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1. Introduction

New ideas and ways of doing things do not necessarily take hold dl at once, but often spread gradualy
through socid networks. In a classic study, Coleman, Katz, and Menzdl (1966) showed how doctors
willingness to prescribe the new antibictic tetracycline diffused through professond contacts. A smilar
pattern has been documented in the adoption of family planning methods, new agriculturd practices, and
a variety of other innovations (Rogers and Shoemaker, 1971; Rogers and Kincaid, 1981; Rogers,
1983; Vdente, 1995). In the firg stage a few innovators adopt, then people in contact with the
innovators adopt, then people in contact with those people adopt, and so forth until eventudly the
innovation spreads throughout the society.

A smilar process can be used to describe the diffuson of certain norms of behavior. For example, if
people are more likely to jaywalk when they see others in the neighborhood jaywalking, the actions of a
few "innovators' may cause jaywalking to become common practice in a given area. This generd kind
of mechanism has been suggested to explain avariety of socid pathologies, including crimindity, having
children out of wedlock, and dropping out of high school (Crane, 1991; Glaeser, Sacerdote, and
Scheinkman, 1996; Akerlof, 1997; Glaeser and Scheinkman, 2000). While such behaviors are not
actudly innovations, the process by which they soread has smilar dynamic properties, namdy, the
propensity to adopt a behavior increases with the number (or proportion) of some reference group that
have adopted it.

A traditiona concern in the innovation literature has been to identify the characteristics associated with
innovators, that is, people who are the first in their area to adopt. One may then ask how many
innovators are needed, and how they need to be dispersed, in order to propel the adoption process
forward (Rogers, 1983; Vdente, 1995). Implicit in some of this literature is the notion that innovation is
essentialy a one-way process: once an agent has adopted an innovation, he sticks with it. Y et the same
feedback mechanisms that cause innovations to be adopted aso cause them to be abandoned: for
example, an innovation may die out before the critica threshold or tipping point is reached; indeed, this
may happen even &fter the tipping point is reached due to random events that reverse the adoption



process. Moreover there appear to be historical cases in which this actualy did happen.* Thus, if we
want to know how long it takes, in expectation, for a "new" behavior to replace an old one, we must
andyze the baance of forces pushing the adoption process forward on the one hand, and those pushing
it back on the other.

In this paper we study this problem using an approach pioneered by Blume (1993) and Ellison (1993).2
The model treats local feedback effects as a stochastic process. the probability that a given person
adopts one of two possible actions in a given time period is assumed to be an increasing function of the
number of his or her neighbors who have adopted it. We wish to characterize the waiting time until one
of the actions (the “innovation”) diffuses in society as awhole. Ellison (1993) showed that, when agents
are located around a “ring” and they interact with their near neighbors, the expected waiting time is
bounded above independently of the number of agents. In this paper we introduce a structura criterion,
cdled close-knittedness, that can be used to andyze the waiting time problem in much more generd
gtuaions. Roughly spesking, a group is “close-knit” if its members have a rdativey large fraction of
their interactions with each other as opposed to outsiders® We show that when agents have a logistic
response function to their neighbors choices, and they interact in smdll, close-knit groups, the expected
waiting time for diffuson to occur is bounded above independently of the number of agents and
independently of the initid Sate.

2. The modd

A socid network will be represented by agraph G consgting of afinite set V of vertices, together with a
st E of edges. Each vertex i represents an agent in the sysem. A directed edge (, j) from i to |
indicates that j’s actions influence i’ s actions. The strength of the interaction is given by a nonnegative
weight w,. Theinteractionis symmetric if wj = wjj, in which case we represent the mutud influence
between i and j by an undirected edge(i, j}. A naturd example occurs when the degree of influence is
determined by geographic proximity, that is, w; is inversely related to the distance between i and j. In
wha follows we shdl focus on the symmetric case; asymmetric interactions present certain technica
complications that require separate treatment.

! Diamond (1997) discusses instances in which fundamental innovations, such as spears, bone hooks, bows
and arrows, pottery, etc., were adopted and later lost by some civilizations, especially those that were small
and isolated, asin Polynesia.

