm organization, and less about the origin of firms, although these matters are not
unrelated.

2 Models without explicit dynamics constitute, at best, an incomplete explanation.
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taking organizational forms as given (cf. Prietula, Carley and Gasser [1998]).
However, little is known about how to get multi-agent organizations to form
and evolve endogenously.3  Operational multi-agent firms are a necessary
step along the road to the creation of a full-blown agent-based economy i n
software.4

These two motivationsÑto test the economic theory of the firm and to
add to the methodology of agent-based computational modelingÑare
intrinsically related.  On the one hand, any computational model of firm
formation must have economic foundations.  On the other hand, we shall see
that the out-of-equilibrium character of the economic model is efficaciously
studied through the agent-based computational approach

But how will we know when we have succeeded?  That is, by what
criterion might we evaluate the performance of one model of firm formation
against another?  Axtell and Epstein [1994] describe a variety of ways to assess
the performance of agent-based models.  Our approach here will be to
compare model output to aggregate statistical data.  In particular, the
empirical firm size distributionÑwell known to be right skewedÑis shown
to be similar to the size distribution that emerges in the population of firms
of the computational model.  Further, the model yields firm growth rate
statistics that are closely related to recent empirical analyses (Stanley et al.
[1996]).

Ostensibly, the best current explanations for the observed firm size
distribution are, in essence, phenomenological in nature since they are
written in terms of aggregate variables.  Beginning with Gibrat5 and
continuing in the efforts of Simon and co-workers (Ijiri and Simon [1977]), as
well as others, there exists a body of stochastic process models in which
random draws from a symmetric distribution of growth rates yield
distributions of firm sizes that are right skewed, following a lognormal,
Pareto, or Yule distribution, depending on the exact structure of the process.

                                                
3 Padgett [1998] has modeled the formation of networks of complimentary skills within a

population and describes the local clustering of particular skills as a simple kind of
economic organization.  Luna [1998] investigates problem solving by heterogeneous teams of
neural networks and interprets the results in terms of firms.  Axelrod [1995] and his student,
Cederman [1997] have each built models of state formation and evolution that are similar
in spirit to the model of firms described here, involving heterogeneous agents having
limited information who engage in purposive behavior through local interaction.

4 Building an entire artificial economy from agents is an active research program, first
described by Lane [1993]; see also Lewin [1997].  An early effort in this direction is Basu and
Pryor [1997], although firms are unitary actors in their model, not multi-agent
organizations.

5 For reviews of GibratÕs contributions see Steindl [1965] or Sutton [1997].
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Apparently, there does not exist today a purely microeconomic
explanation for the overall firm size distribution.6  The inability of the
neoclassical theory of the firmÑwith its U-shaped cost functions and perfectly
informed and rational managersÑto render a plausible explanation of the
empirical size distribution has been caustically critiqued by Simon [Ijiri and
Simon, 1977: 7-11, 138-40].7  Nor do the transaction cost, principal-agent, and
other more recent theories of industrial organization seem to place significant
restrictions on firm size and growth distributions.  These varied approaches
to understanding firms are briefly reviewed in the next section.

Various Theories of the Firm
The neoclassical theory of the firm distills the multi-agent character of

real firms down to a single rational actor, who faces completely specified
technological options, and who acts to maximize profit by choosing inputs
that minimize cost.  There are many problems with this firm-as-production-
function picture, from its static technology to its hyper-rationality.  But, as
Winter [1993: 181-2] has carefully argued, it is also something of a
methodological curiosity.  Throughout economics the common principle of
explanation involves methodological individualism , from the theory of
consumer behavior to general equilibrium theory and beyond.  But where are
the individual firm members in the neoclassical cost minimization model of
the firm?  More generally, the neoclassical model seems to have little to say
about intra-firm organization.  It is perfectly consistent with an economic
configuration in which the economy is one giant firm and has as its divisions
and plants what today we call firms.  That is, the neoclassical theory of the
firm fails to explain the boundary between market and firm.

Transaction cost theories, together with incomplete contracting
approaches, constitute perhaps the dominant paradigm in the modern theory
of the firm.  Originating with Coase [1937] and continuing with Williamson
[1975, 1985], this approach explicitly recognizes the connection between
organization and cost, and argues that different ways of organizing
transactions leads to systematically different cost structures.  The incomplete

                                                
6 Sutton [1998] is an ambitious exception to this statement.  He has developed a simple game

theoretic model of firm competition that determines bounds on the extent of intra-industry
concentration, thus constraining the shape of the size distribution.  A variety of other recent
research, also written at the firm level, addresses the origins of the size distribution.
Kwasnicki [1998] obtains right-skewed firm sizes in an evolutionary model of technological
change.  Mazzucato [1998] explores the evolution of market concentration and market share
instability using a model in which firms experience falling costs.  Aslund [1998] describes a
game theoretic model of competition between firms and finds that firm sizes within
industries should be similar.  He then goes on to advance the seemingly novel hypothesis
that right-skewed firm size distributions result from skewed distributions of market size.

7 For a more recent statement of these views see his Mattioli lectures (Simon [1997b]).



The      Emergence      of      Firms                                                                                              Axtell  

4

contracts model further argues that it is prohibitively expensive to write
comprehensive contracts, so transactions are intrinsically costly.  This leads to
the view of the firm as a nexus of contracts.  While ostensibly quite broad i n
scope, the operational content of the transactions cost approach has not
always been clear, the extent to which it views agents as rational and the firm
as profit maximizing is ambiguous, and it seems to have little to say about
concentration, i.e., relative firm sizes.

Partly in recognition of the defects in the textbook orthodoxy, a body of
results on principal-agent theory has been developed in the context of the
theory of the firm.  This work relates, principally, to optimal incentive
systems within firms and optimal armÕs-length contracts between firms.
Results have been derived for cases involving multiple principals, multiple
agents, reputation effects and so on.  However, this literature too, fails to shed
much light on either intra-firm organization or firm-market boundaries
[Hart 1995:  20].

A rather different theory of the firm is the coalitional or general
equilibrium view.  Here, agents are treated as heterogeneous, each with
unique preferences and abilities.  A firm then becomes a (stable) coalition of
such agents; see, for example, Kihlstrom and Lafont [1979], Kleindorfer and
Sertel [1979, 1982], Lucas [1978], and Laussel and LeBreton [1995].  The
formation of such firms can be considered endogenous (Hart and Kurz [1983]),
although the process by which such coalitions might assemble themselves is
largely unspecified since this general equilibrium conception of a firm is a
completely static notion.  When it comes to theorizing the dynamics of
coalition formation a variety of problems are encountered.  While it is
possible to describe certain aspects of a dynamical theory formally (Roth
[1984]), for even small agent populations the number of coalition structures is
so vast that it is simply not feasible that any significant subset of them could
ever be sampled.  Thus, it is not credible that a particular set of firms
represents anything like an optimal coalition structure (De Vany [1993a,
1993b, 1993c, 1996]).8

Related to the coalitional approach to firms is the recent flowering of
the economics of information processing within organizations.  Here the firm
is viewed as an information processing organization with some topology of
interaction among the agents (Radner [1993], Van Zandt [1996, forthcoming],
Miller [1996], DeCanio and Watkins [1998]).  The comparative efficiency of
organizations having different topologies and alternative incentive structures
is the primary object of study in this sub-field.  The related view of

                                                
8 Recent work on the computational complexity of bounding optimal coalition structures can

be viewed as impossibility results for the efficient determination of tight bounds (see
Sandholm et al. [1998], Shehory and Kraus [1993], and Klusch and Shehory [1996a, 1996b]).
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organizations as communication networks is expounded by Dow [1990] and
Bolton and Dewatripont [1994].

Finally, the firm plays a central role within the broad field of
evolutionary economics .  Here the firm is viewed neither as a production
function, nor as a nexus of contracts, but as an amalgam of operating rules
and heuristics (Nelson and Winter [1982]).  Instead of interpreting firm
structure and function to be the result of some optimization program, the
evolutionary approach suggests that founder effects and path dependence are
determinate.  Firm behavior is modeled as incrementalist and profit seeking
instead of profit maximizing.  But the evolutionary theory of the firm as it
stands today, as with the transactions cost approach, seems to come up short
operationally.  That is, its empirical relevance remains largely to be
developed.

Overall, and taken together, these varied theoretical perspectives have
much to offer the student of the firm.  They present frameworks for building
models, as well as a vocabulary in which alternative hypotheses can be
expressed.  These theories seem to explain certain stylized facts, and it is
possible to interpret some of them empirically, both through case studies as
well as econometrically (cf., Joskow [1993]).  However, to greater or lesser
degrees, all these approaches view the firm as a reasonably small group of
more or less homogeneous agents who behave rationally.9  Furthermore, an
implicit assumption in most of these approaches is that equilibrium behavior
constitutes the observed behavior of firms, and thus comparative statics is an
appropriate tool for studying alternative form, function and fitness of firms.

This paper describes a model that draws together various threads from
these competing theoretical literatures.  From the neoclassical tradition the
notion of a production function is preserved, albeit in a somewhat modified
form.  The model is written at the level of individual agents, and incentive
problems and related ideas from the principal-agent literature manifest
themselves in important ways.  The agents in the model work in perpetually
novel environments, in which contracts are of necessity incomplete, and so
transaction costs are intrinsic.  Each firm at each instant will be composed of a
coalition of agents, so the general equilibrium approach is relevant.  Finally,
the way in which agents make decisions, and the way firms grow and decline,
is very much in the spirit of evolutionary economics.

Although the model described below is situated conceptually within
existing theories of the firm, the main results are developed using a
methodology that is largely unfamiliar to many economistsÑso-called agent-
based computational modeling.  In agent-based computational models a

                                                
9 The coalition formation approach relaxes the small group assumption, while rationality is

commonly considered bounded in the evolutionary approach and, perhaps to a lesser degree,
in transactions cost theorizing.
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population of data structures representing individual agents is instantiated
and permitted to interact.  One then looks for systematic regularities, often at
the macro-level, to emerge from the interactions of the agents.  The
shorthand for this is that macroscopic regularities ÒgrowÓ from the bottom-
up.  No equations governing the macro social structure are solved in multi-
agent computational modeling.  Typically, the only equations present are
those used by individual agents for decision-making.  Nor are agents assumed
to have complete information that they can costlessly process.  Instead, agents
glean data concerning their economic environment from members of their
social networks, that is, through local interactions.  This relatively new
methodology facilitates modeling agent heterogeneity, non-equilibrium
dynamics, local interactions (network/spatial processes), and boundedly
rational behavior (cf. Epstein and Axtell [1996]:  Chapter I).

The model of firm formation elaborated below consists of a population
of heterogeneous agents who have preferences for income (derived from
work) and leisure (all time not spent working).  There are increasing returns
to cooperation, so agents who work together can produce more output per
unit of effort than if they work alone.  However, agents act non-
cooperatively.10  They continually select effort levels that maximize
individual welfare, and may migrate between firms or start-up new firms.
Thus, entry decisions are endogenous.  Firm output is divided equally among
the workers.  Firms form in the model due to the increasing returns, but,
since agents are constantly adjusting their effort levels, large firms are not
stable.  This is because once a firm becomes large each agentÕs share is only
weakly related to its effort level, and so free-riding sets in.  Agents eventually
move out of firms ÔinfectedÕ with free riders.  Exit decisions are, therefore, also
endogenous.  It is demonstrated analytically that there do not exist stable
equilibria in this environment.  Furthermore, it is argued that the non-
equilibrium regime provides greater welfare for the agents than would
equilibrium even if it were stable.  An agent-based computational model is
used to study the non-equilibrium dynamics, in which firms are perpetually
born, growing and perishing.  After an initial transient period there results
stationary distributions of firm size (by both number of employees and
output) and growth rate.  Firm size follows a scaling (power law) distribution,
in accord with empirical data.11  In fact, for certain parameterizations the
power law exponent estimated from the model ÔdataÕ is similar to that for U.S.
firms.  In contrast to increasing returns at the firm level constant returns

                                                
10 For a cooperative game theoretic view of firms see Ichiishi [1993].
11 As this draft was being completed the paper of Laherr�re and Sornette [1998], on so-called

'stretched exponential distributions' (aka Weibull distributions) has come to my attention.
Preliminary results of fitting this functional form to firm data indicate that it is somewhat
superior to a pure power law.  It is anticipated that the implications of this will be
developed in a subsequent draft.
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obtain at the macro-level.  The computational model generates empirically
testable patterns and regularities, about which there seem to be very little
data, such as the distribution of firm lifetimes.  Finally, there is a sense i n
which the model supports the idea that intra-firm cooperation between
agents is a by-product of inter-firm competition for agents.

In the next section (¤ 2) some analytical results are obtained for a
representative agent/representative firm version of the model.  Then, in ¤ 3,
the computational model is described and its output analyzed.  Section 4
describes some extensions of the basic model.  Finally, ¤ 5 summarizes the
main findings and draws conclusions.

2 A Variable Effort Model of Firm Formation
In his famous paper on firms, Coase [1937] wondered why there were

firms at all, and not merely market relations between individuals.  Thinking
of firms as Òislands of cooperationÓ (Robertson [1930]), and markets as
institutions for competition (between individuals, between firms, and
between individuals and firms), a different way to phrase CoaseÕs query is
ÔWhat are the boundaries between cooperation and competition?Õ

An important answer to this question is Alchian and Demsetz [1972].
These authors argued that firms are vehicles for managing incentive
problems in team production, and that the production environment
determines the most efficient organizational form.  Holmstr�m [1982]
subsequently formalized certain of these ideas.

Recently, a variety of models of individual behavior within groups
have appeared in which the tension between cooperation and competition is
explicitly considered, and the resulting group dynamics are studied
analytically.  The general character of the model described belowÑvariable
agent effort leading to more or less cooperation and fluctuating sizes of
groupsÑis a variation on the formulation of Canning [1995], which is quite
similar to Huberman and Glance [1998].12  It extends these analyses by
focusing not merely on the unstable equilibria of group formation (Canning)
or on fluctuations about equilibrium (Huberman and Glance).  Rather,
recourse is made to agent-based computational modeling, which yields a
complete dynamical picture of the solution space.  But first, the structure of
the model is described analytically.

                                                
12 See also Glance et al. [1997].
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2.1 Set-Up

There is a finite, fixed set of agents, A, each of whom works with some
effort level ei∈ Α  ∈  [0, 1].  Consider a representative group composed of N
agents.  The total effort level in the group is simply

E ei
i

N

=
=
∑

1

. (1)

The group produces output, O, as a function of E, according to

O E aE bE( ) = + 2 . (2)

This represents the groupÕs production function.13  The case of b = 0
corresponds to constant returns to cooperation, while b > 0 amounts to
increasing returns.14  The increasing returns to production means, essentially,
that agents working together can produce more than they can as
individuals.15  To see this, consider two agents having effort levels e1 and e2.
As individuals they produce total output O1 + O2 = a(e1 + e2) + b(e12 + e22),
while working together they make a(e1 + e2) + b(e1 + e2)2.  Clearly this latter
quantity is at least as large as the former since (e1 + e2)2 ³ e12 + e22.16

The agents in a group share total output equally.  That is, at the end of
each period each agent receives an O/N share of the total output.17

                                                
13 This terminology is at least somewhat problematical.  While (2) relates inputs to outputs,

in concert with the neoclassical view of a production function, the inputs are not explicit
choice variables of a decision-maker within the firm, since they are determined by the
individual agents who make up the firm.  Therefore, there is no sense in which the
production function given by (2) can be made the object of a mathematical programming
problem, to minimize costs, for example, as in conventional production theory.  However,
since (2) describes the effect on firm output of agent behavioral adjustments, as well as the
effect of changing firm composition, there is a definite sense in which it describes
production possibilities, albeit dynamic ones, and so we call it a production function.

14 The notion of increasing returns at the firm level goes at least back to Marshall [1920], and
proved to be fodder for various theoretical controversies in the 1920s (Sraffa [1926], Young
[1928]).  More recent work on increasing returns is reprinted in Arthur [1994] and Buchanan
and Yoon [1994].  Colander and Landreth [1999] give an interesting account of the history of
the idea.

15 There are many ways of justifying increasing returns between individuals, such as when
agents are solving so-called 'four hands problems.'  These will not be pursued here.

16 Note that the increasing returns character of (2) is preserved if a = 0.  Although setting a to
0 would simplify somewhat the analytical results that follow, it will subsequently prove
insightful to compare the results for increasing returns with those that obtain in the case of
constant returns; this can only be accomplished with a ­ 0.

17 It will eventually be demonstrated that the model yields a more or less constant amount of
total output, as well as a stationary distribution of income.  Thus, in a competitive market
the price of the output will be more or less constant.  Since there are no fixed costs, the
output shares sum to total cost which equals total revenue, and therefore profit equals zero.
The income shares can be thought of as either uniform wages in pure competition or equal
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Each agent has Cobb-Douglas preferences for income and leisure.18  All
time not spent working is spent in leisure, thus agent iÕs utility can be written
as a function of its effort level, ei, as

U e E N
O e E

N
ei

i i i
i i

i

i

i; , ,
;

~
~θ

θ
θ( ) = ( )





−( ) −
1

1 , (3)

Note that in this expression the group output, O, has been written as a
function of ei, with the remainder of the total group effort, E~i, considered a
parameter; E = ei + E~i.

2.2 Equilibrium

Let us say that each agent knows its preferences, θi, the size of the group
to which it belongs, N , and the output of the group, O, from which it can
determine E and thus E~i.  Individual effort is not observable.  Furthermore,
each agent, i, selects the effort level, ei

* , that maximizes its utility; formally,

e U e E Ni
e

i
i i i

i

*
~argmax ; , ,≡ ( )[ ]θ . (4)

It is straightforward, albeit somewhat tedious, to show that the solution to
equation 4 is given by

e E
a b E a ab E b E

bi i i
i i i i i i

i

*
~

~ ~ ~, max ,θ
θ θ θ

θ
( ) =

− − −( ) + + +( ) + +( )
+( )















0
2 4 1 4 1

2 1

2 2 2 2 2

(5)

for b > 0, and

e E Ei i i i i i
*

~ ~, max ,θ θ θ( ) = − −( )[ ]0 1 (6)

in the case of constant returns (i.e., b = 0).19  Note that these results do not
depend explicitly on N , the size of the group.  However, they do depend on

                                                                                                                                                
profit shares in a partnership.  Alternative agent compensation policies are studied in ¤ 4.7
below.

18 In the appendix a more general model of preferences is specified.  All the main results of
this paper obtain in the general case.

19 In the case of constant returns it is never strictly individually-rational for agents to work
together when the option of working alone exists.  To see this, note that if in a group of
identical agents each works at the same level it would if working alone then the output
share each receives is identical to what each agent would produce on its own; indeed, this
is the definition of constant returns.  Thus there are no welfare advantages to cooperation.
In a group of heterogeneous agents those with relatively smaller preference for income work
less than those who prefer income to leisure.  Therefore, under the equal share rule for
dividing output, participation in such a group is not incentive compatible for agents with
relatively larger preference for income.  Results for constant returns will be shown for
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E~iÑthe amount of effort put in by the other agents.  In order to develop
some intuition for the general dependence of ei

*  on its parameters, we plot it
for a = b = 1 in figure 1 below, as a function of E~i, for several values of θi.

ei
*

5 10 15 20

0.2

0.4

0.6

0.8

1

q = 0.95

q = 0.90

q = 0.80

q = 0.50

E~i

Figure 1:  Dependence of ei
*  on E~i; a = b = 1, θi ∈ {0.50, 0.80, 0.90, 0.95}

Note that the optimal effort level decreases monotonically as 'other agent
effort,' E~i, increases, and that for each θi < 1, there exists some maximum
amount of E~i beyond which it is rational for agent i to put in no effort.  Stated
differently, for a fixed E~i, there exists a cut-off value of θ, call it θc, such that
for θi ² θc, ei

*  = 0, while for θi > θc, ei
*  > 0.  That is, for agents who face the

same E~i, the only agents who put in positive effort are those having
preference for income above θc,  It is possible to develop an expression for θc
by setting the second argument on the RHS of (5) equal to 0.  This yields

θc
i

i i

a bE

a E b E
= +

+( ) + +( )
~

~ ~1 1 2
.

