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Abstract

I investigate complementarity games played on graphs, which model negative

externalities embedded in structures of interaction. On the complete graph, the

traditional economic analysis applies: the number of agents playing one strategy

is proportional to its payo¤. I show that, in general and contrary to coordination
games, the structure crucially in‡uences the equilibria. On an important class

of graphs, called bipartite graphs, the equilibria do not depend on strategies’

payo¤s. On certain highly asymmetric graphs, an increase in the payo¤ of a

strategy even decreases the number of agents playing this strategy. In most

cases, equilibria do not maximize welfare.

Keywords : complementarity games, negative externalities, interaction structure,

social networks.

JEL classi…cation: C72, D62, Z13

THEMA, Université of Paris X-Nanterre and
Department of Agricultural and Resource Economics, 2200 Symons Hall, Uni-

versity of Maryland, College Park, MD 20742. Email: bramoulle@arec.umd.edu

¤I am grateful for comments by Robert Axtell, Antoni Calvó-Armengol, Robert Chambers, Rachel Kran-

ton, Ramon Lopez, Kai Nagel, Fernando Vega-Redondo, Peyton Young, and seminar participants at the

5th Workshop on Economics and Heterogenous Interacting Agents, Erasmus, and Alicante. I gratefully

acknowledge …nancial support from the French Ministry of Agriculture and the University of Maryland.

1



1 Introduction

In this paper, I analyze complementarity games played on graphs. Complementarity games

model negative externalities, i.e., an increase in the number of agents playing one action

decreases the relative payo¤ of this action. Games played on graphs model local and social

interactions, i.e., each agent only interacts with a subset of the whole population. Hence,

complementarity games played on graphs model situations where a negative externality is

embedded in a structure of interaction. To illustrate such situations, let me present three

stylized examples.

First, consider international trade and specialization. Assume that countries have to

specialize in producing either primary or secondary commodities, and that trade mostly

occurs between countries having di¤erent specializations. If costs associated with distance

are high, two countries trade only when they are geographic neighbors. One activity, say

producing secondary commodities, may be a priori more pro…table than the other activity.

Nonetheless, the more countries specialize in secondary commodities, the higher the relative

payo¤ of specializing in primary commodities.

Second, consider localized pollution. Assume that cities use a clean or a dirty technol-

ogy to produce a good, say transportation. The dirty technology generates pollution that

partly di¤uses to the neighboring environment. In isolation, a city prefers to use the dirty

technology. However, the social cost associated with pollution is convex. Higher levels of

ambient pollution increase the damages induced by an additional amount of pollution, thus

increases the cost of using the dirty technology. The more the other cities use the dirty

technology, the lower the incentive to use it.

Third, consider goods related to social distinctiveness. Assume that society is composed

of nonconformists. Clothing may be formal or casual, and partly de…nes people’s identity.

Since individuals are non conformists, they want to di¤erentiate themselves from their

acquaintances. Everybody may have a di¤erent set of people to whom they compare. The

more people dress formally, the higher the relative utility of dressing casually.1
1“Snob” goods are goods for which the demand decreases when others demand more of it, see Lebenstein
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These three examples share two common aspects. The more the others choose an action,

the lower the payo¤ of this action relative to the other action. Also agents do not interact

uniformly with everybody else. The structure of interaction may be geographic, as in the

case of trade and pollution, or social, as for clothing. The central question addressed by

the paper is the following. When a negative externality is embedded in a structure of

interaction, how do agents’ choices depend on the payo¤s and on the structure? Does the

structure of interaction marginally change the traditional analysis of negative externalities

or fundamentally modify it?