% For related work on local interaction models see Anderlini and lanni (1996), Berninghaus and Schwalbe
(1996), Blume (1995), Brock and Durlauf (1997), Goyal and Janssen (1996, 1997), Durlauf (1997), and Blume
and Durlauf (1999, 2000).

% The relationship between network structure and the dynamics of contagion processes has been examined
in other settings by Goyal and Janssen (1996), Chwe (2000), and Morris (2000). Inthese cases( asinours)
the network structure is assumed to be fixed. For modelsin which the network structure is endogenous see
Jackson and Watts (1998), and Mailath, Samuel son, and Shaked (1997).



Assume that each agent has two available choices, A and B. The state of the process a any given time
tisavector xtT {A, B}V, where xt; denotes i's choice a timet. The utility to an agent of choosing A

or B is assumed to have both an individua and a sociad component. The individual component of
payoff v(x) results from the agent’s idiosyncratic preferences for A or B irrespective of other agents.
The social component of payoff results from the externdities created by the choices of other agents.
These externdities may arise from a variety of factors, including demondration effects, increasing
returns, or Smply adesire to conform.

A generd framework for capturing these effectsis to suppose that socid payoff takes the form Swiju(xi,
X;), where the sum is taken over al edges {i, j} T E. The function u(x, %) can be interpreted as the
payoff function of a two-person game in which each player has the strategies A and B. The weight wj;
may be interpreted ether as the “importance’ that i attachesto j's actions, or as the probability that i
playsagent j in agiven time period. Thetotd payoff to agent i in Satex is

Ui(x) = & wij uX;, X;) + Vi(X). @)
{i,i}T E

To be concrete, imagine that A is an IBM computer and B is a MAC. People have different tastes for
IBMs versus MACs, which are captured by the functions v. The network externdity from interacting
with other people with computers is a common effect that is reflected in the function u. Itsimpact on a

givenindividua i depends on the agents with whom i interacts and the importance (or frequency) of the
interaction, which is captured by the weight w;.

Notice that we may interpret U;(x) as the payoff function of an n-person game, where n is the number of
veticesin G and each player has exactly two drategies, A and B. This is the spatial gameon G
induced by the payoff functionsuandy, 1 = i = n.* The number and form of the equilibria of the
gpatid game depend crucialy on the topologica sructure of the graph, as we shdl see in a moment.
Our principa interest, however, isin the dynamics of the process by which agents adjust their behaviors,
both in and out of equilibrium.

To andyze this problem we employ amodd due to Blume (1993), which is based on the concept of an
Isng modd in atistical mechanics (Liggett, 1985). Assume that each individuad updates his Strategy at
random times that are governed by a Poisson arriva process. Without any serious loss of generdity we

“Blume (1993) considered the case where the graph is afinite-dimensional lattice and called the
corresponding object alattice game.



may suppose that each person updates once, on average, per unit time interva. (All of the results go
through if instead we assume that individuds have different rates of updating that are bounded above
and below by fixed positive numbers.) These updating processes are assumed to be independent among
the individuas, so the probability is negligible that more than one person updates a any given time.

When an individud updates, the probability of choosng a given action is assumed to be a logidtic
function of the payoff difference between the two actions. That is, if X_j represents the current choices of

the other agents, then the probability that i chooses A is
P{i chooses A [x.i} = eblUi(A, xj) - Ui(B, xl/ [1 + eblUi(A, ) - UiB, x D], (2)

The probability of choosing B is, of course, one minus this quantity. The parameter b = 0 measures the
sengtivity of the agent'sresponseto payoff differences. thelarger b is, the more likdly it is that the agent
chooses the action with the higher payoff. The case b = ¥ corresponds to the strict best response
function, in which the unique action with highest utility is chosen with probability one. (If both actions
have equa utility each is chosen with probability one-hdf.) The logit function (2) is sandard in the
discrete choice literature (McFadden, 1974); it has aso been used to modd subjects empirical choice
behavior in laboratory Stuations (Viookherjee and Sopher, 1994, 1997; Camerer and Ho, 1999;
McKevey and Pdfrey, 1995).

In whet followsit will be useful to write the payoff function u( -, - ) in matrix form asfollows.

