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1. Adaptive dynamics

Many forms of social and economic behavior evolve from the bottom up: they
crystallize from the behavior and beliefs of disparate individuals interacting with
each other over time. Language, codes of dress, forms of money and credit,
patterns of courtship and marriage, standards of evidence, rules of the road, and
economic contracts all have this feature. For the most part no one dictated the
form that they have; they emerged through a process of experimentation,
historical accident, and the accumulation of precedent. Agent-based models are
particularly well suited to studying the dynamics of such processes, since by
their nature they involve large numbers of dispersed, heterogeneous actors. In
this chapter I shall outline a general framework for analyzing such systems based
on theoretical results on large Markov chains, and then show how to apply the
theory to concrete situations. Importantly, the theory can be applied without
compromising the inherent complexity of the system: agents can be endowed
with different characteristics, different levels of rationality, different amounts of

information, and different locations.

My starting point is the assumption that agents are boundedly rational but
purposeful. They look around them, they gather information, and they act fairly
sensibly on the basis of that information.! Ishall also assume that their choices
are not entirely deterministic and predictable, but may be buffeted by random
perturbations in the environment, errors of perception, and idiosyncracies in
behavior. Whatever the source, these perturbations play a role similar to

mutations in biology by injecting variability into agents' behaviors. Moreover,

1 For a discussion of learning models see the chapters in this volume by Thomas Brenner and
John Duffy.



of concrete examples, including competing technologies, neighborhood segregation,

and the emergence of contractual norms.?

To set the stage, let us consider a classical example: the emergence of money as a
medium of exchange.® History records the great variety of goods that societies have
adopted as money: some used gold or silver, some copper or bronze, others used
beads, still others favored cattle. In the early stages of economic development, we
can conceive of the choice of currency as growing out of individual decisions that
gradually converge on some norm. Once enough people in a society have adopted a

particular currency, everyone else wants to follow suit.

At the individual level, this sort of decision problem can be cast as a coordination
game. Suppose that there are two choices of currency: gold and silver. At the
beginning of a period, each person must decide which currency to carry. During the
period, each person meets various other people in the society at random, and they
can trade only if they are both carrying the same currency. Thus the decision
problem at the beginning of the period is to choose the currency that one believes

will be chosen by a majority of the others.

Schematically we can model the dynamics as follows. Let pt be the proportion in the
population choosing gold at time t, and let 1 - pt be the proportion choosing silver.
In period t + 1, one person is drawn at random to reconsider his decision. He or she
selects a random sample of s other individuals to determine what they are currently
doing. Let &t be the sample proportion of those using gold. Assume for the moment
that the properties of gold and silver make them equally desirable as currencies.

Then the decision maker chooses gold in period t+1if é&t>.5and chooses silver

2 There is a large literature on the evolution of norms, some of which is related to the approach
described here. See in particular Ullman-Margalit (1977), Sugden (1986, 1989), Bendor and Swistak
(2001), Hechter and Karl-Dieter (2001), Skyrms (2004), and Bicchieri (forthcoming).

3 See for example Menger (1871) and Marimon, McGratten and Sargent (1989).
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if et< 5. (If &t = .5 we shall assume the agent chooses randomly.) All of this
happens with high probability, say 1 - ¢ . But with probability € > 0 a person chooses

gold or silver at random, that is, for reasons external to the model.

Qualitatively this process evolves in the following manner. After an initial
shakeout, the process converges quite rapidly to a situation in which most people
are carrying the same currency -- say gold. This norm will very likely stay in place
for a considerable period of time. Eventually, however, an accumulation of random
shocks will "tip" the process into the silver norm. These tipping incidents are
infrequent compared to the periods in which one or the other norm is in place.
Moreover, once a tipping incident occurs, the process will tend to adjust quite
rapidly to the new norm. This pattern -- long periods of stasis punctuated by
sudden changes of regime -- is known in biology as the punctuated equilibrium effect.
The model described above predicts a similar phenomenon in the evolution of
economic and social norms. Figure 1 illustrates this idea for the currency game

when the two currencies have equal payoffs.



Figure 1. The currency game with equal payoffs, sample size s = 10, and & = .50.
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Now let us ask what happens when one currency is inherently better than the other.
Suppose, for example, that gold is somewhat preferred because it does not tarnish
as easily as silver. Then the decision problem at the individual level is to choose
gold if 8t > o, and to choose silver if &t < a, where a is a fraction strictly less than
one-half. Now the process follows a path that looks like figure 2. Over the long
run there is a bias toward gold, that is, at any given time the society is more likely
to have adopted the gold standard than the silver standard. Moreover, the bias
becomes larger the smaller the random perturbations are. Figure 3 shows a
characteristic sample path when the noise level is reduced by a factor of ten. Notice
that the process is at or near the gold standard a larger fraction of the time, and
shifts of regime are more infrequent. These features become more pronounced as
the noise level becomes smaller, a fact that can be verified analytically using

methods to be discussed in the next section.



Figure 2. The currency game with asymmetric payoffs, a« =1/3,s =10, and € = .50.
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Figure 3. The currency game with asymmetric payoffs, « =1/3,s =10, and & = .05.
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2. Stochastic stability

Many agent-based models can be represented as Markov processes of very large
dimensionality. A state of the system is specified by the location, information, and
beliefs of the various actors. The transition probabilities are specified by the
interaction probabilities among agents and the rules by which they adapt their
choices and beliefs to perceived conditions (the learning rules). Let Z denote the set
of possible states of such a system, which, though finite, may be extremely large.
For every pair of states z, z' € Z,letPbea |Z| x | Z| matrix such that the
component P, is the probability of moving from state z to state z’ in one period. P is
the transition probability matrix of a finite Markov process. We shall always restrict
ourselves to processes that are time-homogeneous, that is, the transition

probabilities do not change from one period to the next.

Suppose that the initial state is z0. For every time t > 0, let the random variable

ft(z | z0) denote the empirical frequency with which state z is visited during the first t
periods. It can be shown that, as t goes to infinity, ff(z | z0) converges almost surely
to a limiting frequency distribution. If this distribution depends on the initial state
z0, or on chance events that occur along the way, we shall say that the process is
non-ergodic or path-dependent. If the limiting distribution is uniquely determined

independently of z0, the process is ergodic.