The central conclusion of the paper is that structure fundamentally modi…es the eco-

nomic analysis of negative externalities. As a …rst illustration of the results, let me contrast

the outcomes obtained on two very di¤erent graphs: the complete graph and the star. The

complete graph models traditional situations where everybody interacts with everybody

else. On the complete graph in equilibrium, the number of people playing one strategy is

simply proportional to the relative payo¤ of the strategy. If a strategy’s payo¤ increases,

the number of agents playing this strategy increases proportionally. On the contrary, the

star is a centered structure: one agent, called the center, is linked with all the other agents,

and all the other agents, called border agents, are only linked with the center. On the star

in equilibrium, all the border agents have to play the strategy opposite from what the center

plays. This is independent of the payo¤s of the game.

Hence, on certain structures, choices of the agents do not depend on the actions’ payo¤s,

but only on the structure itself. The star is not an isolated example, and I characterize the

class of graphs on which this property holds. These graphs, called bipartite graphs, are the

graphs on which everybody can be di¤erent from all their neighbors. On bipartite graphs,

the e¤ect of the structure is su¢ciently strong to completely remove the in‡uence of the

payo¤s. On certain other graphs, the structural e¤ect may even be so strong that it reverses

the payo¤s’ e¤ect. I present a speci…c class of graphs on which an increase in the relative

payo¤ of one strategy decreases the number of agents playing this strategy. These graphs
(1950). Desire for individual di¤erentiation plays a critical role in fashion, e.g., Simmel (1904), Benvenuto

(2000).
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illustrate what may happen on highly asymmetric structures, in which few agents possess

numerous connections while most agents have few connections.

This analysis relates to a growing literature concerned with the interplay between eco-

nomic incentives and social structure. As done here, one strand of this literature relies on

the assumption that interaction structure is …xed and frames the choices of the agents.2 On

the one hand, interaction structure may convey information between agents. Montgomery

(1991) investigates incentives that …rms have to hire through referral networks, in the pres-

ence of adverse selection on workers’ ability. Bala and Goyal (1998) study bayesian learning

occuring through graphs. Chwe (2000) analyzes how communication networks in‡uence

collective action.

On the other hand, and as done in this paper, the interaction structure may enter

directly into agents’ utilities. A lot of attention has been paid to coordination games played

on graphs. Morris (2000) analyzes the prospect of contagion on graphs with in…nite number

of agents and bounded number of links per agent. Coordination games played on graphs have

especially been studied within evolutionary game theory. In most settings, when everybody

interacts with everybody, all agents eventually coordinate on the risk-dominant strategy,

e.g., Young (1993), Kandori et al. (1993), Blume (1999). This result generalizes to regular

local interaction structures, see Ellisson (1993), Blume (1993, 1995), and even to arbitrary

symmetric graphs, see Young (1998). The structure of interaction a¤ects the Nash equilibria

of the game and the pace of convergence of the evolutionary process, but generally not the

stochastically stable state. Even when interacting through a graph, everybody eventually

coordinate on the risk-dominant strategy.3

2Another branch of this literature analyzes the incentives agents have to form and sever links with others,

and the properties of emerging structures, e.g., Jackson and Watts (1997), Bala and Goyal (2000), Kranton

and Minehart (1998), see also conclusion.
3Bergin and Lipman (1996) showed that in general, stochastic stability was highly dependent on the

tremble process. Nonetheless, Blume (1999) showed that coordination on the risk-dominant strategy was

the only stochastically stable state for a large class of trembles, when everybody interacts with everybody.

On arbitrary graphs, this is true for log-linear trembles, see Young (1998), but not for uniform trembles,

e.g., Jackson and Watts (1999).
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I provide the counterpart of the analysis of coordination games played on graphs for

complementarity games played on graphs. In my analysis, I use the framework developed

by game theorists to study coordination games played on graphs, as presented in chapter

6 of Young (1998). The stage game is a 2 by 2 symmetric game. Complementarity games

have two pure strategy Nash equilibria, in which one agent plays one strategy and the other

agent plays the other strategy. Agents are linked through a symmetric unweighted graph,

representing the structure of interaction. Agents play the 2 by 2 complementarity game

with all the other agents with whom they are linked, and earn the sum of the payo¤s of all

these plays.4 The resulting game is a n by n game depending on the 2 by 2 game and on

the graph.

