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Abstract 

 

The paper surveys recent work on learning in games and delineates the 

boundary between forms of learning that lead to Nash equilibrium and forms 

that lead to weaker notions of equilibrium (or none at all). 
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The Possible and the Impossible in Multi-Agent Learning 

 

H. Peyton Young 

 

Interactive learning is inherently more complex than single-agent learning, 

because the act of learning changes the thing to be learned.  If agent A is trying to 

learn about agent B, A’s behavior will naturally depend on what she has learned 

so far, and also on what she hopes to learn next.  But A’s behavior can be 

observed by B, hence B’s behavior may change as a result of A’s attempts to learn 

it.  The same holds for B’s attempts to learn about A.   

 

This feedback loop is a central and inescapable feature of multi-agent learning 

situations.  It suggests that methods which work for single-agent learning 

problems may fail in multi-agent settings.  It even suggests that learning could 

fail in general, that is, there may exist situations in which no rules allow players 

to learn one another’s behavior in a completely satisfactory sense.  This turns out 

to be the case: in the next section I formulate an uncertainty principle for strategic 

interactions which states that if there is enough ex ante uncertainty about the 

other players’ payoffs (and therefore their potential behaviors), there is no way 

that rational players can learn to predict one another’s behavior, even over an 

infinite number of repetitions of the game (Foster and Young, 2001; for earlier 

results in the same spirit see Binmore (1987) and Jordan (1991, 1993)).   

 

Admittedly this and related impossibility theorems rest on very demanding 

assumptions about agents’ rationality, and what it means for them to “learn” 

their opponents’ behavior.  Under less restrictive conditions more positive results 

can be attained, as we shall see in section 3.  Thus the purpose of this note is not 

to claim that multi-agent learning is impossibly difficult, but to try to identify the 

boundary -- insofar as we now know it -- between the possible and the 
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impossible in multi-agent learning situations.  These issues are discussed in 

greater depth in Young (2004).   

 

2. Model-based learning 

 

The accompanying perspectives paper by Shoham, Powers and Grenager (2006), 

hereafter referred to as SPG, forms my jumping-off point.    They too draw 

attention to the fact that multi-agent learning is inherently more complex than 

single-agent learning.   They also make a useful distinction between model-based 

and model-free forms of learning, which I shall follow here.  Using essentially 

their language, a model-based learning scheme has the following elements: 

 

1. Start with a model of the opponent’s strategy. 

2. Compute and play a best [or almost best] response.  

3. Observe the opponent’s play and update your model. 

4. Goto step 2.  

 

SPG leave the concept of “model” open, but here I shall suggest a general 

definition.  Namely, a model-based learning method is a function that maps any 

history of play into a prediction about what one’s opponents will do next period, 

that is, to a probability distribution over the opponents’ actions conditional on 

the history so far.  This definition encompasses many forms of pattern 

recognition. The key feature of a model-based learning rule, however, is not what 

patterns it is able to identify in the data, but how it uses these patterns to forecast 

the opponents’ next moves.  

 

Many game-theoretic learning methods fall into this category.  Fictitious play is a 

simple example: each agent predicts that his opponent will use the distribution 

next period that he used cumulatively up until now.  More generally, Bayesian 
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updating is a model-based learning procedure: each agent updates his beliefs 

about the repeated-game strategy of the opponents (conditional on the observed 

history), which leads to a prediction of their behavior next period.      

 

What exactly do we mean by “learning” in this context?    A natural definition is 

that players “learn” if they eventually succeed in predicting their opponents’ 

behavior with a high degree of accuracy (Foster and Young, 2001).   This idea can 

be given greater precision as follows.  Suppose that you are engaged in a two-

player game.  Given a history ht to time t, let pt be your prediction of the 

opponent’s next-period behavior, conditional on ht.  Let qt be your opponent’s 

actual intended behavior next period, conditional on ht.  Notice that both pt and 

qt are probability distributions over the opponent’s action space (which we 

assume is finite). Thus pt and qt lie in an m-dimensional simplex for some 

nonnegative integer m.  The predictive error in period t is ║pt – qt║.   We could say 

that you learn to predict if ║pt – qt║ → 0 almost surely as t → ∞.  A less 

demanding definition would be that the mean square error goes to zero: (1/t) 

∑s≤t ║ps – qs║2 → 0 almost surely as t → ∞.  We shall say that the former is 

learning to predict in the strong sense and the latter is learning to predict in the weak 

sense.  