As E~i gets large θc approaches 1, meaning that the only agents who put i n
non-zero effort under such circumstances are those who do not care for
leisure.  Note also from figure 1 that each of the curves is nearly linear over
the entire range of feasible solutions.  In the case of constant returns, (6) says
that each is exactly linear, with slope 1 - θi.

Equilibrium in a group corresponds to all agents computing ei
*  from

equation 5, using E i~
*  in place of E~i such that

                                                                                                                                                
purposes of completeness, and to compare and contrast with results from the increasing
returns case.
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E ei j
j i

~
* *=

≠
∑ .

From the continuity of the RHSs of (5) and (6) and the compactness of the
space of effort levels, it is clear that solutions to this set of equations exist.
Further, given that the RHSs are monotone decreasing (see figure 1) the
solution is unique.  Such an equilibrium configuration is a Nash equilibrium,
since once it is established no agent can make itself better off by working at
some other effort level.

However, this Nash equilibrium in effort levels is not efficient.  In
general, there exists a continuous set of agent effort levels that Pareto
dominate the Nash equilibrium, as well as a subsetÑalso having cardinality
of the continuumÑthat are Pareto optimal.  These solutions all (a) involve
larger amounts of effort than the Nash equilibrium, and (b) are not
individually rational.  To see (a) note that

dU e E N
U

e
de

U

E
dEi

i i i

i

i
i

i

i
i

*
~
*

~
~; , ,θ ∂

∂
∂
∂( ) = + > 0

since the first term on the RHS vanishes at the Nash equilibrium and

∂
∂

θ θ

θ θ
U

E

a b e E e

N a e E b e E

i

i

i i i i

i i i i

i

i
i

~

~

~ ~

=
+ +( )[ ] −( )

+( ) + +( )[ ]
>

−

−

2 1
0

1

2 1 .

Part (b) is true as a result of the fact that each agentÕs utility is monotone
increasing on the interval [0, ei

* ), and monotone decreasing on ( ei
* , 1].

Therefore,

∂
∂
U

e
e e E E

i

i
i i i i< ∀ > >0 *

~ ~
*, .

This region of effort levels that Pareto dominate the Nash equilibrium is the
space in which firms live.

Example:  Graphical depiction of the solution space, 2 agents with θ  = 0.5
Consider two identical agents having preference for income of 0.5.  Solution of equation

5, with a = b = 1 yields e* = 0.4215, corresponding to utility levels of 0.6704.  Effort level
deviations by either agent alone are Pareto dominated by the Nash equilibrium.  For example,
decreasing the first agent's effort to e1 = 0.4000, with e2 at the Nash level of 0.4215, yields
utility levels of 0.6700 and 0.6579 , respectively, generating welfare losses for both agents.  An
effort level perturbation in the opposite direction, to e1 = 0.4400 with e2 remaining at 0.4215,
produces utility levels of 0.6701 and 0.6811, respectively, a loss for the first agent while the
second agent gains from the firstÕs additional effort.  If both agents decrease their effort levels
the utility of each falls, while joint increases in effort are welfare-improving for both.  There
exists a symmetric Pareto optimal solution in the case of identical agents.  For the problem a t
hand this amounts to each putting in effort level 0.608 and receiving utility of 0.7267.
However, no solutions involving more effort than the Nash equilibrium are individually
rational:  from any of these solutions each agent gains utility by reducing its effort.
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All of this is depicted in Figure 2, below.  It is a plot of iso-utility contours as a function
of effort levels for two identical agents having θ = 0.5.  The lines that are 'U' shaped with
respect to the page refer to the first agent, with utility increasing to the right.  The 'C' shaped
curves correspond to the second agent, with utility increasing up the page.  The point labeled
'N' is the Nash equilibrium.  The 'core' shaped region extending above and to the right of 'N' is
the set of effort levels that Pareto dominate the Nash equilibrium.  The set of effort levels on
the curve from 'P' to 'P' are Pareto optimal.

e2
*

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

N

P

P

e1
*

Figure 2:  Effort level space for two agents each having θ = 0.5; thin lines are iso-utility
contours, 'N' corresponds to the Nash equilibrium, and the heavy line from P-P corresponds to

Pareto optimal solutions

For two agents with distinct preferences for income the qualitative structure of the
solution space shown in figure 2 is preserved, but the symmetry is lost.  Essentially, increasing
returns insures the existence of solutions that Pareto dominate the Nash equilibrium.

For more than two agents the Nash equilibrium and Pareto optimal solutions continue to
be distinct.  For N = 3, figure 2 can be thought of as the e3 = 0 solution space.  Then, because e* is
decreasing in E~i, for e3 > 0 the effort levels of agents 1 and 2 that correspond to the Nash and
Pareto optimal solutions are lower than in the e3 = 0 case.

Singleton Firms
The E~i = 0 solution of (5) or (6) corresponds to agents working alone i n

single agent firms.  For this case the expression for the optimal effort level can
be written as

e
a b a b a b

bi i
i i

i

* ,θ
θ θ

θ
0

2 4

2 1

2 2

( ) =
− + + + +( )

+( ) . (7)

for b > 0 and, in the case of constant returns, ei i
* ,θ 0( )  = θi.  Note that in the

limit of θi = 0, equation 7 gives ei
*  = 0, while for θi = 1 we have ei

*  = 1.  That is,
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these two limiting cases of (7) correspond to constant returns.  For θi ∈ (0, 1) it
can be shown that the optimal effort level with increasing returns is always
greater than that corresponding to constant returns, for the same value of a.

Expressions for the utility corresponding to the optimal effort levels
can be written down, but these are unwieldy.  Attempting to learn how the
utility function depends on its parameters a and b yields, upon
differentiation, even less useful results due to the large number of terms
involved.  However, the general shape of the optimal utility as a function of
θ can readily be discerned by simply plotting it numerically.  Furthermore, its
dependence on b is established by making multiple plots.  These are shown i n
figure 3.

0.2 0.4 0.6 0.8 1
q

0.5

1

1.5

2

2.5

3

Optimal Utility

b = 2

b = 1

b = 0

Figure 3:  Optimum utility as a function of θ, parameterized by b ∈ {0, 1, 2}, a = 1

Note that for constant returns (b = 0), agents with extreme preferences have
the highest utility levels when working alone.  Then, as increasing returns
become progressively more prominent, higher and higher utility levels
accrue to agents who prefer income to leisure.  Also note that this figure
makes clear that utility is monotone increasing in b.  It turns out that it is also
an increasing function of a, in accord with intuition.

Example:  Nash equilibrium with free entry and exit

Four agents having preferences for income {0.6, 0.7, 0.8, 0.9} work together in a group in
which a = b = 1.  Equilibrium in such a group, from equation 5, corresponds to agents working
with effort levels {0.15, 0.45, 0.68, 0.86}, respectively, producing 6.74 units of output.  The
corresponding utilities of the 4 agents are {1.28, 1.20, 1.21, 1.32}, respectively.  If each of these
agents were to leave the group to found their own firm they would, according to equation 8, put
in effort levels {0.68, 0.77, 0.85, 0.93}, respectively, generating outputs of {1.14, 1.36, 1.58, 1.80}
and total output equal to 6.07.  Their respective utility levels would be {0.69, 0.80, 0.98, 1.30}.
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That is, working together they make more output, with each agent putting in less effort and
receiving greater reward.  This is the essence of team production.

Now say that an agent with income preference of 0.75 joins the group.  The 4 original
group members now adjust their effort levels to {0.05, 0.39, 0.64, 0.84}Ñi.e., all work
lessÑwhile total output rises to 8.41. The utility levels of the original agents become {1.34,
1.24, 1.23, 1.33}, respectively, meaning that all members benefit from the new arrival.  This new
agent has an equilibrium effort level of 0.52 and utility level 1.23.  It is individually rational
for the newest agent to join since the utility it gets working alone is just 0.88.

Next, imagine that another agent having preference for income of 0.75 joins the group.
The new Nash equilibrium effort levels among the original 4 group members is then {0.00, 0.33,
0.61, 0.83}, while the two new agents each put in effort of 0.48.  The total output rises to 10.09.
The corresponding utility levels are {1.37, 1.28, 1.26, 1.34} for the original agents and 1.26 for
each of the two agents having θ = 0.75.  Overall, even though the addition of this sixth agent
causes one of the first agents to free rideÑthat is, put in no effortÑthe net effect of this agent on
the group is welfare-improving for all.

Finally, imagine that an agent having income preference of 0.55 arrives in the group.
Such an agent will engage in free-riding and so will not effect the total effort or output levels,
thus the individual effort levels of the extant group members will not change.  However, since
the output must be shared by one additional agent all utility levels fall.  For the 4 original
agents the new utility levels become {1.25, 1.15, 1.11, 1.17}.  For the two agents having θ  = 0.75,
their utility falls to 1.12.  Overall, the addition of this last agent reduces the welfare of a l l .
Furthermore, it lowers the utility of the θ  = 0.9 agent below what it can obtain working alone
(1.17 versus 1.30).  If agents may exit the group freely, this agent would find it rational to do so,
causing all agents to readjust their effort levels.  In the new equilibrium the three remaining
original agents would now work with efforts {0.10, 0.42, 0.66}, respectively, while the agents
having θ = 0.75 would put in effort of 0.55.  The newest agent would free-ride.  The new output
level would be 7.52, yielding utility of {1.10, 0.99, 0.96} for the original three, 0.97 for the θ =
0.75 agents, and 1.13 for the free-riding agent.  Unfortunately for the group, the θ  = 0.8 agent
now finds that it too can do betterÑutilities of 0.96 versus 0.98Ñby leaving the group to work
alone (or joining with the θ = 0.9 agent).  This induces a further re-equilibration of the
remaining group, so that the original two members work with effort levels of 0.21 and 0.49,
respectively, the two θ  = 0.75 agents put in effort equal to 0.61, and the θ  = 0.55 agent rises out
of free-ridership to work at the 0.04 level.  The total output drops to 5.80.  The utilities of the
original two are now 0.99 and 0.90, respectively, 0.88 for the θ = 0.75 agents, and 1.07 for the
newest agent.  In this equilibrium the θ = 0.75 agents are essentially indifferent between staying
in the group and moving off to work alone.

Homogeneous Groups

It is informative to consider a group composed of agents all of a single
type, that is, all having the same preference for income.  In a homogeneous
group each agent works with the same effort in equilibrium.  This can be
determined from (5) above, by substituting (N-1) ei

*  for E~i, and solving for ei
* .

Doing this yields the following expression for ei
* :

− + − −( )( ) + + −( )( ) + − − −( )( )( )
+ −( )( )

a N b a abN N a N b a

bN N

i i i i i i i i i

i i

θ θ θ θ θ θ θ θ θ

θ θ

2 1 4 2 1 2 1

2 2 1

2

(8)
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for b > 0.  For a homogeneous group of type θ, the Nash equilibrium effort
levels can be computed directly from (8).  These are shown in figure 4 as a
function of θ, with a = b = 1 and group sizes, N, varied from 1 to 10.

0.2 0.4 0.6 0.8 1
q

0.2

0.4

0.6

0.8

1

e*

N = 1

N = 2

N = 10

Figure 4:  Nash equilibrium effort levels as a function of θ, for homogeneous groups of size N,
with N varied parameterically from 1 to 10

The corresponding utility levels are then obtained from (3).  Utility levels are
plotted in figure 5 below for θ ∈  {0.5, 0.7, 0.8, 0.9}, with N varying from 1 to 25.

5 10 15 20 25
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q = 0.9

q = 0.8

q = 0.7

q = 0.5

Figure 5:  Individual utility levels at Nash equilibrium effort levels in homogeneous groups
over a range of group sizes, for various θ

Note that each curve is single-peaked so there is an optimal group size for
every θ.  Optimal sizes are displayed in figure 6 below as a function of θ, in a
semi-log plot.  
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Figure 6:  Optimal equilibrium size in homogeneous groups as a function of θ

Optimal group sizes are relatively smallÑless than 10Ñfor agents having θ <
0.85, then rise quickly for agents having larger θ.  The utility levels
corresponding to these optimal sizes are shown in figure 7, also in semi-log
coordinates.  The singleton utility levels from figure 3 (b = 1) have been
superimposed for purposes of comparison.
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Single Agent

Figure 7:  Optimum utility in homogeneous groups of optimal size, as a function of θ

Comparing figure 7 with figure 3 one sees that the gains to be had from
participation in a homogeneous group are much more pronounced for agents
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having high θ.  Figures such as these will eventually serve as the basis for a
welfare analysis of this model (see ¤ 3.8).20

2.3 Stability of Equilibrium
While a unique Nash equilibrium always exists in this model, it is not

true that this equilibrium is always stable dynamically.  That is, while the
definition of Nash equilibrium guarantees that no effort level deviations are
individually welfare improving at the agent level, such an equilibrium may
or may not represent a stable outcome at the population level.  Indeed, it will
presently be shown that for a sufficiently large group the Nash equilibrium
described above is unstable.

There is a simple intuition for this result.  In a group of agents out of
Nash equilibrium, each agent will adjust its effort level each period.  As long
as the adjustment functions are decreasing in other agent effort then one
might expect the Nash equilibrium efforts to establish themselves over time.
Because the aggregate effort level is a linear combination (simple sum) of the
individual efforts, the adjustment dynamics can be conceived of in aggregate
terms.  In particular, the total effort level at time t + 1, E(t+1), is a decreasing
function of the current periodÕs total effort, E(t), as depicted notionally i n
figure 8 for a 5 agent firm.  Indeed, from figure 1 it is clear that individual
effort levels are nearly linear in E~i, and so the way in which E(t+1) depends
on E(t) is approximately piecewise linear.

EHtL

EHt+1L

Figure 8:  Phase space of effort level adjustment

                                                
20 As a computational aside, it is tempting to compute the optimal sizes and utilities of

figures 6 and 7 directly by differentiation with respect to N.  However, this yields a vast
expression that cannot be explicitly solved for N, and thus recourse to numerical methods is
necessary.  It is much more efficacious to obtain these optimal sizes by simple enumeration.
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The intersection of this piecewise linear function with the 45¡ line is the
equilibrium total effort.  However, if the slope of this function at the
intersection point is less than -1 then the equilibrium will be unstable.  It will
presently be demonstrated that in any group there exists a maximum stable
size, dependent on the characteristics of the agents composing the group,
beyond which the Nash equilibrium in effort is dynamically unstable.

Analysis for Fixed Group Size

Consider the N agent group to be in some state other than equilibrium
at time t, described by the vector of effort levels, e(t) = (e1(t), e2(t), ..., eN(t)).
Now suppose that at t+1 each agent adjusts its effort level according to (5)
above using the previous period's value of E~i, that is,21

e t
a b E t a ab E t b E t

bi
i i i i i i

i

+( ) =
− − ( ) −( ) + + + ( )( ) + + ( )( )
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
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
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Since each agent is engaged in effort level adjustment in this way there
results an N-dimensional dynamical system, the stability of which is assessed
from the eigenvalues of its Jacobian matrix.22  The Jacobian is formed by
differentiating each of the RHSs with respect to each agent's effort.  Doing this
yields, for the case of i ≠ j:
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, (9)

while Jii = 0.  Since each θi ∈  [0, 1] it can be shown that Jij ∈  [-1,0], and Jij is
monotone increasing with θi, as appeal to figure 1 makes clear.  Furthermore,
for either b or E~i È a,

                                                
21 Other effort level adjustment functions produce results qualitatively similar to those

described below as long as they are decreasing in E~i and increasing in θi, both reasonable
conditions in this strategic situation.  Note that while this is a dynamic strategic
environment, and ideas from dynamic games might apply, we eschew such notions here.
Although agents have full information about their own payoffs they do not know very
much about the other agents, and make no attempt to deduce an optimal multiple period
strategy.  Rather, at each period they Ôbest respondÕ to their environment and are thus
myopic.  This simple behavior is sufficient to produce very complicated dynamics.  The
intrinsic complexity of the environment, therefore, suggests it is highly unreasonable tha t
anything resembling sub-game perfect strategies, or even mixed strategies, could ever
emerge in the agent population.

22 Technically, agents who put in no effort do not contribute to the dynamics, so the effective
dimension of the system will be strictly less than N when such agents are present.
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Jij
i

i

≈ −
+

θ
θ

1
1

. (10)

That is, when either increasing returns are manifest or group effort levels are
high, the value of Jij  is independent of all parameters except agent iÕs type.
Note that in general the RHS of (9) is independent of j, so each row of the
Jacobian contains the same value off the diagonal, i.e., Jij ≡ k i for all j­i.  The
overall structure of the Jabobian is thus:
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Stability of equilibrium requires that the dominant eigenvalue, λ0, of
this matrix have modulus strictly inside the unit circle.  It will now be shown
that this condition holds only for sufficiently small group sizes.  First, since
each entry of J is non-positive, it will be convenient to work with -J, and thus
each ki is positive; JÊand -J have eigenvalues of the same magnitude.  Now we
will establish bounds on |λ0| and see how these change with the group size,
N.  Call ri the row sum of the ith row of J.  It is well-known (Luenberger [1979:
194-195]) that

min max
i

i
i

ir r≤ ≤λ0 . (11)

Given that the rows of J are comprised of identical entries, (11) amounts to

N k N k
i

i
i

i−( ) ≤ ≤ −( )1 10min maxλ . (12)

Considering the lower bound it is clear that whenever the least k i > 0 there
will always be some value of N beyond which |λ0| > 1 and the solution is
unstable.  Furthermore, since small ki correspond to agents with high θi, it is
the most productive members of a group who determine its stability.  From
(12) it is possible to develop an expression for the maximum stable group size,
Nmax, by setting the lower bound equal to 1 and rearranging:

N
k

i
i

max

min
≤ +




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







1
1 , (13)

where  z  refers to the largest integer less than or equal to z.  Groups larger
than Nmax will never be stable, that is, (13) is an upper bound on group size.
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In the special case of either large b or high Ôother agent effort,Õ E~i, (10)
can be used in (13) to obtain an expression for Nmax in terms of agent
preferences, as23

N
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i

max

max
≤

−


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


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2
1 θ

. (14)

So if the agent with the highest preference for income in the group is known
the maximum stable group size can be readily established.