There is a simple structural criterion that allows us to say whether or not a process
is ergodic.* Say that state z' is accessible from state z, written z — Z', if there is a
positive probability of moving from z to z' in a finite number of periods (including

no periods, i.e., z is accessible from z). States z and z' communicate, written z ~ 2/, if

4 For a discussion of ergodicity in Markov chains see Karlin and Taylor (1975, Chapter 2).



each is accessible from the other. Clearly ~ is an equivalence relation, so it
partitions the space Z into equivalence classes, which are known as communication
classes. A recurrence class of P is a communication class such that no state outside
the class is accessible from any state inside it. It is straightforward to show that
every finite Markov chain has at least one recurrence class. A state is recurrent if it
is contained in one of the recurrence classes; otherwise it is transient. In particular, a
state is recurrent if and only if, once the process has entered it, the probability of

returning to it is one.

A basic result on finite Markov chains is that ergodicity holds if and only if the
process has a unique recurrence class. Equivalently, such a process is ergodic if the
states can be divided into two disjoint classes A and B such that: there is a positive
probability of moving from any state in A to some state in B; there is a positive
probability of moving from any state in B to any other state in B; there is zero
probability of moving from any state in B to any state in A. A particular instance
occurs when A is empty and B constitutes the entire state space; in this case the

process is said to be irreducible.

The standard approach to analyzing the asymptotic behavior of a Markov chain is
to solve for the stationary distribution algebraically. Specifically, let p be a
probability distribution on Z written out as a row vector and consider the system of

linear equations

uP =p, wherep=0and ) p(z)=1. 1)

zeZ

This system always has at least one solution p, called a stationary distribution of the

process P. The solution is unique if and only if P has a unique recurrence class, that



is, if and only if P is ergodic. In this event the empirical frequency distribution

converges almost surely to p independently of the initial conditions:

lim ft (z | z0) = p(z). 2)

t>wo
By contrast, if P has more than one recurrence class, the process is path-dependent,

and the initial position -- as well as chance events along the way -- can influence its

long-run behavior.

Most of the models we shall consider are ergodic; in fact they have another
property that allows us to make even sharper statements about their asymptotic
behavior. Given a finite Markov process P and a state z, let Nz be the set of all
positive integers n such that there is a positive probability of moving from z to z in
exactly n periods. The process P is aperiodic if, for every z, the greatest common
divisor of N is unity. If P is aperiodic and ergodic, not only does its average
behavior converge to the unique stationary distribution p, so does its probabilistic
behavior at each point in time t when t is sufficiently large. More precisely, Pt be the
t-fold product of P. If the process starts in an arbitrary state y, then in t periods the
probability of being in state z is Pty,. It can be shown that, if P is ergodic and

aperiodic, then with probability one

Vy zelZ, lim Pt = u(z). (3)
t>w»
In particular, the probability of being in a given state z at a given time t is
essentially the same as the probability ft (z | z0) of being in state z up through time t
provided that t is large; furthermore both converge to the stationary distribution

1(z) independently of the initial state.



When the state space is very large -- as is usually the case with agent-based models
-- the stationarity equation (1) is much too cumbersome to solve explicitly.
Fortunately there is an alternative approach, based on the theory of large
deviations, that often permits a good approximation of the stationary distribution

without having to solve equation (1).

Suppose that the Markov process P can be split into two parts: a basic process PO,
on which is superimposed small trembles or perturbations. An example would be a
model] in which agents change their behaviors according to a choice rule that has a
small probabilistic component. In this case the basic process is given by the
probabilities of interaction among the agents, combined with their expected change
in behaviors; the perturbations correspond to idiosyncratic aspects of individual-
level changes in behavior. (We shall consider a number of concrete examples
below.) Under certain regularity conditions, one can identify the states that have
high probability when the perturbations are small without solving for the
stationary distribution explicitly. These are known as stochastically stable states, and
correspond to the equilibria that have the greatest persistence or robustness in the

presence of random perturbations [Foster and Young (1990)].

3. Technology adoption

We shall first illustrate the approach using a model of technology choice with
network externalities, which is similar to the currency model discussed earlier.
Consider a population of n individuals. At each point in time every individual
owns one of two technologies, A or B, hence the system has 2» possible states. Both
technologies generate positive externalities - the payoff from a given choice
increases with the proportion of others who make the same choice. A
contemporary example is personal computers: if most people own PCs it is

advantageous to own a PC; if most people own Macs it is more desirable to own a

10



Mac. The reason is that the more popular a given model is, the more software will

be created for it, and the easier it is to share programs with others.>

In each period one individual is chosen at random to make a new choice -- say
because her current model wears out. She makes her decision by asking s
randomly selected people what choices they made, and then choosing a perturbed
best response. The payoffs are as follows: if in the random sample k people have
chosen A and s - k have chosen B, the payoff to adopting A is as and the payoff to
adopting B is b(s - k). This is equivalent to playing a game against the field in
which the row player’s payoffs are given by

A B
a
B 0 b

Let us assume that players choose a best response with high probability, but not
with certainty. Specifically let us suppose that an individual chooses a best
response (given the sample evidence) with probability 1 - €, and chooses an action
at random with probability €. Thus, with low probability the individual does not

deliberate about her decision, whereas with high probability she does.

This is a simple example of a perturbed dynamical process. There is a finite (but
large) number of states, and there are well-defined transition probabilities from any
state to any other state. Unless the population is very small, however, it is
extremely cumbersome to write down the transition matrix and to solve the

stationarity equation algebraically. Instead we exploit the fact that the process is

5 For other models of network externalities see Katz and Shapiro (1985, 1986), David (1985), and
Arthur (1989).
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perturbed due to the idiosyncratic choices of agents.

If there were no perturbations (g = 0), the transition probabilities would be
calculated as follows. Let the current state consist of m users of A and n - m users
of B. At the start of the next period, choose one agent at random and let her draw a
sample of size s from the remaining agents. Assume that she chooses a best
response to the distribution of A-users and B-users in her sample. The combination
of these events determines the probability of transiting to every possible successor
state at the end of the period. (Note that the process can only transit to a state that
differs from the current state in at most one coordinate, because only one agent
reconsiders in each period.) Let P? denote the transition probability matrix of the
resulting unperturbed process. Define a separate process Q in which one agent is
drawn at random each period and chooses A or B with equal probability. We can
then represent the perturbed process (with noise level €) by the transition matrix P* =

(1-€e)P+eQ.