My central goal is to study how the Nash equilibria of this resulting game are determined

by the payo¤s of the complementarity game and by the graph. As for coordination games,

complementarity games played on graphs usually have numerous Nash equilibria. This

raises a serious problem of equilibrium selection. However, the game possesses an exact

potential function in the sense of Monderer and Shapley (1996). Maxima of the potential

are salient equilibria of the game, notably because they are the stochastically stable states

for log-linear tremble, see Blume (1993), Young (1998). Therefore, I focus on potential

maximization to study the equilibria of the game.

In the economic literature, little attention has been paid to complementarity games.

Schelling (1978) early provided rigorous analysis of negative externalities. Complementarity

games when everybody interacts with everybody have been analyzed by Kandori et al.

(1993, section 6), and Canning (1995, section 5). Blume (1993, p.398), notices that on

the in…nite line, some Nash equilibria of a certain complementarity game are insensitive to

variations in payo¤s. All these results are encompassed and generalized in my analysis.5
4A key assumption is that agents play the same strategy with all their social neighbors. This assumption

is standard and natural in the present context.
5Theoretically, complementarity games played on graphs are related to spin glasses systems from sta-

tistical physics with pure antiferromagnetic interaction. The central notion characterizing systems with

antiferrromagnetic interaction is what physicists call ‘frustration’; see Stein (1988) for an introduction to

spin glasses systems.
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In the preliminary section 2, I describe two by two complementarity games and the type

of economic and social situations they allow one to model. In section 3, I pose the model

for general symmetric two by two games played on symmetric graphs. I state the potential

property and the results obtained for coordination games. In section 4, I analyze properties

of the equilibria for complementarity games played on graphs. This section constitutes the

core of the paper. I show that the equilibria crucially depend on the graph of interaction

and investigate this dependence. I conclude in section 5.

2 Two by two complementarity games

In this preliminary section, I give stylized examples of complementarity games. Comple-

mentarity games are symmetric two by two games possessing two Nash equilibria in which

agents play di¤erent strategies. Complementarity games are related to two broad types of

economic and social situations: complementary production and exploitation.

First, complementarity games model situations where the joint production of a certain

output requires that the agents adopt complementary roles or specializations. For exam-

ple, countries might decide on how to specialize their economy in a way complementary

to what their trading partners do6. Suppose that there are two countries, who can spe-

cialize in the production of raw materials or manufactured commodities. Opportunities for

trade are greatest when they choose di¤erent specializations. The country that produces

manufactured commodities uses raw materials imported from the other country as the fun-

damental inputs of its production. In turn, the country producing raw materials imports

cheap manufactured goods from the other country. Even when countries have similar a

priori characteristics, they might have an incentive to di¤erentiate their specializations. An

example of complementarity game that could be used to model this e¤ect is as follows.
6In all these examples complementarity games only represent extremely stylized versions of the real

processes involved. In some sense, complementarity games provide the simplest abstract models allowing

one to represent complementary production and exploitation.
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Raw materials Manufactured goods

Raw materials

Manufactured goods

2
4 1;1 3; 5

5;3 2; 2

3
5

In equilibrium both agents need not receive the same pro…t. Manufactured goods may

be more pro…table than raw materials and exchange is generally unequal. To some extent,

the desire for social di¤erentiation provides another example of complementary production.

Consider the CEOs of two rival companies. They dislike each other and seek to de…ne

opposing images of their companies. Especially, they want to be dressed di¤erently. If

clothing can be casual or formal, this situation could be modelled with the following simple

complementarity game

Casual Formal

Casual

Formal

2
4 0; 0 1;1

1; 1 0;0

3
5

In both examples, agents prefer to be in equilibrium. However, in other complementarity

games one agent prefers to be o¤ equilibrium. These games are related to situations of

exploitation, congestion, and con‡ict. Consider for example two neighboring cities that

have to decide how to produce electricity. They can use a cheap but polluting technology