Returning to the general case, other bounds on |λ0| can be obtained
through reference to the column sums of J.  Noting the ith column sum by ci,
we have

min max
i

i
i

ic c≤ ≤λ0 ,

which, given the structure of J, means that

k k k ki
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max minλ . (15)

These bounds on |λ0| can be written in terms of the group size by substituting
N k  for the sums.  Then an expression for Nmax can be obtained by
substituting |λ0| = 1 in the lower bound of (15) and solving for the maximum
group size, yielding
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k
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1
. (16)

Firms beyond this size are not stable.24

Example:  Onset of instability in a homogeneous group having θ = 0.7

Consider a group of agents having income preference θ = 0.7, with a = b = 1.  For
homogeneous groups the size bounds given by (13) and (16) are identical.  The approximation
given by (14) reveals that the maximum stable group size, Nmax = 6.  Let us consider how
instability sets in as the group grows in size.  For a single agent working alone the optimal
effort level can be computed directly from (7) above, and is equal to 0.770, while its resulting
utility is available from (3) and amounts to 0.799.  Now imagine two agents of this type
working together.  From (8) the Nash equilibrium effort levels are 0.646 and (3) now yields
greater utility for each of 0.964.  Each element of the Jacobian (9) is identical when agents are

                                                
23 Remember that -J is being used instead of J here, so expression (10) must be multiplied by -1.
24 Since the largest ki corresponds to the smallest θi, it is the agents who most prefer leisure to

income who determine the value of the numerator in (16).  But note that it is not merely the
agent with the minimum θ who matters, since such an agent will not generally be putting in
any effort whatsoever.  The agent who is putting in strictly positive effort and has the
smallest θ is the one who determines the RHS of (16).
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homogeneous; call this k.  For N = 2, k = -0.188.  The bounds on the dominant eigenvalue given by
(12) are tight when agents are homogeneous.  This yields λ0 = k = -0.188.  For a group composed
of three such agents the optimal effort of each is further reduced, utility is higher, and the
dominant eigenvalue is -0.552.  The same qualitative resultsÑprogressively lower effort levels
and higher utility levelsÑhold for groups of size 4 and 5, with the modulus of the dominant
eigenvalue increasing monotonically toward 1.  At group size of 6 effort levels have declined
further, yet now each agentÕs utility is somewhat lower than in the size 5 case.  Finally, for N =
7, both effort and utility levels have further declined and the dominant eigenvalue now has
modulus greater than unity.  Thus, this group size is unstable in the sense that any perturbation
of the Nash equilibrium effort levels would cause effort level fluctuations that grow without
bound.  These results are summarized in the following table.

N e * U(e*) k |λ0| = (N-1)k

1 0.770 0.799 not applicable not applicable

2 0.646 0.964 -0.188 -0.188

3 0.558 1.036 -0.184 -0.368

4 0.492 1.065 -0.182 -0.547

5 0.441 1.069 -0.181 -0.726

6 0.399 1.061 -0.181 -0.904

7 0.364 1.045 -0.180 -1.082

Table 1:  Onset of instability in a group of agents having θ = 0.7; Nash equilibrium effort levels
in groups beyond size 6 are unstable

All groups of greater size are, of course, also unstable in this sense.  For homogeneous groups
having lesser preference for income the onset of instability occurs for smaller sizes, while groups
composed of agents having relatively greater preference for income can support larger
numbers.25

Calculations of the type illustrated in the example can be performed for
homogeneous groups having any θ.  In figure 9, below, the maximum stable
group size is shown as a function of θ, along with the smallest group size at
which instability occurs.

                                                
25 This can be seen from (10), remembering that θi corresponds to higher |k| and thus higher

|λ0|, other things being equal.
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Figure 9:  Onset of instability in homogeneous groups; for each θ  the Nash equilibrium effort
level is unstable for sufficiently large group size

According to this analysis, groups larger in size than 200 would be rarely
observed in a population of homogeneous agents.  Note the qualitative
similarity of figures 9 and 6.  It seems that the optimal size of a homogeneous
group is very nearly at the stability boundary of the group.  For example, i n
the θ = 0.7 case the optimal size is 5 while the maximum stable size is 6.  This
suggests that firms operating at or near optimal size and who did not know
they were near a stability boundary would be vulnerable to destabilization by
addition of one or a few agents.  Alternatively, were group size a choice
variable in a stochastic environment it might be dangerous to select the
optimal group size, for a small perturbation to the next larger size could bring
on unstable oscillations and, presumably, demise of the group.

The bounds given by (13) and (16) are the same for homogeneous
groups, but are generally different when groups are heterogeneous.  For any
particular groupÑparticular set of θisÑone of these expressions will be larger
than the other and thus not binding.  It is possible to establish which
expression is binding as a function of certain statistics of the agents who
constitute the group.  In particular, (16) is in effect when
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This expression can be rearranged to yield
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. (17)

Since ki ∈  [0,1], the fraction on the RHS ∈  [1,2], and so if k  > 2 min i(ki) then
(16) is the appropriate bound on group size.  Note that for min i(ki) Å 0, (17)
reduces to k   ³ mini(ki) [1 + maxi(ki)].
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Analysis for Variable Group Size
The above analysis has been conducted assuming that the group i n

question is of some fixed size, N.  Now the effect of variable group size will be
investigated.  It will be shown that if the composition of agents in the group is
permitted to change over time then the combined effort level-group size
equilibrium will generally be unstable.  In particular, let us permit an agent
leave the group to start-up a new firm, consisting of only itself, whenever it is
utility-maximizing to do so.  The optimal effort level in a single agent firm is
given by (7) above, and the utility associated with this can be calculated
directly from (3), with N = 1 and E~i = 0.

First, consider the case in which agents having θi < θc are permitted to
join the group.  Since it is optimal for such agents to put in no effort, they do
not contribute to the firm's E.  The only effect of such agents is to dilute each
agent's share of the output and thus depress the utilities of all agents in the
group.  Clearly, as more and more agents with low preferences for income
join the group then the productive (high θi) agents would eventually leave.
Thus the group size-effort level equilibrium is not stable in this situation.

Next, consider what happens when an agent with a high θi joins a
group that is in equilibrium.  Such an agent will put in positive effort, thus
increasing E initially.  However, this will lead all other agents to adjust their
efforts downward.  The net effect on E is ambiguous; it depends on the exact
composition of the group.  But assume that the bound given by (16) is
binding.  Then, the addition of a high θi (low ki) agent has the effect of
decreasing k  and thus increasing the maximum stable group size, Nmax.  As
agents having θi at or above the average θ are progressively added, the firm
remains safely removed from the stability boundary.  At some point, though,
agents with relatively low θi begin to free ride, and the group first passes
through its optimal size, beyond which some agents may leave to join other
firms or start up new firms.  If the group size subsequently passes through the
maximum stable size then unstable effort level oscillations set in.  This may
lead to the group shedding particular dissatisfied agents and re-establishing
itself at a stable size or, if the oscillations are severe, to break-up of the group
altogether.

Unstable Equilibria and Pattern Formation Far From Equilibrium
Now, one reaction to unstable equilibria is that the model is

problematical.  Implicit in this is the assumption that social phenomena are
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the equilibrium outcome of some game.26  But this reaction is certainly too
narrow to be defensible.  Games in which the optimal choice is a cycle of
strategies have been known since early on in the development of game
theory (e.g., Shapley [1964]; see Shubik [1997] for an overview).  It is possible to
define more general solution concepts to include such possibilities (see, for
instance, Gilboa and Matsui [1991]).27  Furthermore, the basic structure of
game theory assumes that the strategic environment is fixed and known by
all players.  However, in multi-agents systems it is common for agents to be
placed in combinatorially rich environments in which they are continuously
confronted with novel circumstances.  Such is the case here.

In particular, when it comes to firms it would seem that any model
that suggests there is a single optimal size and effort level would stand i n
blatant opposition to the facts (Ijiri and Simon [1977: 9-10]).  For there do not
exist specimens of firms having constant composition and output.  As firms
grow, agent-agent dynamics shift, some agents leave because they do not like
their new co-workers, more or less shirking arises, and more agents may need
to be hired.28  Indeed, there is vast turnover in actual firms.  My colleague,
Margaret Blair, has recently concluded a study of firm dynamics [Blair et al.,
1997], in which it is reported that of the largest 5000 U.S. firms in 1982, i n
excess of 65% of them no longer existed as independent entities by 1996!
There is enormous flux in real firms, volatile micro-dynamics for which term
'turbulent' may be appropriate (Beesley and Hamilton [1984], Ericson and
Pakes [1995], Sutton [1997]).29

                                                
26 For example, Osborne and Rubinstein [1994: 5] seem to suggest that the Ôsteady-stateÕ

interpretation of game theory implies that any empirical regularity is necessarily an
equilibrium.  They cite Binmore [1987, 1988], who first describes SimonÕs distinction between
substantive and procedural rationality and acknowledges that the former notion is
essentially a static one.  He then goes on to distinguish eductive and evolutive (aka steady-
state) ways that players might arrive at equilibrium in a game, claims that each of these
describes Òa dynamic process by means of which equilibrium is achievedÓ (Binmore [1987:
184]), but never attempts to justify the focus of game theory on equilibrium.

27 Two points of terminology.  First, Ôdynamically unstable Nash equilibriaÕ have been
referred to in various places.  To some this may seem like a bad choice of terms, since i f
agents have incentive to deviate from these unstable equilibria then they cannot be Nash
equilibria in the first place.  To the present writer the terminology adopted here seems no
more problematical than calling any dynamically unstable equilibrium an
equilibriumÑsuch points solve first order conditions but are not rest points.  Second,
generalizations of Nash equilibrium that permit, for example, cycles, are commonly termed
equilibria.  But to call such outcomes ÔequilibriaÕ is something of a curiosity, one that has
been described elsewhere (Epstein and Axtell [1996: 137]) and so will not be further
elaborated here.

28 Good arguments against equilibrium theorizing in the context of the firm are given by
Kaldor [1972] and Lazonick [1991].

29 Mandelbrot [1998] has recently claimed that the term ÔturbulenceÕ does not derive from
physics, as one might reasonably suppose, but rather has economic origins.  The British
hydrodynamicist Reynolds, whose name is now closely associated with certain classes of
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In other economic contexts, non-equilibrium models have proven
useful, at least for theoretical work.  For example, Papageorgiou and Smith
[1983] model agglomeration as a local instability of a uniform equilibrium.
More recently, Krugman [1996] makes use of the so-called 'Turing instability'
in a spatial model of economic activity; see also Heikkinen [1997].

While non-equilibrium models may be a novelty in economic theory,
they are well-established in other branches of science.  To cite but one
example, in mathematical biology the instabilities of various partial
differential equation systems that couple chemical reaction and diffusion
processesÑincluding the Turing stabilityÑare the basis for a variety of
pattern formation processes (cf. Murray [1989]).  These models explain certain
features of embryonic development, neuronal activity, cardiac rhythms, and
even the patterns on animal coats (e.g., Ôhow the leopard got its spotsÕ).

3 Computational Implementation with Agents
The motivation for a computational version of the team production

model described above is simple.  Since there do not exist stable equilibria of
the model we must resort to studying the modelÕs non-equilibrium dynamics.
Perhaps this dynamical picture will contain patterns of firm formation and
growth that are recognizable vis-a-vis actual firms.  Such non-equilibrium
patterns are usually very difficult to discern analytically, leaving
computational models as the only practical technique for systematically
studying such phenomena.30  In what follows we discover computationally
that stationary non-equilibrium patterns do  exist in this model and that they
have a close connection with empirical data.

                                                                                                                                                
turbulent flows, apparently borrowed the term from contemporaneous descriptions of the
London stock market (c. 1880s) in order to communicate, by analogy, the highly irregular
nature of the fluid flows he was studying.  For more on turbulence see the next footnote.

30 There is a close analogy to be made between the approach we are taking herein and
computational physics.  In particular, in fluid mechanics laminar flow of an ordinary fluid
is the regime that solves the so-called Navier-Stokes equations with all transient terms
set to 0.  This solution can be shown to be unstable beyond a critical value of a dimensionless
parameter of the flow, the so-called ReynoldsÕ number.  For ReynoldsÕ numbers beyond
critical it is not the case that the flow blows upÑa conclusion one might reach if the
linearized solution were interpreted literally (!)Ñbut merely that the fluid reorganizes
itself into a non-laminar configuration in which transients persist.  For sufficiently large
values of the ReynoldsÕ number the flow becomes fully turbulent and transient phenomena
exist on all length and time scales.  These non-laminar regimes, despite the fact that the
governing equations are well known, have proven nearly impervious to analytical
investigation.  Today, computational techniques are the method of choice for the
systematic study of non-laminar flows.
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3.1 Set-Up of the Computational Model
In the analytical model above the focus was on a representative group.

In the computational model a population of agents will form many groups
and interactions between agents and groups will be explicitly modeled.

The set-up is essentially identical to the above.  Total output of a firm is
similar to before, consisting of both a linear term and a term responsible for
increasing returns.  However, it is desirable to work with a slightly more
general form of (2), in which the quadratic nature of the second term is
relaxed as

O E aE bE( ) = + β , (2Õ)

β ≥ 1.  Initial realizations of the computational model will be made with β = 2
and the effect of changing β will be studied subsequently.

Preferences are heterogeneous in the agent population; for all the
results described below θ ~ U[0, 1].  Each agent belongs to a social network
insofar as it maintains reference to some number, νi, of other agents.  These
are assigned randomly at time 0 and do not vary over time; νi = 2 for all i.
Later, the effect of varying this parameter will be studied.

Agents are activated at random, that is, each agent has a Poisson clock
that wakes it up periodically.  When an agent is activated it looks up the size
and output of its firm as well as its own previous period effort level, and then
uses this information to select the effort level that maximizes its utility.31

Associated with this optimal effort is an optimal utility level.  The agent then
repeats this calculation for (1) starting up a new firm, in which it is the only
agent, and (2) joining each of its νi friends' firms.  The agent then acts based
on which of these options yields the greatest utility.  That is to say, it either
stays in its current firm and adjusts its effort level accordingly, or it leaves its
current firm for another firm, where its best effort level is prescribed
similarly.  Since agents are not evaluating all possible firms this is a form of
limited information processing.32

A time period consists of some  number of agents being activated.  The
case of all agents being activated exactly once during a single period is known
as uniform activation.  Alternatively, when agents are selected randomly for
activation then the number of activations across the agent population has
some distribution with non-zero variance.  For example, when agents are
                                                
31 In order for the computational model to be applicable to agents having arbitrary

preferences, each agent performs a line search over the feasible range of efforts in lieu of
using the expression given by (5) above.

32 In ¤ 4.6 below agents will be made boundedly rational.  Instead of calculating its optimal
effort level, each agent must grope for effort levels which yield utility improvements.  I t
will be shown there that the qualitative character of the overall model is robust to this
respecification of behavior.
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selected with uniform probability then the overall distribution of agent
activations follows a binomial distribution.  It is common to call this r a n d o m
activation.  It there is some reason to believe that agent activity is
homogeneous in a population then uniform activation is appropriate.
Otherwise, it usual to employ random activation in agent-based models, i n
which some agents are more active than others during any particular period.
Asynchronous activation is used herein, with a time period defined as 1000
agents being active.

The initial configuration of the agent population has each agent
working alone in its own firm.  Thus there are A  firms initially, of mean size
1 with no variance.  Over time multi-agent firms form, grow, and perish, and
more or less stationary distributions of firm size, firm growth rate, and firm
lifetime emerge.

The parameterization of the computational model described above is
summarized in table 2, which we shall term the 'base case' parameterization.

Model Attribute Value

agents, A 1,000

constant returns coefficient, a 1

increasing returns coefficient, b 1

increasing returns exponent, β 2

distribution of preferences, θ U[0, 1]

sharing rule equal shares

number of neighbors, ν 2

agent activation random

initial condition all agents in singleton firms

Table 2:  'Base case' configuration of the computational model

Initial realizations of the computational model will be made using this base
case.  Then, in ¤ 4 many variations on the base case will be studied
systematically.

The essential feature of this model is that it is described at the level of
individual agents.  Thus it is common to call such models Ôagent-basedÕ or
Ôindividual-basedÕ.33  The only equations present in the model are those

                                                
33 While agent-based models are methodological individualist, they need not suffer from the

various problems that often beset analytical models of individual behavior, where agents
are frequently treated as interacting not with other agents but with aggregate statistical
measures.  For more on the relation of methodological individualism and agent-based
models see Epstein and Axtell [1996: 16-17].
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governing individual agent decision-making.  No attempt has been made to
mathematically aggregate the agentsÕ behaviors, and therefore there are no
equations governing agent-agent interactions.  Rather, ÒsolvingÓ an agent-
based model amounts merely to iterating it forward in time and observing
the evolution of the agent population, both at the individual and aggregate
levels.  In this, agent-based computational modeling is similar in spirit to
traditional OR simulation.  However, in most ways that agent-based
computational models have been used to date this methodology is quite
unlike conventional simulation.34

Typical dynamics of the model are described in ¤ 3.3 below.  Then, in ¤
3.4 we study the distributions of firm sizes, growth rates and lifetimes that the
model yields and compare these with empirical data.  ¤ 3.5 gives a picture of
the typical firm life cycle, and ¤ 3.6 investigates agent welfare in the model.
But first, ¤ 3.2 describes the actual computational implementation of the
model.

3.2 Object-Oriented Implementation
There are many ways to computationally implement the model just

described.  This can be done more or less easily in any modern programming
language, as well as with any number of mathematical or simulation software
packages.  However, since the model is stated in terms of individual agents, it
turns out that there is one idea from modern computer science that renders
the implementation both transparent and efficacious.  This is the notion of
object-oriented programming.

Objects are contiguous blocks of memory that contain both dataÑso-
called instance variablesÑas well as functions for modifying this dataÑthe
so-called methods.  This ability of objects to hold both data and functions is
called encapsulation.  Agent-based models are very naturally implemented
using objects by interpreting an objectÕs data as an agentÕs state information,
while the objectÕs functions become the agentÕs rules of behavior.35  A
population of agents that have the same behavioral repertoire but local state
information is then conveniently implemented as multiple instantiations of
a single agent object type or class.36

The model described above has been implemented using object-
oriented programming.  Not only are individual agents objects, but
individual firms are objects too, albeit of a different class than agent objects.

                                                
34 For more on the distinction between simulation and agent-based computational models see

Axtell [1997].
35 Other features of the object model, including inheritance and polymorphism, seem to be less

relevant to agent-based computational models than encapsulation.
36 For a discussion on the distinction between object and agent, see Jennings et al. [1998].
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In fact, it turns out to be convenient for the population of agents as a whole to
be an object as well, as is the population of firms.

The agent object has a variety of state variables and behavioral
methods.  The state information each agent has includes its preferences and
its current effort level.  It is also useful to keep track of each agentÕs income
and utility associated with production from the previous period, as well as a
running total of its wealth.  All of this information is stored locally in the
agent object as real numbers.  Each agent also keeps track of some number of
other agents that are identified as its social network.  This data is maintained
in an array of pointers to other agent objects.  Finally, each agent must also
keep track of the firm to which it belongs, and possiblyÑdepending on details
of implementationÑother agents in the master agent population list as well
as in its firm.  The behavioral abilities that each agent possesses in the present
model include the facility to compute its utility (given some income and
effort level), the capability of determining its optimal effort level in its
present firm as well as in a friendÕs firm, as well as the capacity to leave its
present firm and to join another firm.  These are the agent objectÕs methods.
This agent object specification is summarized in pseudo-code block 1.

OBJECT agent;
preferences;
neighbors;
effort_level;
last_income;
last_utility;
wealth;
firm_to_which_agent_belongs;
next_agent_in_agent_list;
next_agent_in_firm;
FUNCTION initialize;
FUNCTION compute_utility;
FUNCTION compute_optimal_effort_level_in_present_firm;
FUNCTION compute_optimal_effort_level_in_other_firm (the_firm);
FUNCTION leave_present_firm;
FUNCTION move_to_new_firm (the_new_firm);
FUNCTION draw.