The stationary distribution may now be calculated as follows. First we identify the
recurrence classes of P0. One such class is the absorbing state in which everyone
plays A; another is the absorbing state in which everyone plays B. Call these states
zA and zB respectively. It can be checked that these are the only recurrence classes:
from any state the probability is one of eventually landing in one of these two
states. Now compute the “path of least resistance” from zB and z# and vice versa.
Starting from zB, consider a series of A adoptions (due to perturbations) that lead to
a critical or “tipping” state z*, from which the process can transit to z4 with no
further perturbations. This tipping point occurs when there are k* choices of A,
where k* satisfies the condition ak* > b(s - k*), that is, k* 2 bs/(a + b). (An agent
who draws these k* individuals in her sample will choose A instead of B.) The

probability of this tipping event is approximately (g/ 2)rb5/ @+, where in general

12



[ x]denotes the least integer greater than or equal to x. Define the resistance of the

transition zB — zA to be the exponent on ¢, that is,
1(zB — z2) =[bs/(a + b)].

Similarly, the resistance of the transition zA — zB is
r(zA — zB) =[as/(a + b)1.

The smaller of these numbers determines the shape of the stationary distribution
when ¢ is small. Specifically, if r(zA — zB) <r(zB — zA) then the stationary
distribution puts probability close to 1 on the state zB. If r(zA — zB) > r(zB — z4), the
stationary distribution puts probability close to 1 on the state zA. It follows that,
when the sample size s is sufficiently large, the Pareto efficient technology is
favored in the long run: if a > b, society is much more likely to have a large number

of A-users than a large number of B-users, and vice versa.
4. Characterizing the stochastically stable states

We now show how this framework can be generalized to a wide variety of agent-

based models. Consider a process such that the size of the perturbations can be
indexed by a scalar € > 0, and let P€ be the associated transition probability matrix.

P& is called a regular perturbed Markov process if P¢ is ergodic for all sufficiently small

g > 0 and Pt approaches PV at an exponentially smooth rate [Young (1993a)].

Specifically, the latter condition means that

Vz,7 €Z, lim Pe,, =PO0,,,
e—>0"
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and Pe,, >0 for some ¢ > 0 implies 0 < lim P&,/ 7 2) < oo,
e—>0"
for some nonnegative real number r(z — z'), which is called the resistance of the

transition z —» z'.

Let PV denote the unperturbed process and let its recurrence classes be denoted by
E1, Ep, . .., EN. For each pair of distinct recurrence classes E; and Ej, i#j, an ij-path
is defined to be a sequence of distinct states { = (z1 — z2 = ... & za) such that z;
Ej and z, € Ej. The resistance of this path is the sum of the resistances of its edges,
thatis, r(C) =r(z1 — z2) + r(z2 > 2z3) + . .. + 1(zn-1 = 2n). Let pjj = min r(£) be the
least resistance over all ij-paths £. Note that pjj must be positive for all distinct i and

j, because there exists no path of zero resistance between distinct recurrence classes.

Now construct a complete directed graph with N vertices, one for each recurrence
class. The vertex corresponding to class E;j will be called "j". The weight on the
directed edge i — j is pjj. A tree rooted at vertex j, or j-tree, is a set of N - 1 directed
edges such that, from every vertex different from j, there is a unique directed path
in the tree toj. The resistance of a rooted tree T is the sum of the resistances pjj on
the N -1 edges that compose it. The stochastic potential yj of the recurrence class E;
is defined to be the minimum resistance over all trees rooted atj. The following

theorem gives a simple criterion for determining the stochastically stable states

[Young (1993a, Theorem 4)].
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THEOREM 1. Let P¢ be a regqular perturbed Markov process and for each & > 0 let u¢ be the
unique stationary distribution of P€. Then lim_g ¢ exists and the limiting distribution

u191s a stationary distribution of P0. The stochastically stable states (the support of p9) are

precisely those states contained in the recurrence classes with minimum stochastic potential.
We shall illustrate this result with the preceding example. In this situation there are
two recurrence classes, {zA} and {zB}, and exactly two rooted trees, as shown in

Figure 4.

Figure 4. The currency game with two recurrence classes.

(ﬂ/ﬁ\\ I—am/ (a+b)_| ' (,#A‘\\\s 'qu\’\ l_bm/ ( a+b)_‘ ///._Nx\
Lzr ) » f 7B ) \ zA < { ZB |
N N N M

The tree with least resistance points toward the Pareto dominant equilibrium, and

confirms our earlier calculation that this is the stochastically stable outcome.

A more complex example is the following. Consider a technology choice game in
which there are three choices of technology -- A, B, C -- and the payoffs from

networking are

A B C
A 5 0 0
B 0 4 0
c 0 0 3

In this case there are three recurrence classes, one for each of the absorbing states

zA, 7B, zC, and there are nine trees, as shown in figure 5.
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Figure 5. An example with nine rooted trees and three recurrence classes.
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The sum of the resistances is minimized for the middle tree in the top row (3/8 +
4/9 is the smallest sum among the nine trees). Hence the root of this tree, which
corresponds to the state in which everyone adopts technology A, is the

stochastically stable state.

5. Efficiency versus stochastic stability

The preceding examples should not lull the reader into believing that evolution
invariably selects efficient norms or standards. On the contrary, this state of affairs
is quite exceptional, and hinges on the form of the payoff matrix. In this section we
discuss the connection between efficiency and stochastic stability when there are

two alternatives; a more extended discussion may be found in Young (1993a, 1998).

16



Assume then that there are two competing technologies, A and B. In the preceding
section we assumed that there were gains only from networking with the same
technology (the payoff matrix has zeroes off the diagonal). In general, however,
there may be positive payoffs from networking with different technologies, and
there may also be payoffs that arise from using the technology independently of
networking effects. (For example, in the case of computer software there is a payoff
from ease of file-sharing with other users, but there is also a payoff from the
convenience of the software itself.) To be concrete, suppose that A-A interactions
yield a payoff of 4 to each user, A-B interactions yield a payoff of 1 to each user, and
the use of A yields a payoff of 1 to the user in addition to the networking payoffs.
Similarly, suppose that B-B interactions yield a payoff of 1 to each user, B-A
interactions also yield a payoff of 1, while using B yields a payoff of 3 in addition to
the networking payoffs. The combination of these effects leads to the following total

payoff matrix:

networking own use total payoff

A B A B A B

A 44 1,1 1,1 1,3 55 2,4
-+ =
B 1,1 1,1 3,1 3,3 4,2 4,4

We claim that the efficient outcome is for everyone to adopt A, but the
stochastically stable outcome is for everyone to use B. To see why this is so, we
need to compute the two resistances r(zB — zA) and r(zA — zB). This involves
finding the smallest number, k*, of mistakes or mutations that are needed to tip the

process from zB to zA. This is the least integer satisfying the inequality

5K* + 2(s - k¥) 2 4k* + 4(s - k*).