A B
A aa cd 3
B dc b, b

In other words, when one's "partner” chooses B, the externdity from aso choosing B is b, whereas the
externdity from choosing A is ¢, and so forth. We shdl assume that there are increasing returns from
conformity. This means that matching the partner's choice is better than not matching (b >canda > d.
For amplicity we assume that the increasing returns aspect is the same for dl pairs of agents who
interact. Heterogeneity is captured by differences in the importance weights w;j, and aso by differences
in the idiosyncretic preferences for A and B, that is, by differencesin the functions vi( - ).

The long run behavior of this stochastic process can be anadlyzed using a potentia function. For
each state x, let Waa (X) be the sum of the weights on all edges i, j} suchthat ;= X = A.

Similarly, let wag(x) be the sum of the weights on dll edges{i, j} suchthat X = x =B. Findly,



let v(x) = & vi(%) bethe sum of the idiosyncratic payoffsin state x. Define the potential of
State x to be

r(x) = (@- d)waa(x) + (b - wgg(x) + v(x). 4

We can think of w4 (X) and wgg(X) as arough measure of the "areas' of the A-region and the B-region
respectively. The potentid is therefore a linear combination of the area of the A-region, the area of the
B-region, and the idiosyncratic payoffs from choosing A and B. The long-run relative frequency of each
state x is given by the Gibbs digtribution

nP(x)=ebr ) /Sebr () (5)

y1 X

It follows that the log of the likelihood ratio between any two dates is just a linear function of ther
difference in potentid. When b is sufficiently large (there is little noise in the adjustment process), the
long-run distribution will be concentrated dmost entirely on the states with high potentid. Such dtates
are said to be stochastically stable (Foster and Y oung, 1990).

3. Andysds of the potentid function

The potentid function has a ample interpretation in terms of the spatia game. For any agent i, the
neighborhood of i, Ni,= {j: {i,j} T E} isthe set of agentsj that are linked to i by an edge. Suppose
that the current dtate is x, and that i changes Strategy from % to x’. Without loss of generaity we can
assumethat X, = B and x’ = A. Thenthe changein i’s payoff is

Ui(A, x.) - Ui(B, x.)) = (@a—d) Swij - (b—c) Sw; + Vi(A) — Vi(B)
iT Nij=A jiT Nizx=B

=r (A, x;) -r (B, x,).

In other words, the changein i’ s payoff equas the change in potentid. It follows that every pure Nash
equilibrium of the spaiid game is a locad maximum of the potential function; conversdy, every loca
maximum of the potentid function corresponds to a pure Nash equilibrium of the game. Typicaly these
equilibria correspond to "patchy” didributions of As and Bs that are locdly stable; depending on the
geometry of the Stuation there may be a grest many of them.



It is important to recognize that the dates that globaly maximize potentid do not necessarily maximize
socid welfare. To illudrae, consder our earlier example in which each person can buy a computer of
type A or B. Assume that, in the absence of externdities, everyone would prefer A because it is easier
to use. Let us dso assume, however, that B networks more efficiently with other computers, and this
externality is enough to overcome A's greater ease of use. Suppose, for example, that the payoffs are as
follows

network externdity(u)  idiosyncratic payoff (v)

A B
A 1,1 00 V(A) =8 (6)
B 0,0 44 v(B)= 0

Let m(x) be the number of agents who choose A in state x.  Then the potentia function takes the
form:

r(X) = Waa(X) + 4wgg(X) + 8m(X), (7
wheress the welfare function is

W(X) = 2Waa (X) + Bwig(X) + 8na(X). ®
It is clear that the dl-B state maximizes socid welfare, wheress the dl-A state maximizes potentid.
Thus, in the long run, the process results (with high probability) in a state where most people have

adopted the less favorable technology.®

4. The unravdling problem.

We turn now to the question of how long it takes for the process to come close to the stochastically
dable date, garting from an arbitrary initid sate. To illustrate the nature of the problem, consder the

®|f everyone is indifferent between A and B, that is, v(X) is a constant, the potential function takes the form (a -
dywa A (X) + (b- c)wgg(x) + K. Thisismaximized in the all-A statewhena—d> b-c, andintheall-B statewhen b —
c > a - d, that is, the process selects the risk dominant equilibrium. An analogous result holds in many other
evolutionary learning models (Kandori, Mailath, and Rob, 1993; Y oung, 1993; Blume, 1995b; van Damme and Weibull
(1999).