Pseudo-code block 1:  Agent object

In practice it makes sense to implement as private some of these data and
methods, while others are public, although this is not essential.37

The agent population is also conveniently implemented as an object.
The details are less important here and so pseudo-code will not be given.  The
main data of the population object is the data structureÑcommonly either an
array or linked listÑthat holds either the individual agents themselves, or

                                                
37 Private data and methods are accessible only by the agent instance to whom they belong,

unless other objects are given special access privileges.
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reference to them.  The agent population objectÕs methods include agent
access routines as well as a host of routines for computing various statistical
measures of the agent population, such as the average effort level, average
income and so on.

Firms are also conveniently implemented as objects.  Firm objects are
created whenever an agent decides to start up a new firm.  They are destroyed
whenever a firm consists of a single agent and that agent decides to join some
other firm.  Firm-specific data that each firm object holds includes the current
size of the firm (an integer) and the growth rate and output from the last
period (real numbers).  The agent who founded the firm (pointer to agent
object) is also stored, as well as a data structure that keeps track of the agents
currently in the firm.  The methods of the firm object include routines for
adding and removing agents from the firm, accessing individual agents,
computing output and dividing it up among the agents, and various
statistical calculations, such as computation of the mean and variance i n
effort levels.  The firm object is summarized as pseudo-code block 2.

OBJECT firm;
founder;
agent_list;
size;
growth;
last_output;
FUNCTION initialize;
FUNCTION compute_total_effort;
FUNCTION compute_average_effort;
FUNCTION compute_output;
FUNCTION allocate_income_to_agents;
FUNCTION add_agent_to_firm (the_agent);
FUNCTION remove_agent_from_firm (the_agent);
FUNCTION draw;
FUNCTION dispose.

Pseudo-code block 2:  Firm object

As with the agent object, in practice it is usually useful to make some of these
fields private.  The population of firms is also an object.  Similarly to the
agent population object, the firm population object holds the data structure
that maintains reference to each individual firm, routines for accessing
individual firms, as well as a variety of functions for computing statistical
properties of the firm population.

Putting all of this together the computational model simply amounts
to (1) initializing all agents and firms; (2) activating M agents sequentially,
and letting each one choose its optimal effort level, migrating between firms
if necessary; (3) computing firm output; (4) periodically gathering statistics on
the populations of agents and firms.  This is summarized in pseudo-code
block 3.



The      Emergence      of      Firms                                                                                              Axtell  

31

PROGRAM firms;
initialize agents;
initialize firms;
repeat:

select M agents at random;
for each agent selected:

compute effort level to maximize welfare at current firm;
compute effort level to maximize welfare at neighboring firms;
compute effort level to maximize welfare in start-up firm;
move to firm where welfare is greatest;
draw agent;

for each firm:
compute output;
for each agent in firm:

allocate income;
compute welfare;

compute statistics;
check for user input;

until user terminates.

Pseudo-code block 3:  Pseudo-code for the model overall

The object model is largely responsible for the relatively short description of
this code.38  In the next section we describe typical realizations of this model.

3.3 Aggregate Dynamics
Initially, all agents are entrepreneurs, working for themselves in one-

person firms.  However, as agents are activated they discover that they can do
better by cooperating with one of their friends to jointly produce output.  W e
depict this by coloring firm founders red, and initially lining up all agents
from top to bottom in a window.  As agents join existing firms, they leave
their location, are colored blue, and placed in the first available position to the
right of and on the same line as the founder of the firm they are joining.
Thus, a long horizontal blue line represents a large firm.  A typical evolution
is shown in animation 1.39

                                                
38 The actual source code runs to some 5000 lines and compiles in the CodeWarrior environment

for the Macintosh.  A Java implementation is available; see the next footnote.
39 Readers interested in running the model for themselves will soon find a Java

implementation at http://www.brook.edu/es/dynamics/models/firms.  At present this site
is under construction.
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Frame 1 Frame 2 Frame 3 Frame 4

Frame 5 Frame 6 Frame 7 Frame 8

Animation 1:  Snapshots from a typical firm formation process over 8 consecutive time periods;
the agent who has been with a firm the longest (typically the firm founder) is colored red,

others blue

Initially, many firms grow and patterns emerge.  Such a situation is shown i n
the first frame of animation 1 corresponding to t = 1000.  Firms grow from left
to right, with the largest firms truncated by the right side of the frame.  There
are several large firms displayed there, where size is synonymous (for now)
with the number of agents.  Over time these firms expand, as agents find it i n
their best interest to join, and then contract as free riding becomes rampant.
New firms are born as discontented agents form start-ups.  Notice the large
firm about 1/4 of the way down in snapshots 1-3.  By frame 4, t = 1003, it has
begun to decline.  Alternatively, the large firm that arises at the top of the
second frame survives through the last frame.  There is so much flux in firm
composition that it does not seem unreasonable to call the micro-dynamics of
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this model ÔturbulentÕ (Sutton [1998]).40  With some sense of the qualitative
behavior of the model in hand, we shall now study it quantitatively.

Number of Firms
From animation 1 it can be seen that the total number of firms varies

over time.  This is due both to the entry of new firmsÑagents leaving failing
firms to form start-upsÑas well as the demise of extant firms, predominately
due to the onset of free-riding.  As the model spins forward in time it is an
easy matter to cull, without sample error, each periodÕs data concerning the
total number of firms, the number of new firms, and the number of failed
firms.  It is instructional to plot these as time series; this is done in figure 10
below for the realization depicted in animation 1.
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Number of Firms

Figure 10:  Typical time series of the total number of firms (upper line) and the number of new
firms (lower line)

Note from this figure that there are significant fluctuations about more or less
constant levels of total firms and new firms.  The intermittent bursts of firm
start-up activity are closely related to the onset of decline in large
firmsÑmany of the agents in the failing firm find it optimal to form new
firms.

In order to better understand the dynamical structure of figure 10, the
power spectrum of the total firm number time series has been computed.
This is shown in figure 11 below, in log-log coordinates.

                                                
40 Although, it will eventually be demonstrated that stationarity obtains at the macro-level.
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Figure 11:  Power spectrum of the time series for the total number of firms

Note that there appears to be no single time scale for these fluctuations.
Rather, components of all frequencies, f, over more than a decade are present
in this series.  There exists a power law tail in this distribution that scales like
1/f2, meaning that the total firms time series is Brownian in character.  A line
having slope -2 has been superimposed on the data in figure 11.

Firm Size
The average firm size fluctuates over time, as does the size of the

largest firm present.  Typical time series for average firm size and maximum
firm size are shown in figure 12;  this corresponds to the realization depicted
in animation 1.
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Figure 12:  Typical time series for average firm size (inset) and largest firm size
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Note that a large firm with size in excess of 200 grew up in the first 200
periods, then abruptly perished.  While the maximum firm size fluctuates
dramatically, the average firm size overall is not highly variable.

Effort Levels
Given the utility maximization calculus that all agents execute, the

reason to join with other agents in production is that the effort level one
utilizes when working alone yields greater production when working
cooperatively, and thus cooperating agents achieve higher individual utility.
Stated differently, agents put in relatively less effort for the same income
when working together, and this leaves more time for leisure and is therefore
welfare-enhancing.

Agents in small firms tend to have relatively high effort levels, albeit
not as high as if they were working alone.  As a firm grows, and production
rises superlinearly with total effort, production shares also rise.  Each agent
experiences increasing insensitivity of its share to its effort level, and so its
optimal effort level progressively falls.

Time series plots for average effort levels in the population as whole as
well as within the largest firm show this process graphically.  For the
realization described by animation 1, figure 13 gives the corresponding
evolution of effort levels, with the heavy line corresponding to the average
effort overall and the thin line referring to the average effort in the largest
firm.
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Effort Level

Figure 13:  Typical time series for average effort level in the population (thick line) and in the
largest firm (thin line)

Comparing this figure with figure 1 we see that for the large firm that existed
through t = 200, its average effort level plummeted to near zero before it
finally collapsed.  In fact, the minima in the figure 13 effort plot for large
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firms correspond almost exactly to peaks in the largest firm size of figure 12.
Note that while effort in large firms fluctuate severely, the overall average
effort level is quite stable.

Output
Just as effort levels change continuously, so too do output levels.  In

particular, it is revealing to compare a time series plot of the total output of
all firms with the output coming from the largest firm. Large firms can have
very high output levels, due to the increasing returns of production.  So,
before free riding sets in, it can be the case that a significant fraction of total
output is due to a single large firm.

Figure 14 gives the time series of total output (thick line) and output of
the largest firm (thin line) for the realization described in animation 1.  Here
we see that over most of the 1000 periods shown, the output of the largest
firm did make up a significant fraction of the total.  This is especially true
early on, when the single large firm that lived through t = 200, ended up
producing nearly 50% of the total output, this despite the fact that even at its
peak it never contained more than about 20% (200/1000) of the agent
population.
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Figure 14:  Typical time series for total output of all firms (thick line) and output of the largest
firm (thin line)

Interestingly, note that the output of this first largest firm is not monotonic.
Prior to its ultimate demise at around t = 250, it suffered an output decrease
right at t = 200, but weathered this storm and reached a new output high,
before succumbing.  Another feature of this plot is the output plateaus of
large firms.  Several of the output maxima are less peaks than flat tops.  It is as
if firms facing declining effort levels maintain total production, perhaps
through the incorporation of new agents.
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Income
If we divide the total output of figure 14 by the number of agents we get

the average income (share) and its evolution over time.  Once again, it is
instructive to compare this with incomes in the largest firms.  This is done i n
figure 14, where the thick line corresponds to average income in the
population overall and the thin line is income in the largest firm.  While the
income (heavy) line of figure 15 looks like a compressed version of the
output (heavy) line in figure 14, the same is not true of the income and
output lines for the largest firm (thin lines in the figures).  There is
substantial variation in income from period to period in the largest firms.
This is because membership in these firms is constantly changing.  Note that
large drops in income correspond to the onset of free-riding (falling effort
levels) and ultimately to firm dissolution.
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Figure 15:  Typical time series for average income in the population (thick line) and in the
largest firm (thin line)

At first blush it seems something of a curiosity that large firm incomes fall
below the average quite regularly in figure 15.  Indeed, they nearly reach zero
on several occasions.  Why would agents stay in large firms if they could get
more income at the 'average' firm?  This is explicable by remembering that
agents are utility maximizers, and that low income levels correspond to near
zero effort levels.  But agents who are, in effect, not working, are deriving
great utility from leisure, and so are willing to forego income for leisure.
Such agents typically have a relatively high preference for leisure over
income, and do not leave these debilitated firms until the very end.



The      Emergence      of      Firms                                                                                              Axtell  

38

Utility
Now, it would be paradoxical if agents in the largest firms received

below average utility as firms declined.  This can be tested explicitly with this
computational model, by making time series plots of average utility in the
population overall and in the largest firms.  It is usual to think of utility as
being ordinal, not cardinal, of course.  But since our agents all have Cobb-
Douglas preferences, it seems not too unreasonable to compute the average
utility by merely summing up individual agents' utilities and dividing by the
number in the population, A.  Similarly for average utility in the largest
firms.

Figure 16 shows the result of these computations, with the thick line
representing the average utility overall, and the thin line the average utility
in the largest firm.  In many ways figure 16 is very similar to figure 15.
However, note that the large firm mean utility time series does not spend
much time below the average utility in the population.
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Figure 16:  Typical time series for average utility in the population (thick line) and in the
largest firm (thin line)

That is, as soon as utility levels in declining, large firms reach the level of
utility that is generally available in the population, agents leave en masse  for
better opportunities.  Occasional dips below the average level are to be
understood as unlikely outcomes, in which agents are trapped in failing firms
and, by virtue of circumstanceÑunsuccessful friendsÑcannot immediately
secure alternative employment.

Animation 1 and figures 10-16 have been presented to build-up the
reader's intuition about typical dynamics of firm formation, growth and
dissolution.  They are a 'longitudinal' picture of typical micro-dynamics of
the agent population, and the corresponding behavior of firms.  We now turn
to  aggregate statistical properties of typical realizations.
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3.4 Distributions of Firm Sizes, Growth Rates and Lifetimes
The distribution of firm sizes across industries has a very characteristic

shape, that of a power law (also commonly known as a scaling law or Pareto
distribution).  Data on firm sizes, measured variously, have proven to have
broadly robust power law behavior over many decades and across national
borders, this despite waves of mergers and acquisitions.  Power law
distributions of firm sizes are also characteristic of the non-equilibrium
model described above.  This is studied in the next section.  Following that,
the distribution of firm growth rates yielded by the model is compared with
data.  Then, the distribution of firm lifetimes the model produces is studied.
These also follow a power law.

Firm Size Distribution
At any instant of time there exists a distribution of firm sizes in the

model, as measured by the number of agents in each firm.  Noting the
probability of realizing a firm of size s as p(s), we employ the following
parameterization of the discrete power law distribution (probability mass
function):

p s s
s

s
; ,µ

µ

0
0

1

( ) =




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− +( )

, (18)

where s0 is a certain minimum size.

From table 2 above, all firms are of unit size at t = 0 in the model.
Therefore, the size distribution starts out as a Dirac measure.  Over time it
acquires a more or less stationary configuration, with a few large firms and
progressively greater numbers of smaller and smaller ones.  Data from the
model are shown in doubly logarithmic (log-log) coordinates in figure 17, for
the realization described above.41

                                                
41 It is perhaps useful to point out that this is noiseless data, in the sense that it contains no

sample error.  To some readers this point will seem utterly obvious and underserving of
mention.  However, it is important to point out that the deviations of the data from
econometric fits to simple functional forms are due completely to random variation and
misspecification errors.  As sample sizes become largeÑand in computational models
samples can often be made arbitrarily largeÑthe residual errors are solely due to
misspecification.
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Figure 17:  Stationary firm size distribution (probability mass function)

The average firm size is about 4.  In the small populations employed herein
this distribution will, at each time, have lots of gaps.  That is, since large firms
are rare, it is unlikely that two large firms exist at any instant.  Therefore, the
data shown in figure 17 are the result of repeated sampling.42  Notice that the
data are quite irregular for low probability events.43  Dropping the data that
occur with frequency less than 10-5, as well as the N = 1 datum, it is possible to
fit a scaling (power law) distribution to these data with high confidence.44  In
particular, OLS yields the probability of a firm of size s, p(s), as proportional to
s-2.28 (adjusted R2 = 0.99), thus µ = 1.28.45  Our estimate depends on the

                                                
42 In order to assure that the samples are independent, the sampling period is greater than

the maximum firm lifetime.  This procedure does not bias the data since these scaling
distributions are stable.

43 Data for the largest firm sizes shown in figure 17 represent single observations, and these
occur with frequency O(10-6).  It is possible to realize larger firms merely by running the
model longer.  Since the frequency scales approximately as s-2, firms of size 1000 are four
times less common than firms of size 500, while firms of size 10,000 are 100 times less
common than firms of size 1000.  Stated differently, it would be necessary to run this model
400 times longer than was done in preparing figure 17 in order for the expected maximum
firm size to reach 10,000.  While large firms are certainly important, as a practical matter
approximately 80% of the U.S. workforce is employed in firms size 500 or smaller (Acs and
Audretsch [1990: 31]).

44 When fitting data to scaling laws it is common that data at the extremes do not fit well due
to so-called finite size cut-offs.  The Ôstretched exponential distributionsÕ mentioned in
footnote 11 attempt to account for the concavity in data produced by finite size cut-offs.

45 It is probably important to emphasize that this is a purely computational result.  No
analytical derivations are being offered to link the dynamically unstable Nash equilibria
analyzed in ¤ 2 and the power law size distribution just described, although such a
connection surely exists mathematically and it is an open question just how to establish this
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parameterization of the model and we shall systematically study this
dependence in ¤ 4 below.  Here we simply note that empirical data on firms
also display scaling structure.  In particular Simon and Ijiri [1977] report that
data on U.S. firms c. 1955 are well fit by µ = 1.23, while for British firms µ =
1.11.46

Power law distributions of this type have been systematically studied i n
recent years by Bak and co-workers at the Santa Fe Institute [Bak 1996].  While
the ubiquity of such distributions has been well known from at least the time
of Pareto, basic explanations of their origins are largely due to physicists
working with highly idealized systems, e.g., sandpiles.47  In this body of theory
resides the general idea that power law size distributions result from Ôself-
organized criticalÕ processes, in which a system arranges itself such that large
fluctuations are always possible, and these occur not infrequently.  Intrinsic to
this theory is that the system is far from equilibrium, a necessary condition i n
order to observe non-Gaussian fluctuations.  Given the power law character
of actual firm size distributions, it would seem that equilibrium theories of
the firm, such as principal-agent models, will never be able to grasp this
essential empirical regularity.48  Of course, the computational model
developed herein, which yields power law distributions of the type shown i n
figure 17, is a non-equilibrium one.

Firm size has been interpreted so far as referring to the number of
agents in a group.  For modern economies it turns out to not matter whether
one uses number of employees or firm sales volume in constructing firm size
distribution functions, as the power law exponent of the distributions are
approximately the same.  This invariance across size measure can be checked
here as well.  The distribution of firm output too follows a power law in the

                                                                                                                                                
formally.  Here we see the power of the agent-based computational approach to connect the
micro-world of individual agents to empirically-relevant, macro-statistical relationships.
Stated differently, the computational approach serves as an engine of (exact) aggregation,
surmounting the myriad mathematical difficulties in the formal theory of aggregation; on
mathematical intractability of certain related, albeit simpler, problems see footnote 47.

46 I have been unable to find published results using more recent data, and so am presently
engaged in empirical work on this topic.  It seems that since the 1960s essentially a l l
econometric work on firm sizes has focused on intra-industry distributions and measures of
size inequality;  examples of this include Quandt [1966], Kwoka [1982]; see also the review
articles of Curry and George [1983] and Schmalansee [1989: 994].

47 Highly idealized models of sandpiles, ecological systems, earthquakes, and related
physical phenomena that yield power law size distributions have been the objects of
intense study recently.  Interestingly, while these models can often be stated in just one or
two sentences, and implemented computationally in a few dozen lines of code, they have
resisted complete analysis;  for more on this, see Bak [1996: 62-64].

48 For more on the relation of Ôself-organized criticalityÕ to the firm size distribution see
Morel [1998].
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present model, and its exponent can be estimated.  This is done in figure 18
below for the same realization that yielded figure 17 above.
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Figure 18:  Stationary distribution of firm output (probability mass function)

The mean output is reasonably small, at 8.88.  Fitting a power law to the data
reveals that the OLS exponent is 0.88; adjusted R2 = 0.99.  This value is
somewhat different from that obtained from firm size measured by number
of agents (employees).

Productivity
One way to interpret the two power law exponents that obtain for firm

size measured by number of agents and total output is as a measure of returns
at the aggregate level.  That is, constant returns to scale implies that doubling
the size of a firm yields twice as much output, increasing returns means that
more than twice as much is produced, and decreasing returns is the opposite
(sub-additive production).  Interesting here is the fact that the output
distribution exponent is somewhat less than for the distribution according to
the number of agents, which seems to imply that there exist decreasing
returns at the aggregate level.

The relation between firm output and size by number of employees can
be studied by looking at firm productivity.  Figure 19 is a log-log plot of
average output versus size (by number of agents) for the realizations that
produced figures 17 and 18, above.  Clearly these two measures are highly
correlated.  There is significant variability at large sizes since these data bins
hold few observations.
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Figure 19:  Productivity exhibits near constant returns at the aggregate level, despite increasing
returns at the micro-level

Also shown in figure 19 is the OLS line for a power law fit of the data.  This
line is given by 0.58 s1.15; adjusted R2 = 0.94.  Thus, slightly increasing returns
apparently describe this data, although the hypothesis of constant returns
cannot be rejected.  Constant returns is also a feature of the empirical data,
since the size distribution is the same whether employees or sales are used as
measures of size.