17



Subject to rounding this leads to the estimate r(zB — z4) ~ 2s/3. Similarly we find
that r(zA — zB) » s /3. Since the latter is smaller, it follows from theorem 1 that
(when s is sufficiently large) the stochastically stable state is all-B, which of course is

not efficient.

Suppose, more generally, that the payoff matrix is of form

A B
a c
B d b

When a > d and b > ¢, this is a symmetric coordination game with coordination
equilibria (A, A) and (B, B). We say that alternative A is strictly risk-dominant if a - d
> b - c. Similarly, B is strictly risk-dominant if the reverse inequality holds. Note that
risk dominance is not the same as efficiency, which is determined by the larger of a

and b. One implication of the preceding analysis is the following.

Theorem 2. Let G be a 2 x 2 coordination game with a strictly risk-dominant equilibrium.
If G is played by a population of n players using samples of size s, then for all sufficiently
large s and n (s < n/2) the unique stochastically stable state is the one in which everyone

plays the risk-dominant alternative.

This result has an interesting implication for the relative "fitness" of competing
technologies. Consider again the situation in which each individual’s payoff can be
decomposed into a payoff from networking and a payoff from own use. We can

write this in the following general form:

18



networking own use total payoff

A B A B A B
A a c a’ a a+a c+a
+ = )
B ¢ b b b’ c+b b+l

Assume thata > c and b > ¢, so that both A and B are coordination equilibria. By

definition, risk dominance is determined by the inequality

(@+a)y-(c+b)>@b+b)-(c+a),
that is,
a+2a >b+2b. 6)

This has the following implication for the producers of A and B. Suppose that one
of the firms - say the A-producer - is contemplating whether to invest in
improvements that lead to greater networking transparency with other As, or to
greater ease of use. Where should the money be invested to maximize the chance
that A will take over the market? The answer is that investment in networking
should be chosen only if it increases each user’s utility at least twice as much as a
similar investment in non-networking improvements. For example, suppose that A
and B represent two types of cellphones. Suppose that, for a given expenditure, the
firm producing A can either improve the clarity of the signal with other A-users, or
improve the ease of reading the monitor independently of other users. Say that the
first improvement increases the payoff to each A-user by A per call made to other
A’s, whereas the second increases it by A’ per call made to anyone. If everyone in
the population were using A, the firm would simply evaluate which is larger: A or
A’. Butin a competition for acceptance, the relevant criterion is the larger of A or

2A’. The reason is that A results from externalities with other A-users, whereas A’
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does not. To my knowledge this point has not been previously recognized in the

literature on network externalities.

6. Application to Schelling’s segregation model

We turn now to a more complex example that illustrates the power of the analytical
method discussed above. One of the earliest agent-based models in the social science
literature is Schelling's illustration of how segregated neighborhoods can emerge
spontaneously from decisions by individuals who would in fact prefer to live in
integrated settings [Schelling (1971, 1978)]. Here we shall present a variant of
Schelling’s model that lends itself to the stochastic analysis discussed above; for an

extension of the analysis to more complex environments see Zhang (2004a, 2004b).

Assume that the population consists of n individuals, who are of two types: A and B.
They cannot change their type, but they can choose where to live. Suppose for
simplicity that they are located around a circle as shown in figure 6. We shall say
that an individual is discontent if his two immediate neighbors are unlike himself;
otherwise he is content. An equilibrium is a state in which no two individuals want
to trade places. In other words, there is no pair of agents such that one (or both) is
currently discontent, and both would be content after they trade locations. (If only
one agent is discontent beforehand, we can imagine that he compensates the other to

move, so that both are better off after the move than they were before.)
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Figure 6. A disequilibrium state.
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We claim that, if there are at least two agents of each type, then in equilibrium no
one is discontent. To see why this is so, suppose to the contrary that an A is
surrounded by two B's: .. .BAB. ... Moving clockwise around the circle, let B* be
the last B-type in the string of Bs who follows this A, and let A* be the agent who
follows B*:

.BAB...BB*A*. ..

Since there are at least two agents of each type, we can be sure that A* differs from
the original A. But then the original discontent A could switch with B* (who is
content), and both would be content afterwards. Thus we see that the equilibrium
configurations consist of those arrangements in which everyone lives next to at least
one person of his own type. No one is "isolated." In general there are many
different kinds of equilibrium states: some consist of small enclaves of A's and B's

scattered around the landscape, while others exhibit full segregation with the A's
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living on one side of the circle and the B’s on the other.

Consider the following adjustment dynamic. In each discrete time period a pair of
individuals is selected at random, where all pairs are equally likely to be chosen.
Consider such a pair of individuals, say i and j. We shall assume that the probability
that they trade depends on their prospective gains from trade. Let us assume that
every trade involves moving costs. Thus there can be positive gains from trade only
if the partners are of opposite types and at least one of them (say i) was discontent
before and is content afterwards. This means that, before the trade, i was
surrounded by people of the opposite type, so in fact both i and j are content
afterwards. (We shall assume that if j is content before and after the trade, i can
compensate j for his moving costs and still leave both better off.) Such Pareto

improving trades are said to be advantageous; all other trades are disadvantageous.

Assume that each advantageous trade occurs with high probability, and that each
disadvantageous trade occurs with low probability. Specifically, let us suppose that
there exist real numbers 0 < a < b < ¢ such that the probability of a disadvantageous
trade is €7 if neither partner's degree of contentment changes (so the losses involve
only moving costs), the probability is € if both partners were content before and one
is discontent after, and it is €€ if both were content before and both are discontent
after. (These are the only possibilities.) Advantageous trades are assumed to occur
with probabilities that approach one as € — 0; beyond this we need not specify the
probabilities exactly. The resulting perturbed Markov process P¢ is ergodic for

every € > 0, and regular in the sense defined earlier.