(e.g. burning coal) or an expensive and clean one (e.g. solar energy). Pollution is global

and pollution damages are convex. Suppose that the polluting technology is costless, while

the clean technology costs 3. Suppose that pollution damages to each city are 2 when

only one technology uses the polluting technology, but 6 when both cities use the polluting

technology. Finally, the pro…t of electricity production is equal to 6: The resulting payo¤s

are

Polluting Clean

Polluting

Clean

2
4 0;0 4; 1

1;4 3; 3

3
5
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This is a complementarity game, in which the equilibria do not Pareto dominate coor-

dination on Clean.7 The global welfare, de…ned as the sum of the payo¤s, is even highest

when both cities choose the Clean technology. This game is akin to the Hawk-Dove game

studied by biologists, see Hofbauer and Sigmund (1998, ch. 6.1). In some sense, the Pollut-

ing city exploits the Clean city. In summary, complementarity games represent situations

of complementary production and exploitation.

3 Symmetric 2 by 2 games played on symmetric graphs

3.1 The model

Consider a symmetric 2 by 2 game ¡ de…ned by strategies fA;Bg and payo¤ u. Such a

game has a general payo¤ structure

A B

A

B

2
4 a;a c; d

d; c b; b

3
5

or equivalently,

u A B

A a c

B d b

where u denotes the payo¤ of Col-

umn.

Consider a society of n agents, denoted by i: Agents are embedded in a social network,

modelled as a symmetric unweighted graph g. The link between agent i and agent j is

denoted by gij . The symmetry of g means that 8i; j; gij = gji. The assumption that g is

unweighted means that 8i; j; gij 2 f0; 1g: Agent i and agent j are social neighbors when

gij = 1. Moreover, I assume that 8i; gii = 0: There is no private utility, agents only get

utility from interacting with others.8 Finally, I assume that there is no isolated individual,
7In general, if c denotes the cost of the Clean technology, C1 the pollution cost when only one city uses the

Polluting technology and C2 the pollution cost when both cities use the Polluting technology, the resulting

game is one of complementarity i¤

C1 < c < C2 ¡ C1

Welfare is highest when both cities choose the Clean technology i¤

c < 2C1

8All these assumptions are discussed in conclusion.
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everyone is connected with someone else.

Each agent i chooses a strategy xi 2 fA;Bg: Let x = (x1; :::; xn) 2 fA; Bgn be the

vector of strategies, called the state of the system. Each agent plays the game ¡ with all

his social neighbors, and earns the sum of the utilities of all these plays. I denote by ui(x)

the utility of agent i. By de…nition,

ui(x) =
nX

j=1
giju(xi; xj) =

X

j:gij=1
u(xi; xj)

Payo¤s ui de…ne a n player game, denoted by ¡g ; depending on the 2 player game ¡ and

on the graph of interaction g. In short, ¡g is the game ¡ played on the graph g.

Given a strategy vector x and a graph g, I denote by nA the number of agents playing

A, by ni the number of social neighbors of i, by ni(A) the number of neighbors of i playing

A, by n(AA) the number of links between agents playing A, and by n(AB) the number of

links connecting one agent playing A and one agent playing B. Similar de…nitions apply to

nB; ni(B); and n(BB). Abusing notation, de…ne A = fi 2 [1; n] : xi = Ag and B = fi 2
[1; n] : xi = Bg = [1;n]nA: Equivalently,

ni =
P
j gij and ni(A) =

P
j2A gij

n(AA) = 1=2
P
i;j2A gij and n(AB) =

P
i2A;j2B gij

Note the straightforward following relations:

nA+ nB = n and ni(A) + ni(B) = ni

n(AA) = 1=2
P
i2A ni(A) and n(AB) =

P
i2A ni(B) =

P
i2B ni(A)

n(AA) + n(BB)+ n(AB) = jgj the total number of links of the graph g.