 

There is a well-known condition in statistics that guarantees that all players will 

learn to predict in the strong sense.  Namely, it suffices that each player’s forecast 

of the others’ behavior, conditional on his own behavior, never exclude events 

that have positive probability under their actual joint behavior.  This is the 

absolute continuity condition (Blackwell and Dubins, 1962; Kalai and Lehrer, 1993).  

 

So far we have said nothing about what determines agents’ behavior, only what 

it means for them to learn.  In game theory, a standard assumption is that 

behavior is rational: at each point in time, given what has happened to date, the 
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players’ behavioral strategies are optimal given their forecasts of what is going to 

happen at all future dates.  If we combine rationality with the absolute continuity 

condition (which guarantees good prediction), then we get convergence to Nash 

equilibrium along the play path (Kalai and Lehrer, 1993).  

 

Suppose, however, that each player is ignorant of his opponent’s payoff function.  

If the opponent is rational, his strategy will depend -- perhaps quite intricately -- 

on what his payoffs are.  Hence the first player will have difficulty forecasting 

the second player’s strategy unless he can gather enough information along the 

play path to deduce what the latter is optimizing. The same holds for the second 

player trying to forecast the behavior of the first.  This turns out to be impossible 

in principle when there is enough ex ante uncertainty about the payoffs.  

 

Theorem 1 (Foster and Young, 2001).  Consider an n-person game on a finite joint 

action space A, where the n|A|possible payoffs defining G are drawn i.i.d. via a 

continuous density f that is bounded away from zero on an open interval.  G is 

determined once and for all before play begins.  Assume the players are forward-looking 

and rational, with discount factors less than unity, they know their own realized payoffs, 

and they use forecasting rules that do not depend on the opponents’ realized payoffs.  

 

There is a positive probability that: i) at least one of the players will not learn to predict 

even in the weak sense; and ii) the players’ period-by-period behaviors do not converge to 

any Nash equilibrium of the repeated game. Furthermore, if the support of f is a 

sufficiently small interval, then conclusions i) and ii) hold with probability one.    

 

A consequence of this result is that there exist no general, model-based procedures for 

multi-agent learning when players are perfectly rational and they have sufficiently 

incomplete knowledge of their opponents’ payoff functions.  
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A crucial condition for theorem 1 to hold is that the unknown payoffs are 

distributed over some interval.  If instead they were known to lie in a finite set, 

or even in a countable set, the result can fail.  In this case one can tailor the 

forecasting rules to take account of the restricted set of payoffs that the opponent 

could be using, and thereby satisfy absolute continuity.  The second crucial 

condition for theorem 1 is rationality: agents must optimize exactly.  If instead 

agents almost optimize, as in smoothed fictitious play (Fudenberg and Levine, 

1998), the result does not necessarily hold.   

 

In my view the first of these conditions (lack of knowledge) is more important 

than the second (perfect rationality).  For one thing the second condition is 

merely an ideal statement about behavior, there is little or no empirical support 

for the notion that subjects optimize exactly.  By contrast the first condition seems 

quite realistic: a player can hardly be expected to know the von Neumann 

Morgenstern payoffs of his opponent with any precision; surely the most that can 

be hoped for is that he knows they lie within some range.   

 

I now sketch a model-based, multi-agent learning method that gets around the 

preceding impossibility result by relaxing rationality a bit, while maintaining the 

assumption about complete lack of knowledge.  The method is structured along 

the lines of statistical hypothesis testing (Foster and Young, 2003).  Assume, for 

the moment, that there are two players, 1 and 2, with finite action spaces A1 and 

A2.   Let Δi be the simplex of probability distributions on Ai.   At time t, agent 1’s 

model is that agent 2 is going to play a fixed distribution p2t ∈ Δ2 in all future 

periods.  Given this model, agent 1 chooses a smoothed best response q1t ∈ Δ1.  

Similarly, agent 2’s model at time t is some p1t ∈ Δ1 and her smoothed best 

response is q2t ∈ Δ2.   Hypothesis testing takes the following form for each player. 