following example. The agents are located at the vertices of a square grid, which is embedded on the
surface of atorus. Thus everyone has exactly four neighbors, and the weights on dl edges are one (see
Figure 1). Assume that the idiosyncratic payoffs from choosing A or B are zero; dl that metters are the
payoffs from externdities, which are given by the following payoff matrix

A B
A 33 00 9)
B 0,0 22

The corresponding potentia functionisr (X) = 3waa(X) + 2wgg(X). Thusthe dl-A date, A, maximizes
potential aswell as socid wdfare.

-

Figure 1. Small enclaves of As (hollow nodes) surrounded by Bs (solid nodes).

Suppose that the process begins in the al-B dtate, B. Let e = e, In a unit time interva, each agent
updates once in expectation. Conditionad on updating, an agent surrounded by Bs will switch to A with
probability €’/(€” + €°) ~ €®. If an agent does switch to A, then in the next time interval each of his four



neighbors will switch to A with a probability approximately equal to €. Eventualy, small patches of As
will form that are surrounded by Bs. If each such patch forms a rectangle (an "enclave”), then the
process is & a Nash equilibrium: no one's payoff increases by switching. But this does not necessarily
mean that the process has reached a tipping point from which A spreads rapidly. Indeed, if the A-
enclaves are sufficiently small, they are more likely to revert back to B before they expand. Thisis the
"unravelling problem.” It can only be overcome once a sufficiently large A-enclave forms, which may
take quite some time.

There is a Smple geometric criterion which measures the vulnerability of a set to unraveling. Consder
any two nonempty subsets of vertices S and S, not necessarily digoint. Define the internal degree of
SinS, d(S, ), to be the number of edges{i, j} suchthatil Sandj1 S. The degreeof i, d, isthe
total number of edgesthat involvei. The vertex isisolated if d = 0. Let G be a graph with no isolated
vertices. For every nonempty subset of vertices Sin G, we say that S is r-close-knit if the ratio of the
interna degreeto the totd degreeisat least r for every nonempty subset of S:

mind(S, S/Sd; =r. (10)
SOs ils

This requires, in particular, that every member of S have at leadt r of itsinteractions with other members
of S. Such a st is sad to be r-cohesive (Morris, 2000). In genera, however, r-close-knittedness is
more demanding than r-cohesiveness. Congder, for example, a2 x 2 enclave: each member has half of
its interactions with other members of the enclave. Then it is 1/2-cohesive, but it is only 1/4-close-knit,
because it has four internd edges while the sum of the degrees of its membersis 16. While each vertex
taken individually passes mugter, the boundary is too large relative to the size of the sat.

Not only must the boundary of the whole set be reasonably small for the set to be close-knit, o must
every portion of the boundary. In other words, the ratio of internd to total degree must be at least r for

every subset, or ese the set may begin to unrave at the weskest part of the boundary. This possibility
is illustrated in Figure 2: the ratio d(S,S)/S s d; for the whole group of As is .4125, but the ratio

d(S, S)/S g d; for the dog-leg consisting of four As at the bottom is only .375. For the 2 x 2 game in
(9) the former is sufficient to prevent unravelling, whereas the latter is not.



Figure 2. Set of As (hollow nodes) containing aweak dog-leg.

Given a postive redl number r < 1/2 and a positive integer k, we say that agraph Gis (r, k)-close-knit
if every person belongs to some group of Sze a most k that is at least r-close-knit. A family F of
graphsisclose-knit if for every 0 <r < 1/2 there exists an integer k (possibly depending on r) such that
every graph in the family is (r, k)-close-knit.

As an example, congder the class of dl polygons. In a polygon, the degree of every vertex is two.
Each subset S of k consecutive vertices contains k - 1 edges, so d(S, S9)/Sif sdi = (k - 1)/2k. 1t is

graightforward to check that, in fact, d(S, S)/Sij 5 dj= (k - 1)/2k for every nonempty subset S of S,
hence every subset of k consecutive vertices is (1/2 - 1/2k)-close-knit. Since every vertex is contained
in such a s, the class of polygons is close-knit. For a square lattice embedded on the surface of a
torus, it can be verified that every subsquare of side h is (1/2 - 1/2h, h2)-close-knit. It follows that the
family of square latticesis close-knit.