Near constant returns at the aggregate level occurs despite, of course,
increasing returns at the micro-level, suggesting the difficulties of making
any inferences concerning micro-level behavior from aggregate data.49  A
qualitative explanation of why this occurs is apparent.  As the increasing
returns-induced advantages that accrue to a firm with size are consumed by
free-riding behavior, agents migrate to more productive firms.  Each agent
who changes jobs acts to ÔarbitrageÕ the returns to marginal size changes
between firms.  Thus, even though the agents are heterogeneous, returns to
adding an additional agent are more or less equal across the firm population.

Firm Growth Rate Distribution
Just as there exists a distribution of firm sizes at each period, so is there

a distribution of firm growth rates.  Call r the logarithm of a firmÕs growth
rate, i.e., the log of the  ratio of its current size to its previous size.  Clearly,
firms that are expanding have r > 0, while contracting firms have r < 0.

                                                
49 The general problem of making micro-level inferences from macro-level data is known as

the Ôecological inferenceÕ problem; see Achen and Shively [1995].
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The so-called Ôgrowth of firmsÕ literature explains firm size distribution
data by appeal to GibratÕs law, also known as the law of proportional growth,
which states, roughly, that if growth rates are independent of firm size then
the size distribution of firms will be right skewed.  Operationally, this has
usually been taken to mean that if growth rates are normally distributed then
firm sizes will be lognormally-distributed, with ÔfatÕ right tails.  Recently,
however, Stanley et al. [1996] report that the Laplace (double exponential)
distribution, that is,

1
2

2
σ σr r

r r
exp − −





, (19)

better fits the data on U.S. firms, where r  is the average log growth rate and
σr is the standard deviation of r.50

Figure 20 shows the growth rate data in log-log coordinates, from the
realization described above, together with fits to Gaussian and Laplace
distributions,51 the parabolic and tent-shaped curves, respectively.52  The
average growth is 1.000.53

                                                
50 Related work by these and other researchers has revealed that growth rates of countries

are also well described by this distribution; see Amaral et al. [1997], Buldyrev et al . [1997],
Lee et al . [1998] and Canning et al . [1998].  It is an hypothesis of this research that Òthe
evolution of organizations with complex structure is governed by similar growth
mechanismsÓ (Lee et al. [1998]: 3275).  Such a mechanism is proposed in Amaral et al. [1998].
This mechanism is not written in terms of the individuals who make up organizations, but
rather in terms of organizational sub-units.  As such, it is rather different in character from
the model described here.

51 These two distributions are closely related and were both recommended by Laplace for
purposes of describing empirical data (Johnson et al. [1995]).

52 The growth rates shown in figure 20 are approximately twenty times larger than in the
empirical data (cf. Stanley et al. [1996]) for comparable frequencies.  This large discrepancy
arises simply as a result of the definition of time scale in the model.  In particular, since
1000 agents being active was equated with a single time period, if time is rescaled such tha t
activation of 1000/20 = 50 agents represents a single period then the growth rates shown in
figure 20 would be comparable to the actual data.

53 There is no net growth on average since the population of agents is fixed in size.  Real data
must first be detrended.  Presumably, net positive average growth rates could be worked
into the model simply by permitting the population of agents to grow over time.
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Figure 20:  Stationary firm growth (probability mass function)

Note that the normal substantially misses the datum in the center bin, where
nearly all the probability mass lies.  The Kolomogorov-Smirnov test reveals
that (16) better fits the data than does the Gaussian distribution, but the extent
to which it is the better fit depends sensitively on how the data are binned.54

Stanley et al. [1996] further find that the standard deviation in the
distribution of log growth rates, σr, decreases with size according to a power
law, i.e.,

σ γ
r s∝ − (20)

In particular, they estimate that γ = 0.16 ± 0.03 for size based on number of
employees, and γ = 0.15 ± 0.03 for size based on sales.55

It is a relatively easy matter to glean data from the computational
model concerning the variation in growth rates with firm size.  This has been
done for the realization described above.  Estimates of the standard deviation
of r conditional on firm size are shown in figure 21, in log-log coordinates i n
order to facilitate estimation of γ.

                                                
54 One difficulty here arises from the fact that the firm sizes being generated by the model

are relatively smallÑat least in comparison to real firmsÑand therefore there is a certain
amount of discreteness to the growth data.  For example, a firm of size 10 might grow to size
11 or 12, representing a 10% or 20% growth rate, respectively.  But it cannot grow by 15%.

55 Interestingly, variance in growth rate data for countries is also well-described by (20) with
γ = 0.15 (cf. Canning et al . [1998]).  See footnote 50 for more on the empirical relationship
between firms and countries.
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Figure 21:  Dependence of the standard deviation in r on firm size

Note that while there are significant exceptions, overall σr falls with firm size,
as in the empirical data.  For the smallest firmsÑsizes 1, 2 and 3Ñσr rises
with size, while for relatively large firmsÑgreater than about 300Ñthe data
are very noisy, owing to small sample sizes.  The functional form given by
(20) has been estimated by OLS and is shown in figure 21.  This estimation
yields γ = 0.174 ± 0.004, and was accomplished by dropping the first two data
points as well as the outliers occurring at large firm size.  These results are i n
close agreement with the empirical data.

Firm Lifetime Distribution
It is easy to study the distribution of firm lifetimes that comes out of

this model.56  To do this, the firm object holds as data the year it was born,
and then later, as it dies, it computes its age and sends this information to the
object that maintains the distribution of firm lifetimes.  In this way, data is
kept on each firm that forms, and sampling issues do not arise.

For the realization described above, the distribution of firm lifetimes is
shown in figure 22 as a size-rank plot, with the rank given in log coordinates.
Data on nearly 106 firms are reported in the figure.

                                                
56 It is notoriously difficult to come up with a good measure of firm lifetime in practice, given

that mergers, acquisitions, takeovers, bankruptcies, voluntary liquidations, and private
buy-outs are common among real firms.  Thus empirical work has focused on the rather
restricted categories of exit (cf., Schary [1991]), failure (cf. Lane and Schary [1991]), new
firm survival (cf. Audretsch and Mahmood [1995]), turnover and mobility (cf. Caves [1998]),
among others.
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Figure 22:  Firm lifetime-rank distribution

The average lifetime is approximately 23.4 periods while the standard
deviation is estimated to be 27.1.  The three firms having the longest
lifetimes, of approximately 485, 370, and 340 periods, are outliers from a linear
dependence of lifetime on log(rank), having OLS slope of -70.  This means
that as one moves out an order of magnitude in rank, firms live for 70 fewer
periods; this behavior is robust over 4 decades of rank.

We have interpreted firm growth and demise as a process in which
agents are attracted to high-income firms, these firms grow, and once they
become large get over-run with free-riders.  In the next section this basic
picture is elaborated quantitatively by studying the life of a typical firm.

3.5 Dynamics of Individual Firms:  The Firm Life Cycle
Some indication of the life cycle of a firm was apparent above in the

evolution of the large firm that survived through time 200, shown in figures
10-16.  But this firm was hardly representative due to its extreme size.  In this
section the life cycle of a typical firm is studied.57

There is something like a characteristic firm life cycle in this model,
involving the growth of the firm, its change in composition, the onset of free
riding, and its ultimate demise.  Figure 23 below gives a typical evolution of
firm size over the life of a particular firm, with size represented by the
number of agents as well as the total output.  For firms that grow to greater or
lesser sizes the corresponding figures would be scaled up or down, but the
qualitative shape remains the same.

                                                
57 In reality the life cycles of firms are thought to be intimately intertwined with product and

industry life cycles; on the former see, for instance, Vernon [1966] or Klepper [1996] while
Abernathy and Utterback [1978] is a standard reference on the latter.
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Figure 23:  Typical evolution of firm size over the life cycle of the firm, by number of agents
(thick line) and output (thin line)

This firm lived from time 9 to time 28.  Its growth was rapid and nearly
exponential in the early stages, followed by a brief period of stagnation around
time 20.  Subsequently, as output began to fall agents left the firm, creating a
vicious cycle responsible for rapid decline.  However, the firm remained i n
existence at a very small size for some time.

Over the life cycle the composition of the firm by agent type is
changing.  Figure 24 depicts this evolution of firm composition by plotting as
a function of time the minimum, average, and maximum preference for
income, θ, among the agents in the firm.
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Figure 24:  Typical evolution of firm composition by agent type over the firm life cycle

Initially, the firm is dominated by agents with high preference for income.
Over time there is a clear tendency for the firm to include agents with lower
and lower θsÑagents who value progressively value leisure relatively more
than income.  Sown in this picture are the seeds of the firmÕs ultimate
destruction, for agents with low θ put in relatively low amounts of effort and
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are among the first to engage in free-riding.  This can be seen in figure 25
below, which is a time series plot of the average effort level in the firm, with
bars above and below the average representing the maximum and minimum
effort levels, respectively.
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Figure 25:  Typical evolution of effort levels in a firm over the life cycle

Overall, effort levels are decreasing approximately linearly and essentially
monotonically, on average.  Note that at all times there are some agents who
contribute no effort to production.  But this plot does not make clear how
many agents are behaving in this way, i.e., how many agents are free-riding.
Data from the model on the number of free-riders in this firm is depicted i n
figure 26.
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Figure 26:  Typical evolution of the number of free riders in a firm over the life cycle

Note that the number of free riders peaks at approximately time 21.  That is,
by the time the firm reaches its maximum size free-riding has become
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rampant.  The overall shape of this figure resembles closely the firm size
trajectory, measure by the number of agents (figure 23, thick line).

Given that average effort levels are falling almost monotonically, yet
output is single-peaked, what is happening to the output shares in this firm?
Figure 27 shows what happens in the base case.
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Figure 27:  Typical evolution of agent income by agent type over the firm life cycle

Although total output is rising from time 10 to 20, the number of agents i n
the firm is also rising, causing each agentÕs share to be progressively diluted.
This situation is particularly problematical for the agents who joined the firm
early on, who have high preference for income.  Such agents garner little
utility from the opportunities for leisure that are rational to pursue in a firm
dominated by free-riding, and thus can be expected to be the first to flee such a
firm once decline sets in.  However, the leisure-loving, low θ agents who
flock to this firm over time find falling income to be only a minor problem as
they bask in high leisure levels.  Overall, utility levels drop among the agents
in the firm over time, in a way that mirrors the fall in output share, as shown
in figure 28.
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Figure 28:  Typical evolution of agent utility by agent type over the firm life cycle

Here, minimum and maximum utilities are shown as well.  Note that the
lowest utility level did not significantly change up through time 21, that is, up
through the time at which the firm began declining.

3.6 Dynamics of Individual Agents
In the previous section the dynamical behavior of a typical firm was

investigated.  Here a similar analysis is rendered for a typical agent.  Over
time, each agent adjusts its effort level and consistently considers the
opportunities that are available with ÔneighboringÕ firms.  If such
opportunities dominate those at the firm where it is currently employed it
changes jobs.  So each agentÕs effort level and employer are changing over
time as a result of its purposive behavior.  Too, its income and utility change,
as a result of both its own behavior as well as that of its co-workers, who are
constantly adjusting their behavior as well.  Overall, the exact way in which
any individualÕs behavior changes is a very complicated function of its
strategic environment.  In this section we attempt to paint, in broad brush
strokes, a portrait of these dynamics.  It is hoped that this analysis is both
illustrative of the kind of analysis that can be performed with computational
models of firms in addition to being of interest in its own right.

To accomplish this analysis agents are simply selected at random and
various of their state variables are displayed as a function of time.  After
viewing many of these plots a specific agent is deemed to be, in strictly
heuristic and qualitative terms, representative of the population as a whole.
In particular, figures 29-32 give various data on an agent having θ = 0.70,
sampled over some 30 periods, from time 52 to 82.  In figure 29 a typical career
path is shown, where each step represents a job change by the agent i n
question.
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Figure 29:  Career path over 30 periods of an agent for whom θ = 0.7

This agent changes jobs nine times during this period.  It spends
approximately 3.5 periods with each firm on average, with a standard
deviation of 2.5.  Its longest tenure at any firm is 10 years, while it has several
1 and 2 year tenures.  At time 76 it started up a new firm, acting as the
founder, but just three periods later left for greener pastures in a rapidly
growing eight-agent firm.

It is impossible to discern from a plot such as figure 29 the exact reason
why an agent decides to change jobs at a particular time, or just why it stays
put on another occasion.  The details that go into each agent's decision are
highly context dependentÑwho else is in the agent's firm, what is the
average effort level there?Ñand idiosyncratic, depending intrinsically on its
preferences.  That is, the agent's decisions are explicable only by reference to
the group in which it finds itself.  Therefore, subsequent figures attempt to
describe the context for the agent of figure 29.

Figure 30 illustrates how this agentÕs effort changed over this same
course of time.  If working alone this agent would, according to equation (6),
put in effort of 0.77.  From the figure it can be seen that the agent starts out
working well below this level, then increases its input variously, including
when it starts up its own firm (t  = 76).  It turns out that the agent works i n
relatively large firms during the first periods shown, and in relatively small
firms during the later periods.
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Figure 30:  Effort level history over 30 periods of an agent for whom θ = 0.7

Overall, the average effort level of this agent is 0.61 with a standard deviation
of 0.18.

Because the sizes of the firms in which this agent works changes
significantly over this period, and given the significant effort level changes
shown in figure 30, it is reasonable to expect large income swings for this
agent over this period.  Income data is shown in figure 31.
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Figure 31:  Income history over 30 period of an agent for whom θ = 0.7

The agent receives fairly high income while working at a large firm initially.
During the period 55 to 65, in which the agent does not change jobs, its
income first falls off quickly, then recovers, and then dives again.  In its next
job the agent finds high income initially but then falls off, and there results a
saw-tooth pattern subsequently.  Finally, the agent receives its highest income
at the end of the period in question, nearly 2 units.
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Since this agent has a relatively high preference for income, it is
reasonable to expect that its utility will more-or-less mirror its income.  The
actual utility time series is shown in figure 32.
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Figure 32:  Utility history over 30 periods of an agent for whom θ = 0.7

Qualitatively, the peaks and troughs of figures 31 and 32 are quite similar.
Looking at this figure one can learn, to some extent, why the agent may have
switched jobs as shown in figure 29.  For example, each of the agent's job
switches in the t  = 70-80 period are correlated with significant decreases i n
utility.  It is harder to infer the agent's reasons for switching jobs, as well as
not switching, in the early periods.  For example, it would seem that the
agent's large loss of utility in the period t = 57-58 would lead it to migrate to
another firm.  However, this does not happen.  There are two possible
reasons for this: (1) the agent, when activated, cannot find a better
opportunity at another firm, and (2) perhaps the agent is simply not
activatedÑit does not consider its optionsÑduring this period.  A similar
situation arises in the period of the early 60s.  The agent could probably find
gain utility by working elsewhere but does not change jobs until t = 65.

Time series plots of the type shown in figures 29-32 are very useful i n
developing some understanding of an agent's behavior.  A variety other data
would also be helpful in explicating that agent's actions, such as the behavior
of other agents in the agent's firms over this period.

3.7 Overall Behavior of Agents, I (Population Cross-Section)
The thirty year excerpt from the agent career described in the previous

section is a longitudinal picture of typical agent dynamics in the midst of firm
formation, growth and dissolution.  As such, it is rich in the contingencies of
time and place, details that are always atypical in the same way that any
realization of a stochastic process is idiosyncratic.
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A different picture of agent behavior arises from a cross-sectional
perspective.  Here, the average behavior of individual agents is determined at
a particular instant in time.  The resulting 'snapshot' of the agent population
enriches our understanding of agent behavior, quantifying typical agent
activity to the neglect of dynamics.  To develop such a picture the population
is first divided into a number of preference 'bins'; between 10 and 20 such
bins are used here, depending on the variable in question.  The model is run
forward in time until the initial transient has worked its way out of the
system and a stationary firm size distribution has obtained.  Then, statistics on
agent effort, income, and utility levels are computed for each bin, and data on
agent tenure and firm size are also obtained.  This is done several times and
the snapshots compared for representativeness.  Typical results are reported
below.

We begin this analysis with a look at overall effort levels in the
population.  We know from the time series presented in figure 13 that the
average effort fluctuates around 0.3.  Figure 33 depicts the distribution of
effort in the agent population.
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Figure 33:  Effort level histogram

Note that some 2/3 of the agents put in little or no effort, and that the
remaining 1/3 of agents are split roughly equally between the remaining bins.

A different way to look at this same data is to disaggregate by
preferences. Now, to the agents preferences are unobservable, but they are
perfectly observable to us.  Figure 34 gives a cross-sectional picture of agent
effort levels as a function of θ, with the average value shown together with
error bars representing one standard deviation.
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Figure 34:  Effort levels by agent type; averages ± 1 standard deviation

As expected, agents having the smallest θ put in little or no effort; actually,
the mean value in each of these preference bins is strictly greater than 0, but
in the first three bins most of the agents put in no effort at all.  Effort levels
are nearly monotone increasing in θ.  The dip around θ = 0.70 is not a robust
featureÑother snapshots do not commonly display it, although they do
typically feature deviations from strict monotonicity.  Agents having
intermediate preference for income typically put less than 0.20 units of labor
into production, and many put in no effort at all.  It is only agents with
relatively large income preferences who put in large effort levels; only for θ >
0.80 is zero effort level rare.  Note also that this data is rather heteroskedastic,
that the largest variances occur at medium to large θs, and as θ approaches 1
the variance shrinks.

Turning now to agent income, its distribution in the population is
shown in figure 35 in semi-log coordinates.  Interestingly, income is right-
skewed.
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Figure 35:  Distribution of income in the agent population

Since the tail is approximately linear in these coordinates, income is
exponentially-distributed beyond about 1.25.  Incomes below this level occur
with very nearly uniform frequency.

Who are the high income individuals?  Is it individuals having high
preferences for income?  To find this out it is necessary to disaggregate by
preference. Consider the data shown in figure 26.  There are two prominent
features in the data.  First, income increases approximately linearly, and
essentially monotonically, with preference for income.  Second, the variances
are nearly constant across preference bins.
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Figure 36:  Income by agent type; averages ± 1 standard deviation

Now, since income is only weakly related to effort levels, and is
homogeneous within firmsÑall agents in a firm receive the same
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incomeÑthe increasing income with preferences must derive, at least in part,
from high θ agents working in more productive firms.

Next, consider utility.  Effort and income combine to produce utility for
each agent.  The  distribution of utility that obtains in the base case is depicted
in figure 37.
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Figure 37:  Utility histogram

This data is right-skewed and would perhaps be well fit by a lognormal
distribution.  Although not apparent in the figure, some agents have utility as
high as 4.

We can anticipate how agent utility will depend on preferences by
noting that since utility is monotone increasing in income for all agents,
figure 36Õs monotonically-increasing income with θ suggests that utility
should be increasing with agent preferences as well.  Figure 38 demonstrates
that this is so, although utility is a weaker function of θ than is income.
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Figure 38:  Utility by agent type; averages ± 1 standard deviation

As with income, variances are approximately constant across preferences.
The relatively large variation in utility levels within preference bins suggests
that agents having the same preferences can experience quite different welfare
levels.  Similarly, it is not uncommon for a low θ agent to have higher utility
than one with high θ, notwithstanding the overall rise of average utility with
preference for income.