3.2 The potential function

Because of the symmetric form of the game and the graph, ¡g is an exact potential game

in the sense of Monderer and Shapley (1996). This means that all the individual utilities

are aligned with the same ‘collective’ function, called potential, which provides a powerful

device to study the equilibria of the game.
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Proposition 3.1 (Young, 1998) For any symmetric two by two game ¡ and symmetric

graph g; the n player game ¡g is an exact potential game with potential function

'(x) = (a ¡ d)n(AA) + (b ¡ c)n(BB)

Proof: ui(A;x¡i) = ani(A) + cni(B) and ui(B;x¡i) = dni(A) + bni(B)

ui(A; x¡i) ¡ ui(B; x¡i) = (a ¡d)ni(A) ¡ (b ¡ c)ni(B)

Compare this di¤erence in ui with the di¤erence in the potential:

'(A; x¡i)¡'(B;x¡i) = (a¡d)[n(AA)(A;x¡i)¡n(AA)(B;x¡i)]¡ (b ¡ c)[n(BB)(B;x¡i)¡
n(BB)(A; x¡i)]

Since the graph is symmetric

n(AA)(A; x¡i) ¡ n(AA)(B; x¡i) = ni(A) and similarly,

n(BB)(B;x¡i) ¡n(BB)(A;x¡i) = ni(B):

Therefore 8i;x¡i; ui(A;x¡i) ¡ui(B;x¡i) = '(A;x¡i) ¡'(B; x¡i). QED.

As for any potential game, Nash equilibria of ¡g are local maxima of the potential and

vice versa. The potential function contains all the informations needed to describe the

equilibria of the game. Note that the three games2
4 a;a c; d

d; c b; b

3
5,

2
4 a ¡ d; a ¡d 0; 0

0;0 b ¡ c; b ¡ c

3
5 and

2
4 0; 0 c ¡ b; d¡ a

d ¡ a; c ¡ b 0; 0

3
5

have the same potential function. Nash equilibria of ¡g only depend on the relative payo¤s

of ¡, even if welfare properties of these three games may di¤er.

The potential gives a natural way to reduce the multiplicity of Nash equilibria. Maxima

of the potential are stochastically stable states of the myopic best-reply process of ¡g under

the log linear perturbation, see Appendix 1. Therefore, maxima of the potential are salient

equilibria of the game and I will focus my analysis on them.

Finally, note that an agent with more connections (high ni) has more in‡uence on the

potential, hence on the equilibria. This happens because agents’ choices enter the potential

function through the numbers of links n(AA) and n(BB). This property is important, and

may be crucial to understand certain counterintuitive results, see Example 4.1 below.
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3.3 Coordination games

I now brie‡y restate the results obtained for coordination games. A symmetric two by two

game is a coordination game if a > d and b > c: Or equivalently if pure strategy strong Nash

equilibria of ¡ are (A;A) and (B;B). Notice that ui(A; x¡i) > ui(B;x¡i) , ni(A) > pn

where p = (b ¡ c)=(a ¡ d + b ¡ c). Agents want to play A when a su¢cient proportion of

their neighbors play A.

In general, ¡g may have numerous Nash equilibria, but has only one highest potential

equilibrium. If two subgroups of agents have high intra group connections and comparatively

low inter group connections, everybody playing A in the …rst subgroup and everybody

playing B in the second subgroup can be sustained as an equilibrium. Both strategies

coexist when the graph naturally splits in two groups. However, there is only one equilibrium

maximizing the potential: everybody plays the risk dominant strategy, see Young (1998).

This result holds for any graph of interaction g. To see this, note that for coordination

games a ¡d and b ¡ c are positive. Suppose that A is risk dominant, i.e., a ¡ d > b ¡ c.

'(x) = (a¡ d)n(AA) + (b ¡ c)n(BB) · (a ¡ d)(n(AA) +n(BB)) · (a ¡ d)jgj

This expression is an equality if and only if n(BB) = n(AB) = 0, which means that

everybody plays A: Therefore, everybody playing the risk-dominant strategy is the unique

global maximum of the potential for coordination games.