5. A theorem on waliting times

In this section we show that if a grgph comes from a close-knit family, then we can bound the waiting
time until the process comes close to a sate having maximum potentid, and this bound holds uniformly
no matter how large the graphs are. Since we need to compare graphs of different szes, we shall
assume henceforth that agents have neutra idiosyncratic preferences (v(x) is constant) and thet al edge-
weights are unity. Thereisno loss of generdity in assuming that v(x) = 0. The externdities are described
by a2 x 2 game G with payoffs

A B
A aa cd
B dc bb (11)
Thus the potentid function is
r (x) = (@- dwaa(x) + (b - c)wgg(X), (12)

and potentid is maximized at the risk dominant equilibrium.

Let b be the response parameter, and let x° be the initid sate Given a smdl d > 0, let
T(G b, G, d, x°) denotethefirsttimet such that, starting from the initia state x°, the probability is at
least 1 —d that at least 1 - d of the population is using the risk-dominant equilibrium a t and dl times
thereafter. The d-inertia of the process defined by G, b, G is the longest such time over dl possble
initial sates

T(G b, G, d) =max° T(G, b, G, d, xX°). (13)

The following result generdizes Ellison (1993), who proved that the waiting time is bounded for an
essentidly one-dimengiona process in which the agents are located around aring.®

Theorem. Let F be a close-knit family of graphs, and let G be a symmetric 2 x 2 game with a risk
dominant equilibrium. Givenany smdl d > 0, there existsa b 4 such that, for every b = by, the waiting

® Ellison used a somewhat different stochastic adjustment model in which agents deviate from best reply
with afixed probability e In our model they deviate with a probability that depends on thelossin utility.

10



timeT(G, b, G, d) until the probability isat leest 1 —d that at least 1 — d of the population is usng the
risk dominant equilibrium is uniformly bounded above for dl graphsin F.

Proof. Let F and G be as in the satement of the theorem. Without loss of generdity we can assume
that a—d > b —c, that is, A isthe risk dominant equilibrium. Letr* = (b-c)/((a-d) + (b-c)) <12
andfixrl (r*,1/2). SinceF isdoseknit, there exists an integer k such that every graphin F is (r, k)-
close-knit. The parametersr and k will remain fixed throughout the proof. We are going to show that,
gvenanyd 1 (0, 1), there exists by such thet for each b = by, the d-inertia of the process is bounded

abovefordl GI F.

Choose G F having vertex set V, and let S be an r-close-knit subset of size k. The adaptive process
on G will be denoted by PGb. Now consider the following modification of PSP: whenever agentsin S
updates, they do so according to the log-linear response process with parameter b, but the agents in' S
aways choose B. Denote this restricted process by PSSb, States of the restricted process will be
denoted by y, and States of the unrestricted process PGP will be denoted by x. Let X g denote the set

of restricted states, and X the st of dl sates.

Let A(x) denote the number of edges in which both players choose action A in state x; Smilarly let B(x)
denote the number of edges in which both players choose action B. By assumption, every agent is
indifferent between A and B when there are no externdities, so we can drop the term v(x) and write the
potentid function as

r (%) = (- d)AX) + (b - O)B(x). (14)

By (5) we know that the stationary distribution n3b(x) of PGP satisfies nSb(x) p ébr W fordl x T X
Smilarly it can be shown that the stationary distribution m3Sb(y) of PESb satidfies nSb(y) p ebr ¢)
fordlyl Xg

Let Ag denote the state in X g such that everyone in S chooses action A, and everyone in' S chooses
action B. We clam that Ag uniqudy maximizesr (y) among al restricted Satesy. To seethis, consider
any restricted statey and let S ={i1 S y;=B}. Then

riy)= (a-d)d(S-S,S-S)+(b-0)[d(S,S)+¢eS, 9 +d(S,  9)],
and

r(Ag)=(@-d)ds,9)+(b-o(CS, 9.
It follows that

11



r(Ag) -r(y) = (@-dd(S, S - (b-)d(S, S) +d(S, 9]
= (@-dd(S, 9) - (b- O[d(S, S) +d(S, V) - d(S, ).