So far, in all depictions of agent utility, such as figures 16, 28, 32, 37 and
38, it is the realized utility that has been shown.  That is, each period every
firm engages in production and then divides output among the agent
workers, and  this income combines with agent leisure to produce utility
realizations to the agents.  However, a somewhat different measure of agent
welfare is the utility level that agents employed in making their most recent
effort input decisions.  This quantity is the direct result of each agent
weighing its options of either staying with its current firm or joining a
different firm.  Call this an agentÕs decision utility.  In general it will be
different from the realized utility insofar as a firm engages in production at
some time after each of its agents has made its most recent decision.
Sometimes an agentÕs decision may be soon followed by firm production, i n
which case the two types of utility are highly correlated.  At other times many
agents may have the opportunity to make their decisions in between the time
at which a particular agent decides and production actually occurs.  In such
circumstances the relationship between realized and decision utilities will be
weaker.

Figure 39 is a cross-section of agent decision utilities for the same run
of the model that yielded figure 38Õs realized utilities.  It is quite similar i n
character to the previous figure.  However, note that decision utility levels
tend to be greater than realized utilities for the same range of θ.  Eventually,
decision utility shall serve as a basis for welfare analysis of this model.
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Figure 39:  Decision utility by agent type; averages ± 1 standard deviation

Note that there is little variance in decision utility for agents having small θ.

The number of periods that an agent has been with a particular firm is
called its tenure.  Agents new to a firm have no tenure, while agents who
have spent one period have tenure one, and so on.  Given what we know
about agent careers from the previous section, the average tenure is relatively
short in this model.  How might this quantity change with agent preferences.
We have seen that large firms can become 'infected' with low θ agents, and so
this suggests that leisure-loving agents are wont to jump firms often, leading
to low tenure, while income-lovers might do the opposite.  The tenure cross-
section is shown in figure 40.
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Figure 40:  Tenure by agent type; averages ± 1 standard deviation
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Agents having high θ have slightly longer tenure than low θ agents. There is
significant variance within each bin, demonstrating the high levels of agent
turnover within firms that exist in this model.

As a final measure of the agent population cross-section, firm size as a
function of agent type will be studied.  Given that income is increasing with
θ, it is tempting to think that average firm size may be increasing in θ as well,
since the advantages of increasing returns in large firms should lead to higher
incomes.  Data from the model are shown in figure 41.
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Figure 41:  Size of an agentÕs firm, by agent type; averages ± 1 standard deviation

There does exist a general trend toward rising average firm size with θ,
although this is rather irregular.  Large variances are characteristic of all of
these data.  Therefore, even though an agent having θ = 0.9 is likely, on
average, to work in a larger firm than an agent having θ = 0.1, there is
significant probability that the situation is, in fact, the opposite.58

3.8 Overall Behavior of Agents, II (Cross-Section by Firms)
The cross-sectional data just described were with respect to the agent

population.  A somewhat different portrait of agent behavior results from
looking at these same variablesÑpreferences, effort, income, utilityÑwithin
firms and then binning the data with respect to the firm population.  This is

                                                
58 Note that the average firm size in figure 40 is substantially greater than the true average

firm size given, for example, in figure 12.  The figure 40 mean is weighted by the
population, i.e., each firm is counted multiple times, by all the agents who compose such
firms.
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too a cross-sectional analysis.  It permits us to characterize not only the
average behavior within firms but also the variation in behavior.

Let us start with preferences, which are uniformly distributed in the
population.  If they were uniformly distributed within firms then it would be
the case that each firm would have mean θ of 0.5 and a histogram of θ by firm
would have all the mass in the center bin.  However, given the power law
character of the firm size distribution there are lots of small firms and so we
would expect the average θ in a firm to vary substantially from a single spike
at 0.5.  This is confirmed in figure 42.
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Figure 42:  Histogram of average θ in firms

Note that this distribution is not symmetric, has mean somewhat greater
than its median, and the mode is near 0.5.  The standard deviation of the θ
distribution is 0.20.

Within each firm there is some variation in the types of agents present.
A measure of this variation is the standard deviation in θ, sθ.  For the
population of firms that yielded the previous figure, the distribution of sθ  is
given in figure 43.
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Figure 43:  Histogram of standard deviation of θ in firms

Note that there are many firms with little or no variation in agent type.
Presumably these are the smallest firms, consisting or but 1 or 2 agents.  If
agents were distributed more or less uniformly in firms across all agent types
then sθ  = 0.288.  In fact, there is a peak in the distribution centered at sθ = 0.275,
suggesting that agents are quite uniformly distributed in a significant number
of firms.  There are a modest number of firmsÑperhaps 10%Ñin which there
is substantially more variation in preferences than occurs in the uniform
distribution, suggesting that some firms may have bimodal or other unusual
distributions.  Finally, given that the inter-firm standard deviation in θ is
0.20, many firms have the attribute their intra-firm variance in preferences is
less than the inter-firm variance.

Next we turn to the distribution of average effort levels, e .  In figures
33 and 34 we saw that substantial fractions of the agent population put little or
no effort into production.  Is it similarly true that a large proportion of firms
are characterized by vanishing total effort levels?  Intuitively, this would
seem to be unrealizable, for agents would not continue to inhabit firms with
E ~ 0.  Rather, it seems more likely that while individual firms could harbor
large numbers of free-riders, such agents must be working alongside hard-
working agents in order to keep such firms viable.  The implications of these
considerations for the distribution of effort levels are that, while having a
large mass of firms in the lowest effort level bin is not ruled out, it is also the
case that a distribution much less extreme than figure 33 is expected.  In fact,
the same data set that yielded the two previous plots produces the
distribution of effort levels shown in semi-log coordinates in figure 44.
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Figure 44:  Distribution of average effort levels in firms

The average effort in firms is 0.27, while the standard deviation in e  across
all firms is 0.22.  The frequency, f, is approximately linear in average effort
levels, suggesting that e  is exponentially distributed.

Within each firm there is significant variation in effort levels, a
quantity plotted in figure 45.
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Figure 45:  Histogram of standard deviation of effort levels in firms

The shape of this distribution is very similar to that shown in figure 43 for
the standard deviation in θ.  A significant fraction of the mass is in the
smallest effort bin, and presumably these are small firms formed of agents
having small θ.  Once again, there is an interior peak located quite near the
standard deviation associated with a uniform distributionÑhere, of effort
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levelsÑas well as some small number of firms in which there is substantially
more variance than that associated with a uniform distribution.  For a
substantial fraction of firms the intra-firm variance in effort levels is less than
the inter-firm variation.

The distribution of income, I, across firms is quite similar to the
distribution of average effort levels across firms (figure 45) as well as the
distribution of income in the entire population (figure 36).  In particular, i n
semi-log coordinates the income distribution is nearly linear, as shown i n
figure 46, suggesting that income too is exponentially distributed.
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Figure 46:  Distribution of income across firms

The OLS estimate of the parameter of this distribution is 2.30.  Therefore, the
probability of being in a firm having income I is proportional to exp(-2.30 I),
meaning that firms having income I + 1 are exp(2.30) Å 10 times less common
than those with income I.  Since all agents in a firm receive the same income
there is no intra-firm income variation, and thus no histogram of such
variations possible.

Finally we study the distribution of average utility received by agents
across firms.  From figure 38 we know that the utility increases very little
with θ.  Will things be different when the cross-section is performed with
respect to firms instead of the population as a whole?  In figure 47 we see that
utility is apparently exponentially-distributed, in much the same fashion as
are average effort and average income.
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Figure 47:  Distribution of average utility in firms

Relatively low utility levels are common.  Presumably these occur in small
firms.  The concavity at small average utilities is a robust feature of this data,
although the dip at the second datum is idiosyncratic.  The irregularities at
high average utility result from small sample sizes there.

The amount of variation in income also appears to be exponentially
distributed, as shown in figure 48.  In most groups there is very little
variation in utility levels received by the agents who constitute the group.
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Figure 48:  Distribution of standard deviation in utility in firms

The break in the data just beyond sU = 1 represents a single datum, and is thus
explained as simply a random event due to small numbers.
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Group Selection
The neoclassical justification for treating firms as profit maximizers

hinges on a selection argument.  Firms that make the largest profits are able
to grow at the expense of the less profitable ones, or so the story goes.59  This
Darwinian picture is either a group selection argument, if one views firms as
multi-agent groups, or not, insofar as a firm is considered to be a single agent.
As alluded to in the introduction to this essay, the unitary actor model is rife
with conceptual and other problems, while the group selection picture has
been intellectually out-of-favor for some time.

However, the recent work of Wilson and Sober [1998], among others,
has at least partially rehabilitated the idea of group selection.60  Here we
merely wish to point out that group selection ideas are very relevant to the
model of firms described here.  In particular, we have seen that firms having
low per capita effort levels are selected against.  The mechanism of selection is
not biologicalÑindeed, the number of agents in the population at any time is
constant.  Rather, the continual rearrangement of the composition of firms,
through competition for workers, is the mechanism of selection.  Firms who
cannot attract productive workers eventually die.  Firms with low levels of
free-ridership succeed in attracting good workers and grow.  In essence, i n
many firms there is greater variance in agent behavior (effort levels) between
firms than within  themÑsee figures 44 and 45Ñand so group selection can
manifest itself.  Thus, from the multi-agent perspective adopted here,
successful firms are not profit maximizers, but rather are those who attract
and retain productive workers.  Profit maximization, if it exists at all, is a by-
product of individual utility maximization.

3.9 A Speculative Welfare Analysis
Since the microeconomic dynamics of this model are inherently out-

of-equilibrium, it is, ostensibly, very difficult to make any definite welfare
statements about the observed stationary state.  However, some general
comments are possible.

Given that each agent, when activated, considers staying in its present
firm or, among other things, starting up a new firm, and accepts the result
that maximizes its utility, it is easy to see that agent utility is bounded from
below by the singleton utility.  Therefore, it must be the case that all agents
prefer the non-equilibrium state to one in which each is working alone.  That

                                                
59 Friedman [1953] is a well-known account of this.  Blume and Easley [1998] give a formal

model and find that the neoclassical result applies only to self-financed firms.  The
presence of a capital market can act to sever the connection between profit maximization
and survival.

60 Bowles [1998] discusses the relevance of these developments for economics.
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is, the state of the economy in which all firms are size one is Pareto-
dominated by the dynamical configurations studied above.  But this is a weak
result.  More important would be a result that utility levels in some
equilibrium configuration were dominated by those in a non-equilibrium
configuration, especially if this latter regime was stationary at the aggregate
level.  For then one could claim that the generic behavior of the model
yielded outcomes superior to equilibrium in welfare terms.  But do
equilibrium configurations even exist in this model? If so, what are they?  If
there are multiple configurations of this type, which one is appropriate for
making welfare comparisons?

Imagine if each group could exclude any agent who wishes to join.61

This is not the behavioral rule employed above, but is one that is easily
implementable.62  Now, consider groups in which all agents have exactly the
same preferences for income, i.e., homogenous groups.  Next, let us say that
all agents in the population are in homogeneous groups.  Further, no group
is larger than its maximum stable size.  Associated with such groups are the
utility levels shown in figure 7 above.  Given the possibility of agents to
exclude other agents, it is easy to see that this partition of the agent
population into homogeneous, stable groups is an equilibrium configuration.
For the only kind of agents that a group having preference of θ wishes to
include within itself are those who have preference strictly greater than θ.  To
include an agent with lesser preference would dilute each agent's income and
lower the utilities of all group members. But agents with greater θ are better
off in optimally-sized groups of their peers than with agents having lower θ.

Figure 49 starts out as a recapitulation of figure 7: a plot of the optimal
utility levels for both singleton firms as well as optimal size homogeneous
ones, as a function of θ.  Overlaid on these smooth curves is the cross-section
of decision utilities from figure 39, now in semi-log coordinates.  The main
thing to notice about figure 42 is that most agents prefer the non-equilibrium
world to the equilibrium outcome with homogeneous groups.  Indeed, it is
only agents for whom θ > 0.8 who prefer to work exclusively with agents
having similar preferences.63

                                                
61 For analytical characterization of an equal share (partnership) model with perfect

exclusionary power see Farrell and Scotchmer [1988]; an extension to heterogeneous skills is
given by Sherstyuk [1998].

62 Indeed, it will be systematically studied in ¤ 4.9 below.
63 The error bars in the figure seem to indicate that some agents get less utility in the

heterogeneous groups than they do working alone.  This is not true, of course, but rather is an
artifact of binning the data.
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Figure 49:  Utility derived from working in single agent firms, in optimal size homogeneous
firms, and in non-equilibrium multi-agent firms, by agent preference

Interestingly, while the non-equilibrium configuration does not dominate
the equilibrium one, it is also true that dominance does not run in the
reverse direction.  Therefore, these two alternative economic worlds cannot
be Pareto ranked.

4 Variations and Elaborations
In this section the parameterization of the model that has been

employed so far is systematically altered.  All of the model attributes of the
base case configuration described in table 2, as well as some others, are varied
and the overall effect on the resulting population of firms is described.  For
each of these variations we could present all of the data provided in ¤ 3,
information on firm size distributions (size by number of agents and output),
productivity, growth rates, and firm lifetimes.  We could then go on to
develop a picture of the firm life cycle, agent careers, and cross-sectional
analysis of the agent population, comparing each variation with both the base
case as well as other variations.  Clearly, this would be a monumental task.64

In lieu of this, each variation of the model will be characterized by a single
parameter, the power law exponent, µ, of the firm size distribution, with size
defined as the number of agents.  This is a crude statistic, but one that reveals
much about the general effect of the variation in question nonetheless.

                                                
64 Although this presents no computational problems.  Indeed, each parametric variation of

the model essentially develops all of this information.  Nor would the cost be prohibitive
of storing this information in a database, thus permitting run-to-run comparisons.
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Three attributes from the table 2 base case were found to have no effect
on the general character of the model.  First, in moving from 1000 to 5,000
agents, and then to 10,000 and eventually to 100,000 agents and beyond, the
primary effect is to make the resulting statistical character of the model more
robust, simply due to larger sample sizes.  The quantitative characterization of
the model described in ¤ 3 above is invariant to this change.65  The second
attribute that yielded little effect was the nature of agent activation.  In other
agent-based models synchronous activation, in which all agents update their
state simultaneously, has proven to produce significantly different output
than asynchronous activation (cf., Huberman and Glance [1993]).  Further,
with the asynchronous activation model it has been found that it matters
whether agents are activated randomly or uniformlyÑi.e., agents activated at
random vs. each agent active exactly once per period, although perhaps in a
random order each period (Axtell et al. [1996]).  Here we have worked
exclusively within the asynchronous activation model and have found
essentially no difference in firm size distributions between uniform and
random activation.  Finally, the way in which the model was startedÑeach
agent working alone in the base caseÑdid not seem to matter much beyond a
few dozen periods, i.e., the initial transient quickly decays.  Other initial
conditions tested included random groups and one large group.

In what follows, ¤ 4.1 investigates the importance of locally purposive
behavior by permitting the agents to behave randomly in certain ways.  The
second section varies the increasing returns parameters, b and β.  Disparate
distributions of agent preferences are studied in ¤ 4.3, while in ¤ 4.4 the extent
and composition of agents' social networks are modified.  Then, in ¤ 4.5 the
idea that an agent might be loyal to its firm is introduced.  Section 4.6 looks at
the effect of further bounded rationality, through effort level adjustments by
groping, instead of explicit calculation.  Alternative compensation schemes,

                                                
65 The primary practical effect of increasing the number of agents is to diminish the

productivity of the computations.  That is, while increasing the number of agents by an
order of magnitude increases the sample size each period by this same amount, and thus
requiring an order of magnitude fewer model periods in order to reach the same total sample
size, it comes at a cost of a substantially greater amount of real timeÑit just takes longer!
The reason for this is that small models can ÔliveÕ on the high-speed caches that work in
tandem with  the current generation of  microprocessors.  For example, if each agent object is
O(100 bytes) and if each firm object is about the same size, then if the average fir m size is,
say, 5, then the total amount of memory required for these components of the model, M, is
100 (A+A/5) bytes; for A = 1000, M = 120,000 bytes.  Double these values for various
operating system overhead and one finds that the base case model can survive entirely on a
256 kilobyte cache.  One megabyte caches are about the largest found today so this puts an
upper limit of about A = 4000 for rapid model execution.  Experience suggests that by the
time one has ventured to the A = 10,000 level a performance penalty in the range of 100-
200% obtains, while for A = 100,000 a 10x slowdown is not uncommon.  The caches are still of
considerable help in the intermediate size model, but of little value for large populations,
i.e., M È cache size.
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beyond simple sharing, are investigated in ¤ 4.7.  In ¤ 4.8 firm founders act as
residual claimants:  agents are paid a fixed wage and the founder allocates
bonus pay based on firm output.  Section 4.8 looks at firm hiring standards.
Issues of intra-firm monitoring are discussed in ¤ 4.10.  Finally, ¤ 4.11
investigates simultaneous model variations.

4.1 The Importance of Locally Purposive Behavior
Against this simple model of firm formation it is possible to mount a

critique of the following type.  Since the Gibrat law is known to yield power
law distributions of firm size, and since growth rates in the Gibrat law are
random variables, then perhaps the model described above is simply a
complicated way to generate random movement of agents between groups.
Stated differently, although the agents are behaving purposively, this may be
little more than noise in this strategic environment.  Of course, at the
aggregate level  something like this must be true insofar as right skewed size
distributions result.  But the important question for the model is 'What if
agent behavior were truly random at the micro-level, would this too yield
power law size distributions?'

We have investigated this in two ways.  First, imagine that agents
randomly select whether to stay in their current firm, leave for another firm,
or start-up a new firm.  If they choose to leave then the firm they migrate to is
chosen randomly.  However, we suppose that each agent selects the optimal
effort level given its 'decision' on which firm to inhabit.  It turns out that this
model fails to yield a power law size distribution for firm size.  In fact, firms
greater than 9 or 10 are rarely observed in this variation.  Similarly, if agents
select the utility-maximizing firm in which to workÑwe assume they are
able to divine thisÑbut then choose an effort level at random, again nothing
like power law size distributions result.  These changes in the behavioral
specifications of the model suggest that any systematic departure from
(locally) purposive behavior is unrealistic.

4.2 Effect of the Increasing Returns Parameters

The two parameters that determine the extent of increasing returns i n
(2Õ) are b and β.  In all of the above they have been set to b = 1 and β = 2.  In
this section we systematically vary β  and study its effect both on the overall
firm size distribution, as measured by power law exponent µ, and on γ, the
scaling law exponent for the dependence of standard deviation in log growth
rates on size.  Results are summarized in table 3; the shaded entry refers to the
base case studied above.
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β µ γ
1.7 2.06 0.238

1.8 1.62 0.237

1.9 1.32 0.204

2.0 1.28 0.174

2.1 0.95 0.173

U[1.7, 2.1] 1.12 0.203

Table 3:  Dependence of the scaling law exponent, µ, on the increasing returns exponent, β

The pattern of dependence of µ on β is clear.  As the effect of increasing
returns is made stronger, larger firms can grow and survive, and therefore µ
increases (becomes less negative).  For β < 1.7, the firm size distribution that
results is too concave to be fit well by a simple power law.66  For β  > 2.1, very
large firm sizes are possible, and so computational limitations are
encountered.67   Average firm size increases with β .