To apply the theory, we first need to identify the recurrence classes of the
unperturbed process PO. These obviously include the absorbing (equilibrium) states.
We claim that these are in fact the only recurrence classes of P0. To prove this,

consider a state that is not absorbing. It contains at least one discontent individual,
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say i; without loss of generality we may assume that i is of type A. Going clockwise
around the circle, let i' be the next individual of type A. (Recall that there are at least
two individuals of each type.) The individual just before i' must be of type B. Call
this individual j. If i and j trade places, both will be content afterwards. Inany
given period there is a positive probability that this pair will in fact be drawn, and
that they will trade. The resulting state has fewer discontent individuals.
Continuing in this manner, we see that from any non-absorbing state there is a
positive probability of transiting to an absorbing state within a finite number of

periods. Hence the absorbing states are the only recurrent states.

Denote the set of all absorbing states by Z0. For any two states z and z' in Z9, let r(z,
z') denote the least resistance among all paths from z to z'. The stochastic potential of
z € 70 is defined to be the resistance of the minimum resistance z-tree on the set of
nodes Z0. By theorem 1, the stochastically stable states are those with minimum
stochastic potential. We claim that these are precisely the segregated absorbing states,
that is, states in which all the A’s are lined up on one side of the circle and all the B’s

are on the other.

To prove this claim, let Z0 = Zs U Zns where Z$ is the set of segregated absorbing
states and ZnS is the set of non-segregated absorbing states. We claim that (i) for
every z € ZMS, every z-tree has at least one edge with resistance b or c (which by

assumption are greater than a); and (ii) for every z € Z5, there exists a z-tree in

which every edge has resistance exactly equal to a. Assume for the moment that (i)

and (ii) have been established. In any z-tree there are exactly |Z9|- 1 edges, and the

resistance of each edge is at least a. It follows from (i) and (ii) that the stochastic
potential of every segregated state equals a | Z0| - a, while the stochastic potential of
every non-segregated state is at least a| Z9| - 24 + b, which is strictly larger.

Theorem 1 therefore implies that the segregated states are precisely the
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stochastically stable states.

To establish (i), let z € ZMS be a non-segregated absorbing state. Given any z-tree T,
there exists at least one edge in T that is directed from a segregated absorbing state
z5 to a non-segregated absorbing state zS. We claim that any such edge has
resistance at least b. The reason is that any trade that breaks up a segregated state
must create at least one discontent individual, hence the probability of such a trade
is either b or € (see figure 7). Thus the resistance of the edge from z5 to z"S must

be at least b, which establishes (i).

Figure 7. Single disadvantageous trade leading from an equilibrium to a

disequilibrium state.
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To establish (ii), let z € Z5 be a segregated absorbing state. From each state z' # z
we shall construct a sequence of absorbing states z' = z1 - 722 — ... - zk = z such
thatr(zi-l > zl)=afor1<j<k. Call thisaz'z-path. We shall carry out the
construction so that the union of all of the directed edges on all of these paths forms
a z-tree. Since each edge has a resistance of a and the tree has |Z0] - 1 edges, the

total resistance of the tree is a| Z0| - a as claimed in (ii).
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Suppose first that z' is also segregated, that is, z' consists of a single contiguous A-
group and a complementary contiguous B-group. Label the positions on the circle
1,2,...,n, in the clockwise sense. Let the first member of the A-group trade places
with the first member of the B-group. Since both were content before and after, this
trade has probability €%. It also results in a new absorbing state, which shifts the A-
group and the B-group by one position clockwise around the circle. Hence withinn
steps we can reach any absorbing state, and in particular we can reach z. Thus we
have constructed a sequence of absorbing states that leads from z' to z, where the

resistance of each successive pair in the sequence equals a.

Suppose alternatively that z' is not segregated. Moving clockwise from position 1,
let A denote the first complete group of contiguous As. Let B be the next group of
Bs, and A' the next group of As. Since z' is absorbing, each of these groups contains
at least two members. Let the first player in A trade places with the first player in B
(in the clockwise labeling). Since both players were content before and after the
trade, its probability is €%. This trade also shifts group A one position clockwise and
reduces by one the number of B players between A and A'. It either results in a
new absorbing state, or else a single B player remains between A and A'. In the
latter case this B player can then trade with the first player in group A, and this
trade has zero resistance. The result is an absorbing state with fewer distinct

groups of As and Bs.

Repeat the process described in the preceding paragraph until all the As are
contiguous and all the Bs are contiguous. Then continue as in the earlier part of the
argument until we reach the target state z. This construction yields a sequence of
absorbing states that begins at z' and ends at z, where the resistance between each
successive pair of states is a. The path contains no cycles because the number of

distinct groups never increases; indeed with each transition one of the groups
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shrinks until it is eliminated. Thus the union of these paths forms a z-tree whose
total resistance is a | Z9| - a. This concludes the proof that the stochastically stable

states are precisely the segregated ones.
7. Local interaction models

Schelling’s model is an example of a situation in which agents adapt their behaviors
to the actions of their near neighbors. We can easily imagine that the same issue
could arise in a model of technological adoption. What happens if people adopt
practices or technologies based only on the choices of their immediate neighbors, as
opposed to a sample drawn from the population at large? In this section we show
how to address this problem using methods from statistical mechanics, an

approach pioneered by Blume (1993, 1995).

Consider a group of n agents who are located in a social or geographic space that
allows us to talk about their proximity. A very general model of this sort is to
suppose that each agent lives at the vertex of a graph. The edges of the graph have
weights that indicated the degree of proximity or influence that pertains to each
pair of agents. To be specific, let V denote the set of vertices, and leti €V denote a
particular vertex (which is identified with an agent whom we shall also call i). Let
wij 2 0 be a weight that measures the proximity of agents iand j in a geographical

(or social) sense. We shall assume that this is a symmetric relation, that is, wi; = wi;.

Let X be a finite set of available options or choices. The state of the process at time t
specifies the choice of each agent at that time. A state can therefore be represented
as an n-dimensional vector xt € Xn, where xitis i’s choice at time t. Each individual i
gets to reconsider his choice at random times governed by a Poisson random

variable w;. We shall assume that the random variables o; are independent and

identically distributed among agents, and that time is scaled so that, on average,
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there is one revision opportunity per time period at each location. (Allowing
differences in the rates of revision opportunities does not change the analysis in any

fundamental way.)

In line with our earlier discussion, we shall decompose the utility of each agent i
into two parts: the utility of the choice itself (without externalities), and the positive
externality from doing what “the Joneses” do. Specifically, let wij u(x, y) be the
externality payoff from choosing x at location i when one’s neighbor at location j
chooses y. Thus ej(x) = Zjx wiu(xi, x;) denotes i’s externality payoff in state x. Let
vi(x) denote the utility that i derives from x; itself without regard to externalities.