Let s be a large positive integer (the sample size) and let τ be a small positive real 

number (the tolerance level).   
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Hypothesis testing 

 

1. Select a model p of the opponent’s strategy uniformly at random.  

2. Play a smoothed best response q to the current model p.  

3. Start a test phase with probability 1/s. 

4. Once a test phase begins, compute the opponent’s empirical frequency 

distribution p’ over the next s periods. If ║p’ – p║ exceeds τ go to step 1; if                

║p’ – p║ does not exceed τ go to step 2.  

 

It can be shown that, given any game G on A1 × A2 and any ε > 0, if s is large 

enough and τ is small enough the players’ behaviors constitute an ε-equilibrium 

of G in at least 1 – ε of all periods.  Further, if the players gradually increase s and 

decrease τ, we obtain the following.  

 

Theorem 2 (Foster and Young, 2003). Given any n-person game G on a finite action 

space A, if the hypothesis testing parameters are annealed sufficiently slowly, the players’ 

period-by-period behaviors converge in probability to the set of Nash equilibria of G.  

 

3. Model-free learning 

 

The second class of learning rules identified by SPG do not rely on prediction of 

the opponent’s behavior, but on some form of heuristic adjustment to previous 

experience.  Unfortunately, in this setting it is not so clear what is meant by 

“learning.”  Players are obviously not learning to predict, because they are not 

predicting.   SPG suggest that, in analogy with single-agent Markov decision 

problems (MDP’s), we could say that agents “learn” if their adaptive rules lead 

to high average payoffs.  (In a single-agent context such rules are said to be 

“effective.”)   
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The difficulty is that, whereas high payoffs are well-defined in single-agent 

MDP’s, they are usually not well-defined in games.  In this setting, agents can 

only optimize given what the other agents are doing.  Of course, when everyone 

optimizes conditional on the others optimizing, the players are in some form of 

Nash equilibrium, either with respect to the stage game or the repeated game.   

This suggests one possible definition of “learning” in a model-free environment, 

namely, that agents’ average payoffs converge to the payoffs corresponding to 

some Nash equilibrium.  Alternatively, we might say that they learn if their 

behaviors come into Nash equilibrium more or less by accident: they act as if they 

were predicting and optimizing, even though they are actually using 

nonpredictive methods.  A third possibility is that Nash equilibrium is not the 

appropriate solution concept in this setting.  We summarize these possibilities as 

follows.  

Learning criteria in model-free environments 

 

I. Payoffs converge to Nash equilibrium payoffs. 

II. Behaviors converge to Nash equilibrium. 

III. Behaviors and/or payoffs converge to a subset that has some other normative 

interpretation, even though it may not correspond to a Nash equilibrium. 

 

Let us consider these in turn.  The first criterion is very easy to satisfy if by “Nash 

equilibrium payoffs” we mean payoffs in some repeated-game Nash equilibrium.  

The reason is that, by the Folk Theorem, virtually all payoff combinations can be 

realized in a repeated-game equilibrium, provided that each player gets at least 

his maximin payoff.   Many adaptive model-free procedures can achieve the 

same thing.   
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The second criterion is much more difficult to achieve.   Indeed, until recently it 

was not known whether there exist any model-free learning rules that cause 

behaviors to converge to Nash equilibrium, except in special cases.  Here is one 

example of a model-free rule, called regret testing, that achieves criterion II for 

any finite two-person game.  (This is simplified version of the rule treated in 

Foster and Young, 2003). Let Δd be the set of all probability mixtures on the 

agent’s actions that can be expressed in d or fewer decimal places.  

 

Regret testing 

 

1. Choose q  ∈ Δd uniformly at random. 

2. Play q for s periods in succession.  

3. For each action a, compute the regret r(a) from not having played action a over 

these s periods. 

4. If maxa r(a) > τ, go to step 1; otherwise retain the current q and go to step 2. 

  

Given any two-person game G and any ε > 0, if both players use regret testing 

with sufficiently large s and d and sufficiently small τ, their behaviors constitute 

an ε-equilibrium of G in at least 1 – ε of all play periods (Foster and Young, 2006).  

By annealing the parameters sufficiently slowly one can obtain convergence in 

probability to the set of Nash equilibria for any finite two-person game G.  With 

some further modifications almost-sure convergence is achievable (Germano and 

Lugosi, 2007).  