Next, the effect of the coefficient b in (3) is studied.  The case of b = 0
corresponds to constant returns, in which case there are no advantages to be
had from agents forming firms.  So we estimate the power law exponent, µ,
for various b > 0.  Results are summarized in table 4 below.

b µ
0.50 2.09

0.75 1.33

1.00 1.28

1.25 0.91

1.50 0.53

U[0.50, 1.50] 0.89

Table 4:  Dependence of the scaling law exponent, µ, on the coefficient b, of the increasing
returns term

For b < 0.5, the firm size distribution is too concave to be well-fit by a simple
scaling law, as was the case for β  < 1.7 in table 3.  For b > 1.5, the maximum
firm size is so large as to present computational constraints, also in similar

                                                
66 Concavity is also a feature of the empirical data, so it may be that βs of this magnitude are

not unrealistic.
67 In order for keep the computational model from running away to a single large firm, a large

population of agents must be instantiated for βs of this magnitude, and it is not practical to
simulate such large models on workstations today.



The      Emergence      of      Firms                                                                                              Axtell  

73

fashion to table 3 (large β ).  Average firm size is also an increasing function of
b.

The case of b ~ U[0.50, 1.50] is of particular interest.  Here each time an
agent founds a firm it draws a b from this distribution.  Note that the power-
law exponent for this case behaves much more like b = 1.25, not b = 1.0, the
mean of the distribution.  This is to say that the kinds of firm that exist at any
time have a preponderance of large b's.

4.3 Alternative Specifications of Preferences

Preferences are distributed uniformly on [0,1] in the base case.  This
yields a certain number of agents having quite extreme preferences: those
with θ Å 0 are leisure lovers and consider income superfluous, while those
with θ Å 1 are income lovers and spend little time in leisure activities.  In this
section a variety of  alternative populations of preferences shall be studied.  In
particular, we shall first look at the effect of removing the agents with
extreme preferences from the population, by truncating the uniform
distribution, yielding a distribution with less variance but the same mean.
Next, uniformity gives way to a single-peaked distribution of triangular type.
Then, the effect of a skewed distribution is studied.  Preferences are made
somewhat 'smoother' subsequently through use of a truncated normal
distribution.  Then, measures having special propertiesÑthe beta and Dirac
deltaÑare used.  Finally, the Cobb-Douglas specification of preferences is
relaxed in favor of the CES functional form, i.e.,
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where each δi ∈  [0, 1] and ρi ∈  [-1, °).  For ρi = -1 the utility function is linear
in effort, while in the limit of ρi approaching 0 Cobb-Douglas behavior
obtains (cf. Varian [1984: 30]).  One of the variations reported below has ρi
distributed uniformly on [-1, 0], so that agents have a variety of utility
function specifications.  As ρi gets large, preferences take on a Leontief
character, and a case of this type is also studied.  The results of these
variations are summarized in table 5.
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Distribution µ
C-D with θ ~ uniform on [0, 1] 1.28

C-D with θ ~ uniform on [0.25, 0.75] 1.21

C-D with θ ~ triangular on [0, 1] with mode 0.5 1.31

C-D with θ ~ triangular on [0, 1] with mode 0.75 1.01

CD with θ ~ truncated normal on [0, 1] with variance 1/2 1.30

C-D with θ ~ beta on [0, 1] with parameters 1 and 2 0.99

C-D with θ ~ Dirac delta at 0.75 0.91

CES with δ ~ uniform on [0, 1], ρ ~ uniform on [-1, 0] 1.56

CES with δ ~ uniform on [0, 1], ρ ~ uniform on [0, 10] 1.26

Table 5:  Dependence of the scaling law exponent, µ, on the distribution of agent preferences

Overall, the general power-law character of the size distributions remain,
although changes in the distribution of preferences have significant effect.
CES preferences yield power law exponents that are comparable to those
previously obtained, leading to the conclusion that the general character of
the model does not depend sensitively on the functional forms employed.

4.4 Effect of the Extent and Composition of Agent Social Networks
In all of the above, each agent had only two friends.  The number of

friends is a measure of an agent's search or information space, since the agent
queries these other agents each period to assess the feasibility of joining their
firms.  In this section we want to determine the effect of increasing the extent
of the agents' social networks.

To do this we simply assign each agent some number ν > 2 friends at
time 0.  Then, when determining its optimal effort level, an agent will
consider each of these friends' firms as a possible place to work.68  In
particular, the number of friends was varied from 2 to 10, and the power law
parameter in the firm size distribution function estimated.  The results are
summarized in table 6.

                                                
68 Computationally, this slows down execution of the model in proportion to ν.
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ν µ
2 1.28

4 1.11

6 1.08

8 1.08

10 0.99

U[2, 10] 1.11

Table 6:  Dependence of scaling law exponent on the size of social networks, where social
networks are composed of agents (friends), specified exogenously

Thus, the overall effect of increasing the size of agent social networks is in the
same direction as raising the increasing returns parameter, β.  That is, it tends
to stabilize large firms, although this effect is relatively weak.  Essentially, as ν
increases the system becomes more "fluid" and agents can better seek out
gains from cooperation.  Note that the effect of having heterogeneous ν is
that the system behaves a little more like a society with a smaller network.  
Presumably this means that agents with large social networks have very little
advantage over agents with smaller networks.  What matters is that oneÕs
social network is 'large enough'.

Next, instead of the social network consisting of exogenously specified
agents, here it consists of randomly selected firms.  Results are shown in table
7.

ν µ
2 1.28

4 1.22

6 1.18

8 1.07

10 1.03

U[2, 10] 1.02

Table 7:  Dependence of scaling law exponent on the size of social networks, where social
networks are composed of randomly selected firms

These results are analogous to those of table 6.  As social networks get larger
somewhat larger firms can be supported.  Note that when agents have social
networks of various sizes the overall behavior of the model is similar to
when agents have relatively large networks.  That is, agents with large
networks seem to be primarily responsible for the overall structure of the
firm size distribution.
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4.5 Effect of Agent ÒLoyaltyÓ

In the basic model, agents are local optimizers, doing the best they can
for themselves without regard for others around them.  One way to make
them more socially aware is to give them loyalty to their firms, where by
loyalty we mean that an agent does not move to a new firm even though it
has determined that it would be better off by doing so.69  Formally, call λ the
maximum number of times an agent an computes that the best thing for it to
do is move elsewhere, but it does not do so.  Once the number of such
assessments exceeds λ  then the agent, in fact, moves, and resets its λ  counter.
That is, it now displays loyalty to its new firm.

The setting λ  = 0 corresponds to the base model.  Various other values
for λ  have been experimented with and the effect on the firm size distribution
exponent, µ , measured.  These results are summarized in table 8.

λ µ
0 1.28

2 1.14

5 0.85

10 0.77

U[0, 10] 0.79

Table 8:  Dependence of scaling law exponent on agent loyalty

Note that increasing λ produces more large firms.  That is, loyalty is a
stabilizing factor for large firms, in accord with intuition.  This is a relatively
strong effect.  Furthermore, when the agent population is heterogeneous the
agents with little loyalty are incapable of destabilizing large firms.

4.6 Bounded Rationality: Groping for Better Effort Levels

In all of the above agents were able to adjust their effort levels to
anywhere within the feasible range [0, 1] instantaneously.  That is, when an
agent was active, it solved an unconstrained optimization problem.  Here we
explore the notion that agents used to working with effort e will make only
small changes in e each time they are activated.  It is as if there was some

                                                
69 Loyalty is a prominent feature in other agent-based computational models.  Tesfatsion

[1998] utilizes a notion of worker-employer loyalty in a model of labor markets.  In Kirman
and Vriend [1998], loyalty between buyers and sellers emerges in bilateral exchange
markets.
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prevailing cultural norm or work ethic which constrains the agents to keep
doing what they have been, more or less, despite what is going on around
them.

In particular, we require that each agent searches for its utility-
maximizing effort level over a range of 0.10 around its current effort level.
That is, an agent working with effort ei picks its new effort level from the
range [ei , ei ], where ei  = max(0, ei - 0.05) and ei  = min(ei + 0.05, 1).  The
overall effect of such sticky effort level adjustment dynamics is given in table
9, where the firm size distribution exponent, µ, is shown as a function of the
increasing returns parameter, β.

β µ µsticky

1.7 2.06 1.54

1.8 1.62 1.25

1.9 1.32 1.17

2.0 1.28 0.92

2.1 0.95 0.95

Table 9:  Dependence of scaling law exponent on stickiness of effort adjustment, various β

The effect is similar to adding agent loyalty, that is, to produce larger firms.
The reason for this is intuitively clear.  As large firms tend toward non-
cooperation, sticky effort adjustment puts the brakes on the downhill spiral to
complete free riding.

Next imagine that agents can only sample a single effort level different
from their current level and either accept it as the new level or else maintain
their previous effort.  Call this process effort level groping.  Table 10
summarizes the effect of this restriction on search on the power law
exponent.

β µ µgroping

1.7 2.06 1.69

1.8 1.62 1.49

1.9 1.32 1.33

2.0 1.28 1.19

2.1 0.95 1.00

Table 10:  Dependence of scaling law exponent on stickiness of effort adjustment, various β

The effect is similar to before, just more pronounced.  The firm size
distributions that result from effort level groping are characterized by fewer
smaller firms and greater numbers of large firms.
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4.7 Alternative Compensation Schemes
So far all agents in a group have shared total output equally.  Here we

study a variety of alternative division rules.70  The class of rules we
investigate involves compensation formulas in which the agents who have
been with the firm the longest receive relatively larger shares.  Several
variations of this are studied.  The next section studies a division rule i n
which each agent receives some fixed income, with equal bonus shares based
on overall firm performance.  The common effect of these two variations is
to help stabilize large firms.

It is an easy matter computationally to keep track of the seniority of the
agents within a firm.  Thus, it is easy to tie agent compensation to
seniorityÑone needs only a formula for doing so.  Call si(O) the share of total
output that is agent i's, where i is an index of the agent's seniority, with i = 1
referring to the firm founder, or at least the agent with the greatest seniority
in the event that the actual founder has left the firm.  Define g(i) as an output
division function such that

s O
g i

g i
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We shall here consider a class of 'hyperbolic' compensation policies, division
rules which have the general character of allocating more to agents having
greater seniority.71  As an example, consider g(i; p) = p-i.  Each share in such a
system is progressively smaller by 1/p.  Results are summarized in table 11,
below.

                                                
70 Encinosa et al . [1997] have studied compensation systems empirically for team production

environments quite similar to the one considered here.  They find that Ògroup normsÓ are a t
least as important as conventional economic considerations in determining pay practices in
medical groups.  Garen [1998] empirically links pay systems to organizational form, finding
that monitoring costs largely determine the type of system used.

71 It might be argued that compensation functions of this type would have been a better choice
for our modelÕs base case, insofar as they are more realistic than the equal division one.
However, given that these compensation functions are essentially Ôpower lawÕ in character,
the achievement of power law firm size distributions could have been viewed as a possible
modeling artifactÑa spurious result induced by the choice of compensation function.  For
this reason the uniform division compensation rule was used in the base case.
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g(i) µ
5-i 1.11

4-i 1.03

3-i 0.96

2-i 0.89

1-i = 1 1.28

2-(i+1) 0.99

2-(i+2) 1.07

2-(i+3) 1.04

Table 11:  Dependence of scaling law exponent on hyperbolic compensation functions

Note that the overall effect of hyperbolic compensation, in comparison to
uniform compensation, is to make large firms somewhat more stable.  But
notice that this effect is not strong.

4.8 Firm Founder Acts as Residual Claimant

Bonus compensation is an important feature of real compensation
systems.  It is usually coupled to some form of base compensation.  Here the
equal output shares model is modified by breaking up total compensation
into base and bonus amounts, where the latter is what the founder agent
allocates to each agent once base compensation is paid.  In essence, the equal
shares model represents the limit of having 100% of each agent's
compensation variable.  Call Φi the fixed (base) part of income an agent
receives.  Therefore, the bonus each agent will share is
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Overall, each agent is faced with optimizing a utility function that now has
the form
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The first order conditions for this problem can be written down but are of
little use here since the Nash equilibrium of the model is certain to be
unstable.  Rather, given that each agent is now motivated by (21) we simply
spin the model forward in time and study the firms that self-organize.



The      Emergence      of      Firms                                                                                              Axtell  

80

Intuitively, separating compensation into fixed and variable
components should have the effect of stabilizing firmsÑdecreasing
'turbulence'Ñinsofar as it will make agents less dependent on the variable
part of total firm output.  Results are shown in table 12.

Base Compensation µ
0 1.28

20% of singleton income 1.26

50% of singleton income 1.06

80% of singleton income 0.85

singleton income of median agent 0.99

singleton income of mean agent 1.01

Table 12:  Dependence of scaling law exponent on type of base compensation

Note that the overall effect of bonus compensation is indeed to stabilize large
firms somewhat.

Although tables 11 and 12 demonstrate that compensation rules have
systematic effects on the overall stability of firms and the resulting size
distribution, it is also true that these effects are relatively small and that the
Ôequal sharingÕ compensation scheme is a reasonable starting point for
analysis.

Here the residual claimant, in the form of the firm founder, acts only
to divide up the firmÕs surplus over base wages.  A richer model would
permit the founder to save some of the surplus for future periods, use it to
invest in or buy-out another founder, or just keep it for itself.  Furthermore,
agents would have some expectations as to the disposition of the surplus and
would make their effort level adjustments accordingly.  Here there are many
paths which one might fruitfully with the model, and perhaps these will be
the subject of future work.

4.9 Firm Founder Sets Hiring Standards

Perhaps the most unrealistic aspect of this model is that agents can join
any firm that they deem to be a better opportunity for them.  Here this
specification of the model is varied, by having the firm founder put hiring
standards in place.  In particular, when an agent finds a firm it wants to join it
first queries the firm founder, who determines whether or not the new job
candidate has a preference for income that is at least φ% of its ownÑincome
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preference is a surrogate for how hard an agent will work.72  Results are
shown in table 13 below for φ varying from 0 to 100%.

θι µ
³ 0% θfounder 1.28

³ 20% θfounder 1.27

³ 40% θfounder 1.22

³ 60% θfounder 1.03

³ 80% θfounder 1.17

³ 100% θfounder *

³ U[0%, 100%] θfounder 1.13

Table 13:  Dependence of scaling law exponent on firm target output level

The (*) indicates that the resultant size distribution is not well described by a
power law.  Note that the overall effect of hiring policies of this type is to first
stabilize large firms to some extent (smaller µ), and then to destabilize them
(larger µ), although the value of µ for the φ = 80% case is perhaps not
dependable as this size distribution also departed significantly from power
law behavior.  The firms in this parameterization tend to grow more slowly,
mostly due to the difficulty of finding agents who satisfy the hiring criteria.

4.10 Effort-Level Monitoring within Firms
An unrealistic aspect of this model is that shirking goes completely

undetected and unpunished.  Such matters are of crucial importance i n
actually-existing firms, and large literatures have grown up around this
question; well-known work includes Olson [1965].  More recent work includes
the models of mutual monitoring of Bowles and Gintis [1998] and Dong and
Dow [1993b], the effect of free exit (Dong and Dow [1993a]), and endowment
effects (Legros and Newman [1996]).  Ostrom [1990] describes mutual
monitoring in institutions of self-governance that have arisen for managing
common property resource problems. Getting realistic intra-firm
organizational structures to emerge is an active area of research within the
multi-agent computational approach to firm formation and evolution.73

                                                
72 An alternative way to view the base model, in which agents can join any firm they wish, is

that agent type is unobservable and, therefore, job applicants cannot be filtered by
preference.

73 Allen [1997] is working on evolving agent-agent monitoring structures by which agents can
detect shirking.
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However, perhaps one lesson that can be drawn from the results i n
table 13 is that, while it may be the objective of the management of firms to
have perfect monitoring of employees, when monitoring is perfect the
empirical size distribution fails to obtain.74  Stated differently, perhaps all
firms suffer, to a greater or lesser extent, from imperfect monitoring, and
therefore the creation of economic models in which perfect monitoring
obtains in equilibrium is a kind of quixotic undertaking, for which the only
possible outcome can be disagreement with empirical data.  Indeed, many
real-world compensation systems can be interpreted as devices for managing
incentive problems by substituting reward for supervision, from efficiency
wages to profit-sharing (Bowles and Gintis [1996]).  Furthermore, if incentive
problems in team production environments were perfectly handled by
monitoring then there would be little need for the corporate law (Blair and
Stout [1997]).

4.11 Putting it all Together:  Compound Variations
So far each variation of the model has been undertaken as a single

departure from the base case.  We have systematically explored the
neighborhood of the base case but each time returned to the safe haven from
whence we departed before striking out anew.  Here we simply note that it is
possible to proceed somewhat differently.  Imagine that multiple attributes
from the table 2 base case are varied at once.  For example, a model quite
distant from the base case would result if the coefficients of the production
function are selected to be different from unity, the increasing returns
exponent is different from 2, the number of neighbors is set to 10, loyalty is
uniformly distributed on [0, 10], a hyperbolic compensation policy is invoked,
and we start with 10,000 agents in random groups.  Given the modest number
of variations described in ¤ 4 alone it is possible to construct nearly 200
million distinct models.75

Imagine now that some number of such variations had been executed,
and for each the power-law exponent of the firm size distribution, µ,
estimated.  It would then be possible, in principle, to determine how µ
depends on the model parameterization.  But how would such a model be
specified?  In general, the way in which µ depends on a, b, β, the distribution
of θ, loyalty (λ), and so on is surely very complicated.  A naive specification
would write µ as a linear function of these parameters.  But certainly this is a
misspecification.  Indeed, we have employed agent-based computation as an
engine of aggregation, precisely to surmount the many and deep difficulties
                                                
74 The table 13 results on hiring restrictions are not directly about monitoring, but are similar

in spirit since filtering of workers by ability is a way to control effort levels.
75  This quantity results multiplying through the variations in tables 3 - 13, i.e., 6 x 6 x 9 x (6 + 6)

x 5 x (5 + 5) x 8 x 6 x 7 = 195,955,200.
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associated with the exact aggregation of such a model.  Perhaps every
functional form is a misspecification, and that the only ÔtrueÕ model is the
agent-based representation that generated the data.  If so, we need to learn
how to identify and estimate such models, something about which little is
known at present.76

5 Conclusions
A microeconomic model of firm formation has been described

analytically and explored computationally.  Stable equilibrium configurations
of firms do not exist in this model.  Rather, agents constantly adapt to the
social circumstances in which they find themselves and periodically jump
from one firm to another, or start-up a new firm.  This very simple model,
consisting only of locally optimizing agents embedded in a world of
increasing returns, proves sufficient to generate macro-statistics on firm size
and growth rate distributions that closely resemble real-world data.  Despite
increasing returns at the firm level, approximately constant returns obtain at
the aggregate level, a result due in part to agent migration between firms.  It is
also worth emphasizing that this model does not yield firms who are explicit
profit maximizers.  While there is certainly no shortage of optimizing
behavior present in the model, this occurs solely at the agent level, not the
firm level.  Yet selection happens at the firm level.  Successful are those firms
capable of providing utility to income-loving agents.  Welfare analysis reveals
that firms serve as vehicles through which agents realize greater utility than
they might otherwise.

The model yields a reasonably complete picture of the evolution of
simple firms having little internal organization.  There exists a well-defined
firm life cycle in the model, one which shares certain qualitative similarities
with actual firm life cycles.  Firms are typically founded by agents who prefer
income to leisure then, over time, agents with relatively greater preference
for leisure join.  The number of free riders grows over time in a typical firm,
leading to dilution of agent income shares,  exit of the most productive agents
in the firm, and collapse of total firm output.  Firm lifetimes are
exponentially distributed.