Assume that i’s utility in state x at time t is given by

Ui(xt) = vi(xit) + ei(xt) + s&it, (7)

where ¢t is an unobserved utility shock. It is analytically convenient to assume that
the &t are independent and identically distributed according to the extreme value
distribution.6 Suppose that i chooses x;t to maximize U; given that the others’
choices at time t are fixed. It can be shown that, from the observer’s point of view, i

chooses xit € X according to the logistic distribution

P(xt | x4f) = exp Blvi(xit) + ei(xH)]/ Y exp BLvi(ys) + ei(yi x.i9)] (8)
Vi € X

6The random variable z is extreme value distributed if its cumulative distribution function F(z) takes
the form In F(z) = -e *2. This distribution is analytically convenient because it yields a simple closed-
form solution for the stationary distribution of the adjustment process; moreover it is standard as a
model of discrete choice [McFadden (1974), Blume (1993, 1995), McKelvey and Palfrey (1995),
Durlauf (1997), Brock and Durlauf (2001). Alternative error distributions can be analyzed using the

methods discussed in section 2.
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The resulting stochastic adjustment process can be represented as a finite Markov
chain. This process has a unique recurrence class (namely the whole state space)
because the choice model implies that any choice will be made with positive
probability whenever an agent reconsiders. Hence the process is ergodic and has a
unique stationary distribution p? on the set of states X. For each x € X, pP(x)
represents the long-run relative frequency with which state x is visited starting

from any initial state.

A noteworthy feature of this set-up is that the stationary distribution can be

expressed in a simple closed form. Specifically, define the potential of state x to be

p() =X vi(x) + (1/2) L e ()} ©)

i=l1 i=1

Thus the potential of a state equals the nonexternality payoffs generated
individuals' choices, plus one-half the externalities generated by social interactions.
It can be shown that the long-run distribution of the process has the following
simple form, known as a Gibbs representation:
(10)
u(x) = eBp(xyz hr)
y

It follows that, when B is large, the probability is close to one that the process will
be in a state that maximizes potential, that is, the stochastically stable states are

precisely those that maximize p(x).

Theorem 3. Starting from an arbitrary initial state, the long-run probability of being in

any given state x is proportional to ePPX). When B is large, the probability is close to one

that the process is in a state x that maximizes p(x).
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We remark that this model can be applied to the technology adoption problem
discussed in section 5. Recall that in this case the choice set consists of just two

options, A and B, and the utilities are given by the payoff matrix

networking own use total payoff
A B A B A B
A a c a a ata c+a
-+ =
B ¢ b v v c+tb b+l

Now let us suppose a social structure among the agents that determines who
interacts with whom. Specifically, assume that each agent is joined by an edge to s
other agents (the graph is regular of degree s), and that the weight on each edge is
1/s.

Consider any state x, and let naa(x) be the total number of edges such that the
agents at both ends of the edge choose A. Similarly, let ngs(x) be the total number
of edges such that the agents at both ends choose B, and let nap(x) be the total
number of edges such that the agent at one end chooses B and the agent at the other
end chooses A. Next, let na(x) be the number of agents who choose A and let ngp(x)
be the number who choose B. Note that na(x) + ns(x) = n and naa(x) + nss(x) +

nap(x) =n/2. The potential function in (9) can then be written as follows:

p(x) = a’na(x) + b'ns(x) + (1/s)(anaa(x) + bnpp(x) + cnap(x)). (11)

29



This is maximized either by the all-A state xA or the all-B state xB. Thus we wish to

evaluate which is larget:

p(xA)=a'n+an/2 or p(xB)=b'n+bn/2 . (12)

This amounts to finding the larger of a + 24' and b + 2b', which is exactly the risk
dominance criterion (see the derivation of (6)). It can be shown, in fact, that risk
dominance is the relevant criterion of stochastic stability in a wide variety of binary
choice situations [Kandori, Mailath, and Rob (1993), Blume (2003)], though this is

not true when more than two choices are available [Young (1993a)].

8. Contractual norms

The framework outlined above has potential application to any situation in which
social norms influence individual agents” decisions. Cases in which this possibility
has been discussed include the use of addictive substances, dropping out of school,
and criminal behavior [Case and Katz (1991, Crane (1991), Glaeser, Sacerdote and
Scheinkman (1996)]. In this section we apply the theory to yet another domain, the
role of social norms in shaping the terms of economic contracts. In particular we
show how it can illuminate the pattern of cropsharing contracts found in

contemporary U.S. agriculture [Young and Burke (2000)].7

A share contract is an arrangement in which a landowner and a tenant farmer split
the gross proceeds of the harvest in fixed proportions or shares. The logic of such a
contract is that it shares the risk of an uncertain outcome while offering the tenant a

rough-and-ready incentive to increase the expected value of that outcome. When

7 Applications of the theory to the evolution of bargaining norms may be found in Young (1993b)
and Young (1998, chapter 9).
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contracts are competitively negotiated, one would expect the size of the share to
vary in accordance with the mean (and variance) of the expected returns, the risk
aversion of the parties, the agent’s quality, and other relevant factors. In practice,
however, shares seem to cluster around “usual and customary” levels even when
there is substantial heterogeneity among principal-agent pairs, and substantial and
readily observed differences in the quality of different parcels of land. These
contractual customs are pinned to psychologically prominent focal points, such as
1/2-1/2, though other shares -- such as 1/3-2/3 and 2/5-3/5 -- are also common,

with the larger share going to the tenant.

A striking feature of the Illinois data is that the above three divisions account for
over 98% of all share contracts in the survey, which involved several thousand
farms in all parts of the state. An equally striking feature is that the predominant or
customary shares differ by region: in the northern part of the state the
overwhelming majority of share contracts specify 1/2-1/2, whereas in the southern
part of the state the most common shares are 1/3-2/3 and 2/5-3/5 [Illinois
Cooperative Extension Service (1995)].8 Thus, on the one hand, uniformity within
each region exists in spite of the fact that there are substantial and easily observed
differences in the soil characteristics and productivities of farms within the region.
On the other hand, large differences exist between the regions in spite of the fact that
there are many farms in both regions that have essentially the same soil
productivity, so in principle they should be using the same (or similar) shares. The
local interaction model discussed in section 7 can help us to understand these

apparent anomalies.