Thusr (Ag) - r (y) > 0if and only if
[(@-d)+(b-0)]d(S,9 > (b-0)[d(S,V)+d(S,9)]. (15)
However, the latter holds because by assumption

d(S, 9)/Ssdi = d(S, S/[A(S, V) +d(S, S)]
>+ = (b-o)[(a- d) + (b O)]. (16)

(Note that d(S, V) + d(S, S) > 0, because by assumption there are no isolated vertices in the graph.)
Thusy = Ag uniquely maximizes r (y) as claimed. It follows that n¥3Sb puts arbitrarily high probability
on the state Ag whenever b issufficiently large.

Now fixd T (0, 1). It follows from the preceding discussion that there exists a finite vaue b(G, S, d)
such that n3Sb(Ag) = 1 - d%/2fordl b = b(G, S, d). Fix such avaue b. Consider the restricted
process PGS garting in the initid state y0, and let the random varigble yt denote the state of this
process at timet. The probability that yt isin any given state y approaches the long-run probability of
y, m3Sb(y), as t goes to infinity. (This follows from the fact tha the embedded finite chain is
irreducible and aperiodic.) In particular, lim g Pr[yt = Ag = 5Sb(Ag). Hence there is afinite time
t(G, S, d, b) such that, from any initid statey©,

“b e b(GSd),"t=t(GSd,b), Plyt=Ag]=1-d>2 (17)

Observe now that the continuous process PSSP depends on G and S only through the configuration of
internal edges that link vertices of S to other vertices of S, and on the configuration of externd edges
that link vertices of Sto verticesoutsde of S.  Since Siis of Sze k, there is a finite number of interna
edges and a finite number of ways in which they can be configured. Since Sis of sze k and r-close-
knit, there is a finite number of externa edges, and a finite number of ways in which they can be
configured vis-a-vis vertices outsde of S, Thus, for agiven r and k, there is a finite number of distinct
processes PGSb up to isomorphism. In particular, we can find b(r, k, d) and t(r, k, d, b) such that,
among dl graphs Gin F and dl r-close-knit subsets S with k vertices, the following holds independently
of theinitid Sate:

12



“b=b(r, kd)," t=t(r, kd,b), Plyt=Ag]=1-d>2 (18)

For the remainder of the discussion, we shdl fix r, k, and d asin thetheorem. Let usdsofix b* = b(r,
k,d)andt* =t(r, k, d, b*). (Ineffect, b(r, k, d) isthevauebyclamed in the theorem.)

Let Gbeagraphin F with n vertices, and let S be an r-close-knit subset in G of szek. We shdl couple
the unrestricted process F5P  and the restricted process F5SP  as follows.  Create two digoint
isomorphic copies of the graph G, say G; and Gy, where the ith vertex in G corresponds to the ith

vertexin G,. Wewill define asingle process that mimics PSP on Gy, and mimicsP&Sb on G, For
each state x of the unrestricted process PGb’ , let gi(A[X) denote the probability that i chooses A when i

updates, given that the current stateisx. Similarly, for each saey of the restricted process PGShH , let
Ji(Aly) denote the probability that i chooses A when i updates, given that the current state is y. Note

that g (Aly) =O0fordl il " S.

The coupled process operates as follows. The state a time t isapair (xt, yt) where ¥; is the choice
(A or B) a theithvertexin G , and t; is the choice (A or B) a theith vertex in G,. Each matched pair

of vertices in the two graphs is governed by a sngle Poisson process with unit expectation, and these
processes are independent among the n matched pairs. Thus whenever the ith agent in G updates the
ith agent in Gy updates, and viceversa. Let Q be arandom variable that is digtributed uniformly on the

interval [0, 1]. Suppose that the ith pair of individuds updates a timet. Draw avaueof Q a random,
and denote it by g. The ithindividud in G; chooses A if g = gj(A[xt) and chooses B if g > g(AJxt).
Smilarly, theithindividud in G, chooses A if g = gj(Aly!) and chooses B if g > j(Alyt).