The model also produces a noiseless picture of agent careers, both
longitudinally and in cross-section.  Agents move from firm to firm, staying
in one place some 3-4 years on average.  Overall, agent effort levels, income
and utility are positively correlated with preference for income, although
there is significant variation among agents having identical preferences.
Income-loving agents typically work in larger firms.

                                                
76 I thank Carl Christ for emphasizing to me the importance of such matters for the continued

development of this modeling approach.
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The general character of these results was demonstrated to be robust to
a great number of variations in the model specification.  Altering the
increasing returns parameters merely changes the slope of the power law firm
size distribution, as do modifications to the extent and composition of agent
social networks.  Permitting the agents to display ÔloyaltyÕ to their firms tends
to produce larger firms, as does limiting the agentsÕ abilities to adjust their
effort levels.  A variety of alternative compensation schemes were
investigated, as was the possibility that firm founders act as residual
claimants.  While the right-skewed character of the size distribution proved
to be robust to a number of alternative specifications of agent preferences, it is
also true that if agents were homogeneous and did not significantly value
income then few large firms resulted.  Similarly, when agents did not act
purposively, but either chose their efforts randomly or chose to migrate
between firms selected at random, then the model failed to generate size
distributions that resembled empirical data.  Finally, when firms are able to
observe the preferences of job applicants then firms tend to be more stable
and large firms can survive.  However, if founders perfectly filter the
population for agents having preferences for income equal to or greater than
their own then the power law character of the size distribution breaks down.

Future work includes modeling the output market.  There are two
ways to interpret how output is converted into income in the present model.
First, given that stationary distributions of income and output arise in the
model, any market mechanism would yield an essentially constant price for
the output good, treated here as a single homogeneous consumption good.
Alternatively, imagine that agents have heterogeneous preferences over
many goods, and that firms specialize in producing a single one of these
goods.  Then, as long as the economy is sufficiently largeÑas long as there are
a large number of firmsÑall products will be made in more or less constant
amounts and, given stable agent preferences, there will obtain an equilibrium
vector of prices for these goods.  While there are likely many interesting facets
to actually building an output market, it is also the case that a powerful result
of the present model is that through purely local interactions there develops
long-range correlationsÑthe power law size distributions have no
characteristic scale, and therefore all sizes are present up through the finite
size cut-offs.  That is, by coupling the agents through the output market we
would expect long-range correlations, but such internal structure arises
spontaneously in the model even when the agents are not explicitly coupled
globally.
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5.1 The Emergence of Firms and ÒUniversalityÓ
The essential result of this paper is to connect an explicit

microeconomic model of endogenous firm formation to aggregate firm data.
It describes a bridge between the micro and macro worlds, accomplished using
agent-based computational methods.77  But clearly the model is very
minimal, so spare as to seem quite unrealistic.78  How is it that such a
stripped-down model of behavior, yielding such ÔflatÕ organizations, could
ever resemble empirical data?

One plausible answer to this apparent riddle is what physicists call
ÔuniversalityÕ.  In certain physical systems the detailed behavior of the
constituents of the system do not make much difference in the macroscopic
behavior of the system.  Perhaps the canonical example of this occurs in phase
transitions, where a variety of models of the actual dynamics have more or
less equivalent statistical mechanics.  More to the point for social systems, it
has been demonstrated by Nagel and Rasmussen [1994] that universality exists
in a class of agent-based traffic models.  It turns out that empirically-relevant
distributions of traffic jamming behavior result from a variety of
microspecifications of agent driving behavior.  One way to think about
universality is to view it as a property of highly constrained systems, with few
degrees of freedom for the components of the systemÑeach agent in a traffic
jam has so few options that it doesnÕt really matter very much which driving
strategy is adopted, all will yield about the same travel time.

We suspect that a very similar phenomenon is at work in the present
model.  In part B of the appendix it is demonstrated that fairly weak
requirements on effort level adjustment functions are necessary in order to
produce instability at the agent level.  That is, the strategic environment is so
highly structured and the feasible behavioral options so constrained that very
wide classes of purposive agent action yield the kinds of results reported i n
this paper.79

This would seem to mitigate against criticisms that the agents described
herein are too myopic, act too little strategically, and have too little rationality

                                                
77 It is folk wisdomÑostensibly attributable to no one in particular, although I first heard i t

from Chris LangtonÑthat agent-based models can function as a kind of Ômacroscope,Õ
permitting one to see the macroscopic regularities that result from particular microscopic
specifications.

78 In this the model is a kin to SchellingÕs segregation model [Schelling 1978]; for a more recent
discussion of the Schelling model, including a modern implementation as well as citations
to related work, see Epstein and Axtell [1996: 165-171].

79 Universality in this guise seems to suggest that in environments such as the one described
here there is little value to be gained by discovering, as through experiments, just how
people behave.  In essence, as long as behavior has the Ôright sign at the marginÕ then
certain patterns of aggregate behavior will always emerge.
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to arrive at anything even approximating optimal strategies.  Universality
aside, it is possible to render at least two additional defenses of the relatively
simple agents employed herein.  First, the economic environment in which
the agents find themselves is combinatorially too complex  for even highly
capable agents to be able to deduce anything like rational behaviors.  There are
just too many possible coalition structures for anything like an optimal one to
ever get considered, to say nothing of sampled.  Each agent finds itself i n
perpetually novel circumstances.80  Second, the strategic environment is t o o
complex dynamically for agents to make anything like accurate forecasts or
predictions, even in the relatively short run.81  Agents are constantly
migrating between firms.  Firms are constantly being formed, growing, and
dissolving.  While there is local quasi-stationarity in particular firms at
specific times, overall there is constant flux and adjustment.

These considerations bring into relief a feature of conventional game
theory that, although tacitly acknowledged, represents an axiom that is never
justified.  Here we speak of the equation of social equilibrium with agent-
level equilibrium.  That is, given that the goal of game theoretic models is to
explain certain social and economic regularities, it is implicitly assumed that
such aggregate ÔequilibriaÕ must be the result of microeconomic
equilibriaÑgame theory treats the micro- and macro-worlds as being
homogeneous  in this sense.  But macroscopic regularities that have the
character of statistical equilibriaÑstationary distributions, for instanceÑmay
have two conceptually quite distinct origins.  When equilibrium at the agent
level is achieved, perhaps as stochastic fluctuations about one or more
deterministic equilibria, then there is a definite sense in which macro-
stationarity is a direct consequence of micro-equilibrium (for examples of this
see Young [1993]).  But when there does not exist a stable equilibrium, either
deterministic or stochastic, then the homogeneity assumption of equilibrium
game theory is invalid, yet it may often be the case that stationary
configurationsÑpatternsÑwill appear at the macro-level nonetheless.
Furthermore, when equilibria exist and are stable but require, from generic
initial conditions, an amount of time to be realized that is long in comparison
to the duration of the economic process under consideration, then the
homogeneity assumption is again violated, and one may be better off looking
for aggregate regularities in the long-lived transients.  This critique is
particularly relevant to coalition formation games in large agent populations,
where the number of coalition structures is given by the unimaginably vast
Bell numbers, and it would thus be extremely unlikely that anything like
stable equilibrium coalitions could ever be realized.  Therefore constant flux

                                                
80 Anderlini and Felli [1994] ascribe the inherent impossibility of writing complete contracts

to the combinatorial complexity of nature.
81 Anderlini [1998] describes the kinds of forecasting errors that are intrinsic in such

environments.
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in the composition of firms would seem to be undeniable, leading to the
conclusion that microeconomic equilibrium, while it may exist, is never
attained.

5.2 What Constitutes a ÔTheory of the FirmÕ?
Extant theories of the firm are steeped in this kind of micro-to-macro

homogeneity.  They begin innocuously enough, with purposive agents i n
strategic environments of one kind or another, notionally similar to some
known organization form (e.g., hierarchy).  They then go on to derive the
performance of the resulting firms in response to strategic rivals, uncertainty,
information processing constraints, and so on.  But these derivations are
almost everywhere characterized by equilibrium theorizing, that is, inter-firm
stationarity is seen as the result of intra-firm equilibrium and thus the
homogeneity assumption is manifest.82

It is a claim of this paper that preoccupation with equilibrium notions
is largely responsible for the relative neglect of the overall size distribution of
firms in industrial organization.83  While the existence and stability of this
distribution have been well-known for decades, and while microeconomic
conceptions now dominate industrial organization theory, there apparently
does not exist a microeconomic (equilibrium) explanation of the aggregate
size distribution.  Indeed, perhaps it is the case that no equilibrium theory
could ever reproduce the empirical data.84  For as alluded to in ¤ 3.4 above,
the recent body of work on Ôself-organized criticalityÕ suggests that power law
distributions are generically not the result of perturbations about an
equilibrium configuration.

Some readers will find implausible the suggestion that the model
described herein should stand on equal footing with any of the conventional
theories of the firm.  Indeed, there is no firm-specific management,
organization, or ÔstrategyÕ in the present model.  Cost functions, product
pricing, profit maximization and other staples of the neoclassical texts are
nowhere present.  Also absent are explicit transaction costs, physical assets,
specializationÑeven the very notion of ownership is ambiguous.  Nor do
product or process innovations, or technological change of any kind, for that
matter, enter into the pictureÑindeed, differentiated products are not even

                                                
82 Least guilty of this charge is the evolutionary paradigm.
83 For example, in the recent textbook of Shy [1995], the overall size distribution is not

mentioned at all, and discussions of concentration are both industry-specific and purely
descriptiveÑmeasures of concentration are defined but no theory of concentration is
proffered.

84 For a related critique of equilibrium theorizing in the neoclassical theory of the firm, see
Lazonick [1991].
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part of the model.  Yet there are two senses in which the model developed
herein is clearly a Ôtheory of the firm.Õ

First, supplementing Stanley et al. [1996: 806], there are three important
empirical facts that any accurate theory of the firm must reproduce:

(a) firm sizes must be right-skewed, approximating a power law;
(b) firm growth rates must be Laplace distributed;
(c) the standard deviation in log growth rates as a function of size must

follow a power law with exponent -0.15 ± 0.03.
Condition (a) may or may not be redundant given that (b) is satisfied,
depending on the model in question.  One additional requirement suggests
itself in order to bring the theory of the firm into the company of the rest of
modern economicsÑit should be methodologically individualist:

(d) the model must be written at the level of individual agents.
Aside from the research described in this essay, theories of the firm that
satisfy all these requirements are unknown to us.

While today there exists a variety of theories of the firm, none is
sufficiently explicit to be operationalized at a level comparable to the model
described herein.  That is, although each is stated at the microeconomic
levelÑin terms of individual firms or agentsÑthe focus of each on
equilibrium means that agent behavior away from equilibrium is left more or
less unspecified.  In the language of Simon [1976], these theories are
substantively rational, not procedurally so.  Micromechanisms by which
agents might plausibly arrive at the equilibria described in these theories are
not usually made explicit.85  The second sense in which our model can be
considered a Ôtheory of the firmÕ is that agent-based computational models
always constitute an explanation of the phenomenon they reproduce.86  In
the philosophy of science an explanation is only defined with respect to a
theory.87  A theory has to be general enough to permit many
instantiationsÑto provide explanations of whole classes of
phenomenaÑwhile not being so vague that it can rationalize all
phenomenaÑi.e., is not falsifiable.  Each parameterization of an agent-based
model is an instantiation of a more general agent ÔtheoryÕ.  Executing a

                                                
85 I began my investigations of endogenous firm models with the expectation of drawing

heavily on existing economic theory in order to extend agent-based computational modeling
to include the self-organization of firms and related types of organizations.  While I did
not literally expect to be able to turn CoaseÕs beautiful prose into operational software line-
by-line, I did expect to find significant guidance in the post-1937 literature as to the
micromechanisms by which agents form firms.  But these expectations were soon dashed by
this focus of conventional theories of the firm on equilibrium.

86 According to Simon (Ijiri and Simon [1977: 118]):  ÒTo ÔexplainÕ an empirical regularity is to
discover a set of simple mechanisms that would produce the former in any system governed
by the latter.Ó

87 This is the so-called deductive-nomological (D-N) view of explanation; see Hempel [1966].
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particular instantiation yields patterns and regularities that can be compared
to empirical data, thus making both the instantiation as well as the overall
model falsifiable.88

So, what is the explanation for firms and the firm size distribution
being proposed here?  That is, why  do purposively-behaving agents form
firms having a power law size distribution and a Laplace growth rate
distribution?  The answer to this question is not profitably given by appeal to
reduced form equations estimated econometrically.  Rather, the ultimate
explanation for the regularities that arise in the model lies with the agents
themselves: if agents behave in the way we have specified then the various
distributions described above result.  Agent-based computational models are
in this way a kin to laboratory science, where the procedures of investigation
are described in as much detail as the discovery itself.  Ultimately, we may
have a mathematical theory that links the micro-specifications to the macro-
regularities, but for now one must be content with the discovery that the
latter result from the former.

It is sometimes said that the science of thermodynamics owes more to
the steam engine than the steam engine owes thermodynamics.  Perhaps the
same is true of firms and economic theory.  Really-existing firms and
organizations have provided the important concept of bounded rationality, a
notion still far from fully-integrated into economic theory.89  More recently,
consideration of the economics of information within organizations has led
to promotion of both Ôinformation processingÕ perspectives and Ôlocal
interactionsÕ approaches to economic models (cf. Radner [1993], Van Zandt
[1996, forthcoming]).  It is hoped that the present paper will provide impetus
for general development of non-equilibrium theories in economics, in which
case computational methods may prove to be relatively more efficacious than
purely analytical ones, at least if progress in other branches of science is any
guide.  But it is probably the case that a move to non-equilibrium models is a
larger leap than either the modest hop to local interactions or the somewhat
greater jump to bounded rationality, and requires significant re-tooling of
intellectual capital.  However, once such a transition is underway it will
certainly be justified to say that economic theory owes more to firms than the
other way around.

                                                
88 In models that are intrinsically stochastic multiple executions of individual model

instances must be made in order to filter out idiosyncratic correlation from regularities tha t
are robust to stochastic variation.

89 SimonÕs early conclusion concerning the unreasonableness of fully-optimizing models was a
direct result of his empirical work on organizations [1947].
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5.3 The Comparative Advantages of Computational Agents
This model is a first step toward a more realistic theory of the firm, one

with explicit micro-foundations, employing heterogeneous agents with
bounded cognitive abilities, who interact locally in perpetually novel
environments.  It has also been demonstrated that this approach is one which
produces empirically accurate results.

The technical apparatus utilized to produce these new results is the
computer.  Historically, computers have been employed by economists to
solve equations, from mathematical programming problems to so-called
microsimulation techniques to macroeconomic models written entirely i n
terms of aggregate variables.  More recently, numerical methods have worked
their way into all sub-disciplines of the field, especially in areas where models
are complex or analytically intractable.90  Numerical techniques largely
complement conventional theorizing, serving as the crank by which
computer hardware churns initial conditions into intermediate results and
then final answers.91

The way in which computer power is being harnessed here is very
different from such numerical workouts.  Implicit in the agent-based
modeling techniques on display above is a rejection of the idea that a set of
equations of relatively small dimension, whether deterministic or stochastic,
can ever be a satisfactory representation of real economic processes.  So many
heroic assumptions are made in writing down such equationsÑconcerning
aggregation, continuity, rationality, information, price-takingÑand then
again in their solutionÑhomogeneous agents, equilibrium, common
knowledge, continuum of agentsÑas to all but vitiate the results obtained,
except to those used to laboring under such heavy burdens and who have
acquired the calluses requisite for quieting what would otherwise surely be
significant discomfort.

Agent-based computation provides a way out.  Agents can be arbitrarily
heterogeneous.  They can interact with one another directly (local
interactions) or indirectly through aggregate economic variables (global
interactions).  Agents can possess but a limited amount of information and
are of necessity boundedly rational, since to model full rationality is too
computationally complex in all but extremely simple environments
(Papadimitriou [1993]).  Aggregation happens automatically in such models,
with noiseless cross-sectional information available at each instant.
Aggregate relationships emerge  in such models and are thus not limited a
priori by what the Ôarmchair economistÕ (Simon [1986]) can imagine.  Perhaps

                                                
90 The recent volume of Judd [1998] is testament of the extent to which numerical analysis has

penetrated economic theory and practice.
91 Judd [1997] has argued that numerical methods can also function, in some circumstances, as a

substitute for conventional theorizing.
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most importantly, there is no need to postulate the existence or attainment of
equilibrium.  Rather, one merely interrogates the model output for patterns
and regularities, which may or may not include stable equilibria.  Indeed, as
the present model has demonstrated, agent-based computational modeling is
a very natural technique for studying economic processes that are far from
equilibrium.

The present work has just scratched the surface of the pregnant
interface between autonomous agent modeling and the theory of the firm.
Much work remains to be done.
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Appendix
In this appendix the particular function forms used in ¤ 2 are relaxed.

The main reason for adopting explicit functional forms above was to provide
a clear benchmark against which the computational model could be
compared.  Of course, the computational model requires that particular
functions be used.  In ¤ A, the Cobb-Douglas preferences are replaced by a
general form involving only single-peakedness.  Then, the effort level
adjustment function employed above is generalized in ¤ B.

A More General Preferences
Here a general model of agent preferences is described and results

analogous to those of section 2.2 derived.  These concern the existence of
equilibrium effort levels in a group of fixed size.

Each agent has preferences for income, I, and leisure, L, with more of
either preferred to less, ceteris paribus.  Agent i's income is monotone non-
decreasing in its effort level ei as well as that of the other agents in the group,
E~i.  Its leisure is a non-decreasing function of 1 - ei. Overall, the agent's utility
can be written as
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Furthermore, assuming that each of these partial derivatives is continuous i n
its arguments, and that Ui(0, .) = Ui(., 0) = 0, it is easy to show that each utility
function is single-peaked in effort level.

Each agent selects the unique effort level that maximizes its utility, as
in equation (4).  The first-order conditions amount to
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From the inverse function theorem there exists a solution to this equation
having the form ei

*  = max [0, ζ(E~i)], analogous to (5).  Furthermore, from the
implicit function theorem it is straightforward to show that ζ, and therefore
ei

* , is a continuous, non-increasing function of E~i (analog of figure 1).

Group effort level equilibrium corresponds to each agent determining
its optimal effort level, ei

* , assuming that the other agents are doing so as well,
i.e., substituting

E ei j
i j

~
* *=

≠
∑

in place of E~i.  Since each ei
*  is a continuous function of E~i so is the vector of

optimal effort levels, e*  ∈  [0, 1]N, a compact, convex set.  Therefore, by the
Leray-Schaduer-Tychonoff theorem a solution exists.  Furthermore, such a
solution constitutes a Nash equilibrium.  In general, a Nash equilibrium is
Pareto-dominated by other effort level vectors, ones involving larger
amounts of effort on the part of all agents.  Here the reasoning is identical to
that in ¤ 2.2 above.

B A More General Model of Effort Level Adjustment
In section 2.3 conditions were derived relating to the onset of instability

in groups, using a particular agent effort adjustment rule.  Here it will be
shown that an upper bound on agent group size exists for any effort level
adjustment rule that possesses certain properties.

In particular, imagine that each agent adjusts its effort level according
to
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Under these circumstances the Jacobian matrix retains the structure described
in ¤ 2.3, i.e.,
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where each row contains N-1 identical entries and a 0 on the diagonal.  The
bounds on the dominant eigenvalue established in section 2.3 guarantee that
there exists an upper bound on the stable group size, as long as the ki do not
vanish.  Such a condition holds when (B.1) is a strict inequality, thus
establishing a sufficient condition for the onset of instability in groups above
some maximum size.
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