8 This north-south division corresponds roughly to the southern boundary of the last major
glaciation. In both regions, farming techniques are similar and the same crops are grown -- mainly
corn, soybeans, and wheat. In the north the land tends to be flatter and more productive than in the

south, though there is substantial variability within each of the regions.
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Let us identify each farm i with the vertex of a graph. Each vertex is joined by edges
to its immediate geographical neighbors. For ease of exposition we shall assume
that the social influence weights on the edges are all the same. The soil productivity
index on farm i, s;, is a number that gives the expected output per acre, measured in
dollars, of the soils on that particular farm. (For example, s; = 80 means that total
net income on farm i is, on average, $80 per acre.) The contract on farm i specifies a
share x; for the tenant, and 1 - x; for the landlord, where x; is a number between
zero and one. The tenant's expected income on farm i is therefore x;s; times the
number of acres on the farm. For expositional convenience let us assume that all
farms have the same size, which we may as well suppose is unity. (This does not

affect the analysis in any important way.)

Assume that renegotiations occur on each farm according to i.i.d. Poisson random
variables, as described in the preceding section. When the time comes to
renegotiate on a particular farm, say i, the landlord makes an offer, say x;. The
tenant accepts if and only if his expected return x;s; is at least w;, where w; is the
reservation wage at location i. The expected monetary return to the landlord from

such a deal is vi(x;) = (1 - xy)s;.

To model the impact of local custom, suppose that each of i's neighbors exerts the
same degree of social influence oni. Specifically, for each state x, let ;(x) =1 if i
and j are neighbors and x; = x;; otherwise let 8;(x) = 0. We assume that i's utility in
state x is (1 - x;)s; *+ y; dij(x), where v is a conformity parameter. The idea is that, if a
landlord offers his tenant a contract that differs from the practices of the neighbors,
the tenant will be offended and may retaliate with poorer performance. Hence the
landlord's utility for different contracts is affected by the choices of his neighbors.

The resulting potential function is
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(1 - xi)si + (v/2) 2ij 8 1i(x). (14)

Note that >i(1 - x;)s; represents the total rent to land, which we shall abbreviate by
r(x). The expression (1/2) 2 3 ;i(x) represents the total number of edges (neighbor-
pairs) that are coordinated on the same contract in state x, which we shall

abbreviate by e(x). We can therefore write

p() = (x) + ye(x). (15)

As in (10) it follows that the stationary distribution, p(x), has the Gibbs form

u(x)ec PE 7o)

(16)

It follows that the log probability of each state x is a linear function of the total rent to land
plus the degree of local conformity. Given specific values of the conformity parameter y
and the response parameter 3, we can compute the relative probability of various
states of the process, and from this deduce the likelihood of different geographic
distributions of contracts. In fact, one can say a fair amount about the qualitative
behavior of the process even when one does not know specific values of the

parameters.

We illustrate with a concrete example that is meant to capture some of the key
features of the Illinois case. Consider the hypothetical state of Torusota shown in
figure 8. In the northern part of the state--above the dashed line--soils are evenly
divided between High and Medium quality soils. In the southern part they are
evenly divided between Medium and Low quality soils. As in Illinois the soil types

are interspersed, but average soil quality is higher in the north than it is in the
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south. Let n be the number of farms. Each farm is assumed to have exactly eight
neighbors, so there are 4n edges altogether. Let us restrict the set of contracts to be
in multiples of ten percent: x =10%,20%, ..., 90%. (Contracts in which the tenant
receives 0% or 100% are not considered.) For the sake of concreteness, assume that
High soils have index 85, Medium soils have index 70, and Low soils have index 60.

Let the reservation wage be 32 at all locations.

Figure 8. The hypothetical state of Torusota. Each vertex represents a
farm, and soil qualities are High (H), Medium (M), or Low (L).
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We wish to determine the states of the process that maximize the potential function
p(x). The answer depends, of course, on the size of vy, that is, on the tradeoff rate
between the desire to conform with community norms and the amount of economic

payoff one gives up in order to conform.

Consider first the case where y = 0, that is, there are no conformity effects.
Maximizing potential is then equivalent to maximizing the total rent to land,

subject always to the constraint that labor earns at least its reservation wage on each
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class of soil. The contracts with this property are 40% on High soil, 50% on Medium
soil, and 60% on Low soil. The returns to labor under this arrangement are: 34 on H,
350n M, and 36 on L. Notice that labor actually earns a small premium over the
reservation wage (w = 32) on each class of soil. This quantum premium is attributable
to the discrete nature of the contracts: no landlord can impose a less generous
contract (rounded to the nearest 10%) without losing his tenant. Except for the
quantum premium, this outcome is the same as would be predicted by a standard
market-clearing model, in which labor is paid its reservation wage and all the rent

goes to land. We shall call this the competitive or Walrasian state w.

Notice that, in contrast to conventional equilibrium models, our framework actually
gives an account of how the state w comes about. Suppose that the process begins
in some initial state x0 at time zero. As landlords and tenants renegotiate their
contracts, the process gravitates towards the equilibrium state w and eventually
reaches it with probability one. Moreover, if B is not too small, the process stays

close to w much of the time, though it will rarely be exactly in equilibrium.

These points may be illustrated by simulating the process using an agent-based
model. Let there be 100 farms in the North and 100 in the South, and assume a
moderate level of noise (§ = 0.20). Starting from a random initial seed, the process
was simulated for three levels of conformity: y =0, 3, and 8. Figure 9 shows a
typical distribution of contract shares after 1000 periods have elapsed. Wheny =0
(bottom panel), the contracts are matched quite closely with land quality, and the
state is close to the competitive equilibrium. When the level of conformity is
somewhat higher (middle panel), the dominant contract in the North is 50%, in the
South it is 60%, and there are pockets here and there of other contracts. (This looks
quite similar to the Illinois case.) Somewhat surprisingly, however, a further

increase in the conformity level (top panel) does not cause the two regional customs
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to merge into a single global custom; it merely leads to greater uniformity in each of

the two regions.