For every two states x and y on G and Gy respectively, writex ep y if yy = Aimplies  x = A for dl
i. Inother words, if A gppears a the ith vertex in y then A appears at the ith vertex in x. It is evident
that x =p y impliesg(Ax) = qj(Aly) for dl i. By congtruction of the process, if i chooses A in yt then
necessarily i chooses A in xt . Henceif xt =5 yt a sometimet, then xt' = yt' a al subsegquent times
t'=t.

Now let the coupled process begin in the initiad state X0 on G; and y9 on G, where X0, = yO, for dl i &
S,andyd =Bfordlia"S. Obvioudy wehavex0 =4 yO0 initidly, hencewehave xt = yt fordl t =
0. From (17) and the choice of t* we know that

"t=t*, Prlyt=Afordlil §=1-d2 (19)
hence

13



" t=t*, Pxit=Afordlil §=1-d2 (20)

Thisholdsfor every r-close-knit set Sin G. Since every vertex i is, by hypothesis, contained in such an
S, it followsthat

"t=t*," i Prxti=A]=1-d2 (21)
Letting at be the proportion of individuds in G; playing action A a time t,it follows thet
"t=t*, Eat]=1-d2 (22)
We cdlam thet thisimplies
"t=t*, Pfat =1-d]=1-d. (23)
If this were false, the probability would be greater than d that more than d of the individuds a time t

were playing B. But this would imply that E[at] < 1 - d2, contradicting (22). Thus (23) holds for all
graphs Gin thefamily F, which concludes the proof of the theorem.

14



Refer ences

Andelini, Luc, and Antondla lanni. 1996. "Path Dependence and Learning from Neighbors." Games
and Economic Behavior 13:141-77.

Akerlof, George A. 1997. "Socid Distance and Socia Decisons.” Econometrica 65:1005-27.

Berninghaus, S., and Schwalbe, U. (1996). "Conventions, Local Interaction, and Automata Networks,"
Journal of Evolutionary Economics, 6, 297-312.

Blume, Lary. 1993. "The Statisticd Mechanics of Strategic Interaction.” Games and Economic
Behavior 4: 387-424.

----------------- . 1995a. "The Statistical Mechanics of Best-Response Strategy Revision." Games and
Economic Behavior 11: 111-45.

------------------ (1995b). "How Noise Matters” Mimeo, Department of Economics, Cornell
Universty.

Blume, Lary, and Steven N. Durlauf, 1999. "Equilibrium Concepts for Modds with Socid
Interactions,”" Mimeo, Corndl Universty.

------------------ . 2000. "The Interactions Based Approach to Socioeconomic Behavior,"
Forthcoming in Social Dynamics, edited by Steven N. Durlauf and H. Peyton Young. The Brookings
Ingtitution, Washington, D. C.

Brock, William A., and Steven N. Durlauf. 1997. "Discrete Choice with Socid Interactions” Mimeo,
University of Wisconan at Madison, and forthcoming in the Review of Economic Studies.

Camerer, Colin, and Teck-Hua Ho. 1999. "Experience-Weighted Attraction Learning in Norma Form
Games" Econometrica 67: 827-874.

Chwe, Michad, 2000. "Communication and Coordination in Socid Networks," Review of Economic
Studies, 67, 1- 16.

15



Coleman, James S, Elihu Katz, and Herbert Menzdl. 1966. Medical Innovation: A Diffusion Sudy.
New Y ork: Bobbs Merrill.

Crane, Jonathan. 1991. "The Epidemic Theory of Ghettos and Neighborhood Effects on Dropping Out
and Teenage Childbearing." American Journal of Sociology 96: 1226-59.

Diamond, Jared, 1997. Guns, Germs, and Steel. New Y ork: Norton.
Durlauf, Steven N. 1997. "Statistical Mechanical Approaches to Socioeconomic Behavior." In The
Economy as a Complex Evolving System. vol. 2, edited by W. Brian Arthur, Steven N. Durlauf, and

David Lane. Redwood City, Cdif.: Addison-Wedey.

Ellison, Glenn. 1993. "Learning, Socid Interaction, and Coordination.” Econometrica 61: 1047-71.

2000. "Basins of Attraction, Long-Run Stochastic Stability, and the Speed of
Step-by Step Evolution.” Review of Economic Studies, 67, 17-45 .