 

A crucial feature of both regret testing and hypothesis testing is the random 

search that occurs whenever a “test” fails.  What happens if we drop this aspect 

of the learning process?    To be quite general, let G be an n-person game with 

finite action space A.  Let s be a positive integer and let the state of the learning 

process be the last s plays of the game. Thus there are |A|s states.  A learning 
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rule for i, say fi(z), maps each state z to a probability distribution over i’s actions 

next period.  The rule fi is uncoupled if it does not depend on the opponents’ 

payoffs (Hart and Mas-Colell, 2006). 

 

Theorem 3 (Hart and Mas-Colell, 2006).  Given a finite action space A and positive 

integer s, there exist no uncoupled rules fi(z) whose state variable z is the last s plays, 

such that, for every game G on A, the period-by-period behaviors converge almost surely 

to a Nash equilibrium of G, or even to an ε-equilibrium of G, for all sufficiently small          

ε > 0.  

 

Note that regret testing is uncoupled, yet we claimed earlier that an annealed 

version of it converges almost surely to the set of Nash equilibria for any finite 

two-person game G.  This does not contradict theorem 3, however, because in the 

annealed version the value of s grows, hence the state variable does not consist of 

histories of bounded length. Furthermore, even in the non-annealed version 

(where s is fixed), the state variable consists of more than the last s plays of the 

game; it also includes the realization of a random variable, namely, the new 

choice of q that occurs whenever someone’s regret exceeds his tolerance level τ. 

Hence it does not satisfy the conditions of theorem 3. (Hypothesis testing does 

not satisfy the state variable requirement for the same reason.)  This illustrates 

the rather fine line that separates the possible from the impossible in multi-agent 

learning theory. 

 

We conclude with an example that illustrates why Nash equilibrium is not the 

only way of evaluating whether agents are “learning” (criterion III).  Consider 

the following simple adaptive procedure first proposed by Hart and Mas-Colell 

(2000, 2001). 

Unconditional regret matching 
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1.  Choose an action uniformly at random.  

2.  For each action a ∈ Α, compute the regret r(a) from not having played a in all 

previous periods.  

3. Among all those actions with positive regrets, choose among them with 

probabilities proportional to their regrets, then go to step 2; if there are no such 

actions go to step 1.  

 

When a given player uses this rule in a finite game G, his regrets r(a) become 

nonpositive almost surely no matter what the other players do (Hart and Mas-

Colell, 2001).  When all players use the rule, the empirical distribution of their 

joint behaviors converges almost surely to a convex set that contains all of the 

correlated equilibria of G, and therefore all of the Nash equilibria.  (Moreover, 

the average payoffs converge to the set of expected payoffs generated by these 

distributions.)  We shall call this the coarse correlated equilibrium set (Young, 

2004).1  It has a simple equilibrium interpretation, namely, it is the set of all joint 

probability distributions φ on A such that each player’s expected payoff (under φ) 

is at least as high as his expected payoff if he were to deviate and play an 

arbitrary action, while the other players adhere to the outcome prescribed by φ.  

(In a correlated equilibrium, by contrast, no player wishes to deviate after his 

prescribed action via φ is revealed, which is a more restrictive condition.)  

 

The significance of this solution concept is that it describes average behavior 

under a wide variety of adaptive rules, including smoothed fictitious play, 

calibrated forecasting with best responses (Foster and Vohra, 1997, 1999), and a 

number of variants of regret matching (Hart and Mas-Colell, 2000, 2001).  (Some 

of these rules actually converge to the set of correlated equilibria.)  It seems 

reasonable to conjecture that this “coarse” notion of correlated equilibrium may 
                                                 
1 It was first defined, though not named, in an early paper by Moulin and Vial (1978); Hart and 
Mas-Colell (2001) call it the Hannan set.   
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prove useful in describing the behavior of experimental subjects, though to my 

knowledge this point has never been investigated systematically.  

 

I conclude that there is a fine line between the possible and the impossible in 

multi-agent learning situations.  It depends on subtle differences in assumptions 

about the amount of information that agents have, the extent to which they 

optimize, the desired form of convergence, and the target set.  In the preceding I 

have identified some prominent landmarks on either side of the dividing line. Its 

precise course remains to be charted.   
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