To understand why this is so, let us suppose for the moment that everyone is using
the same contract x. Since everyone must be earning their reservation wage, x must
be at least 60%. (Otherwise southern tenants on low quality soil would earn less
than w = 32.) Moreover, among all such global customs, x = 60% maximizes the
total rent to land. Hence the 60% custom, which we shall denote by y, maximizes
potential among all global customs. But it does not maximize potential among all
states. To see why this is so, let z be the state in which everyone in the North uses
the 50% contract, while everyone in the South everyone uses the 60% contract. State
z's potential is almost as high as y's potential, because in state z the only negative
social externalities are suffered by those who live near the north-south boundary.
Let us assume that the number of such agents is on the order of Vn, where n is the
total number of farms. Thus the proportion of farms near the boundary can be made
as small as we like by choosing n large enough. But z offers a higher land rent than
y to all the northern farms as compared toy. To be specific, assume that there are
n/2 farms in the north, which are evenly divided between High and Medium soils,
and that there are n/2 farms in the south, which are evenly divided between
Medium and Low soils. Then the total income difference between z and y is 7n/4
on the Medium soil farms in the north, and 8.5n/4 on the High soil farms in the
north, for a total gain of 31n/8. It follows that, if y is large enough, then for all
sufficiently large n, the regional custom z has higher potential than the global

custom y.?

2 A more detailed calculation shows that z uniquely maximizes potential among

aAl ototes onevewep v is sufficiently large and n is sufficiently large relative to y.
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Figure 9. Simulated outcomes of the process for n = 200, § = 0.20.
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While the details are particular to this example, the logic is quite general. Consider
any distribution of soil qualities that is heterogeneous locally, but exhibits
substantial shifts in average quality between geographic regions. For intermediate
values of conformity v, it is reasonable to expect that potential will be maximized by

a distribution of contracts that is uniform locally, but diverse globally--in other
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words the distribution is characterized by regional customs. Such a state will
typically have higher potential than the competitive equilibrium, because the latter
involves substantial losses in social utility when land quality is heterogeneous.
Such a state will typically also have higher potential than a global custom, because
it allows landlords to capture more rent at relatively little loss in social utility,
provided that the boundaries between the regions are not too long (i.e., there are

relatively few farms on the boundaries).

In effect, these regional customs form a compromise between completely uniform
contracts on the one hand, and fully differentiated, competitive contracts on the
other. Given the nature of the model, we should not expect perfect uniformity
within any given region, nor should we expect sharp changes in custom at the
boundary. The model suggests instead that there will be occasional departures
from custom within regions (due to idiosyncratic influences), and considerable
variation near the boundaries. These features are precisely what we see in the

distribution of share contracts in Illinois.

9. Conclusion

In this paper I have described a framework for analyzing the asymptotic behavior
of a wide variety of agent-based models. In particular, the theory makes
quantitative predictions about the long-run probability of various outcomes and
thus avoids the hazards of drawing conclusions solely from simulations. (Of course,
simulations can still be extremely helpful in understanding the short and medium
run dynamics of a process.) I have shown how the theory plays out in specific
contexts, including technology adoption, neighborhood segregation, and the
evolution of contractual norms. Perhaps the most important aspect of the theory,
however, is that it brings into focus certain qualitative features that are common to

many agent-based models, but that one does not tend to find in conventional
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equilibrium types of analysis. The three critical features are: i) local conformity vs.
global diversity, ii) punctuated equilibrium; iii) persistence of particular states in

the presence of stochastic shocks [Young (1998)].

We can illustrate these concepts by imagining a collection of distinct societies
whose members do not interact with each other. Over time, each will develop
distinctive institutions to cope with various forms of economic and social
coordination -- forms of contracts, norms of behavior, property rights, technological
standards, and so forth. The solutions that each society finds to these coordination
problems will typically take the form of an equilibrium state in an appropriately
defined dynamical system. Due to the positive externalities that arise from
conforming to the reigning equilibrium, one will tend to find a substantial amount
of conformity within a given community. But in separate, non-interacting
communities, one may find that the same basic problem is solved in different ways.
This is the local conformity/global diversity effect. It can apply even within a given
society if interactions are sufficiently localized and the externalities are sufficiently
strong; Illinois agricultural contracts provide a real-world instance of this
phenomenon. A concrete prediction is that two individuals are more likely to
exhibit similar behaviors if they come from the same society (or are close in the
relevant social network) than if they come from different societies, holding constant

all other explanatory variables.

The second qualitative feature of this class of models has to do with the look of the
dynamic paths. The theory predicts that the process will tend to exhibit long
periods of stasis in which a given equilibrium--or something close to an
equilibrium--is in place, punctuated by bursts in which the equilibrium shifts in
response to stochastic shocks. In the context of residential segregation Schelling

called this the “tipping” phenomenon; here I refer to it as the punctuated equilibrium

effect.
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The third key feature highlighted by the theory is that some equilibrium states are
more persistent or stable than others. Once established they tend to stay in place for
long periods of time because they are robust against stochastic shocks. The
methodology outlined allows us to identify these stochastically stable states using
the concept of a stochastic potential function. This approach also allows us to make
predictions about the long-run behavior of specific dynamical systems, such as
segregated outcomes being more stable than integrated ones, and risk dominant

technologies being more stable than efficient ones.

I conclude this essay by drawing attention to an important aspect of the theory that
we cannot explore in depth here, but that deserves particular recognition, namely,
the length of time that it takes for the long-run asymptotic behavior of an
evolutionary process to reveal itself. From an empirical point of view it obviously
makes a difference if a process takes ten years or a million years to reach its long-
run distribution. In the latter case, the short-run dynamics are more important
than the long-run asymptotics, and the process may be effectively path dependent
even if it is not so from a truly long-run perspective. In practice, however, it is quite
difficult to say how long the long run really is. There are several reasons for this.
One is that time periods in the model do not correspond to real time intervals; they
simply represent markers between distinct events in the model, such as revision
decisions by individuals. When the population is large and people interact often,
thousands or even millions of such events might be compressed within a short
period of real time, such as an hour or a day. Second, the speed of adjustment
depends on a number of modeling factors, including the degree of local interaction
[Ellison (1993), Young (1998, Chapter 6)], the amount of information that people use
to make their decisions, and the extent to which agents' errors are correlated. If
agents react only to the behavior of a few neighbors, or they get their information

by asking a few friends, or they react similarly to the same conditions, the process
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can tip from one equilibrium to another in relatively short order. Thus unless we
know quite a lot about the topology of interaction and the agents’ decision-making
processes, estimates of the speed of adjustment could be off by many orders of

magnitude.

The theory discussed above identifies those aspects of evolutionary, agent-based
models that are critical to determining the speed with which change occurs. The
remaining challenge is to bring these theoretical predictions to bear on the forms of

social structure that we see in the real world.
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