Foster, Dean P. and H. Peyton Young, "Stochestic Evolutionary Game Dynamics” Theoretical
Population Biology 38: 219-32.

Glaesar, Edward L., Bruce Sacerdote, and Jose A. Scheinkman. 1996. "Crime and Socid
Interactions.” Quarterly Journal of Economics 11: 507-48.

Glaeser, Edward L., and Jose A. Scheinkman. 1998. "Measuring Socid Interactions™ Forthcoming in
Social Dynamics, edited by Steven N. Durlauf and H. Peyton Young. The Brookings Ingtitution,
Washington, D. C.

Goyd, Sanjeev, and Maarten Janssen. 1996. "Interaction Structure and Socia Change." Journal of
Institutional and Theoretical Economics, 152, 472-495.

---------------- . 1997. "Non-Exclusve Conventions and Socia Coordination." Journal of Economic
Theory, 77, 34-57.

Jackson, Matthew O., and Alison Watts. 1998. "The Evolution of Socia and Economic Networks."
Mimeo, Cdifornia Ingtitute of Technology and Vanderbilt Universty.

16



Kandori, Michihiro, George Mailath, and Rafadl Rob. 1993. "Learning, Mutation, and Long-Run
Equilibriain Games" Econometrica 61: 29-56.

Liggett, Thomas. 1985. Interacting Particle Systems New Y ork; Springer Verlag.

Mailath, George, Samuelson, Larry, and Avner Shaked, 1997. "Endogenous Interactions.” in U.
Pagano and A. Nicita, eds., The Evolution of Economic Diversity. London: Routledge.

Morris, Stephen. 2000. "Contagion.” Review of Economic Sudies 67, 57-78.

McKevey, Richard, and Thomas Pdfrey. 1995. "Quantd Response Equilibria for Normd Form
Games." Games and Economic Behavior 10: 6-38.

Mookherjee, Dilip, and Barry Sopher. 1994. "Learning Behavior in an Experimentd Matching Pennies
Game"" Games and Economic Behavior 7: 62-91.

. 1997. "Learning and Decision Costs in Experimental Constant-Sum Games."
Games and Economic Behavior 19: 97-132.

Rogers, Everett M. 1983. Diffusion of Innovations. 3rd edition. New Y ork: Free Press.

Rogers, Everett M, and F. F. Shoemaker. 1971. Communication of Innovations: A Cross-Cultural
Approach. New York: Free Press.

Rogers, Everett M., and D. L. Kincaid. 1981. Communication Networks: A New Paradigm for
Research. New York: Free Press.

Valente, Thomas W. 1995. Network Models of the Diffusion of Innovations. Creskill, NJ. Hampton
Press.

----------------- . 1996. "Socid Network Thresholdsin the Diffusion of Information." Social Networks
18: 69-89.

van Damme, Eric, and Joergen Welbull. 1999. "Evolution and Refinement with Endogenous Mistake
Probabilities” Mimeo, Stockholm School of Economics and Center for Economic Research, Tilburg

Universty.

17



Y oung, H. Peyton, 1993a. "The Evolution of Conventions” Econometrica 61: 57-94.

----------------- . 1998. Individual Strategy and Social Sructure: An Evolutionary Theory of
Institutions. Princeton: Princeton Universty Press.

18



The Diffusion of Innovationsin Social Networ ks

H. Peyton Young

Department of Economics
Johns Hopkins University
Bdtimore, MD 21218

Thisverson: May, 2000

This research was supported by Nationa Science Foundation Grant SES 9818975. The paper
benefited from constructive comments by Dean Foster and Stephen Morris.

19



Abstract

We condder processes in which new technologies and forms of behavior are transmitted through socid
or geographic networks. Agents adopt behaviors based on a combination of their inherent payoff and
their loca popularity (the number of neighbors who have adopted them) subject to some random error.
We characterize the long-run dynamics of such processesin terms of the geometry of the network, but
without placing a priori regtrictions on the network sructure. When agents interact in sufficiently small,
close-knit groups, the expected waiting time until dmost everyone is playing the stochadticdly stable
equilibrium is bounded above independently of the number of agents and independently of the initid
state.
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