4 Complementarity games

Suppose that ¡ is a complementarity game, i.e., a < d and b < c. Equivalently, pure strat-

egy strong Nash equilibria of ¡ are (A;B) and (B;A): Notice that ui(A; x¡i) > ui(B;x¡i) ,
ni(B) > (1 ¡ p)ni: Agents want to play A when a su¢cient proportion of their neighbors

play B:9 In this section, I analyze how the equilibria of ¡g depend on the game ¡ and the
9There are natural symmetries between complementarity games played on graphs and coordination games

played on graphs, that I explore in Appendix 2.
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graph g. A central result is that, contrary to coordination games, the graph g crucially

determines the highest potential equilibria.

Let me introduce an additional notation. As de…ned above, p = (c ¡ b)=(c ¡ b +d ¡ a)

is the probability of playing A in the mixed Nash equilibrium of ¡, i.e., p is the probabiltiy

of playing A that makes the other player indi¤erent between the two strategies. I de…ne

M = (c ¡ b)=(d ¡ a) = p=(1 ¡ p) as the ratio of the relative payo¤ of playing A against B

over the relative payo¤ of playing B against A: M > 1 is equivalent to p > 1=2 and means

that playing A against B is preferred to playing B against A: In short, A is preferred to B:

I develop my analysis as follows. First, I describe the equilibria for the complete graph.

This case corresponds to the traditional economic situation with decreasing returns when

everybody interacts with everybody. Second, I introduce bipartite graphs and show that

the equilibria on bipartite graphs do not depend on the payo¤s of the game. Third, I

investigate the situation for general graphs. Maximization of the potential is related to

a well-known hard combinatorial optimization problem called MAX CUT. I characterize

the set of Nash equilibria when the relative payo¤ of one strategy is much higher than the

payo¤ of the other strategy. I provide comparative statics analysis for …xed graphs when

payo¤s evolve and give examples of graphs on which an increase in the bene…t of playing A

actually decreases the number of people playing A: Fourth, I provide a welfare analysis of

the game. In most cases, highest potential equilibria do not maximize welfare. Fifth and

…nally, I study the mixed equilibria of the game. I characterize them and show that they

do not maximize the potential.

4.1 Complete graph

Consider the complete graph, i.e., 8i 6= j; gij = 1. The complete graph models situations

where everybody interacts uniformly with everybody else.

Proposition 4.1 On the complete graph, Nash equilibria of ¡g are states where the pro-

portion of agents playing A is ‘almost’ equal to the mixed equilibrium probability p. All

these equilibria are global maxima of the potential.
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Proof: Suppose that k players play A and n¡k players play B. An agent playing A earns

an utility of (k¡1)a+(n¡k)c. If he changed to B, he would earn (k¡1)d+(n¡k)b: Agents

playing A play a best response if and only if (k¡1)a+(n¡k)c ¸ (k¡1)d+(n¡k)b. Similarly,

agents playing B play a best response if and only if kd + (n ¡ k ¡ 1)b ¸ ka +(n ¡k ¡ 1)c:

Therefore, a state with k players playing A is an equilibrium if and only if

(n ¡k)(c ¡ b) ¸ (k ¡ 1)(d ¡a) and (n ¡ k ¡ 1)(c ¡ b) · k(d ¡ a)

This is equivalent to (n ¡ 1)p · k · (n ¡ 1)p +1 and to

¡p=n · k=n ¡ p · (1 ¡ p)=n

There is at least one solution and at most two. There are two solutions if and only if

(n¡ 1)p is an integer. When there is only one solution, nobody is indi¤erent and equilibria

are strong. When there are two solutions, equilibria are weak: A players are indi¤erent in

one solution, and B players are indi¤erent in the other.

Alternatively, we can use the potential:

2'(x) = (a ¡ d)k(k ¡ 1) + (b ¡ c)(n ¡k)(n ¡ k ¡ 1)

2'(x) = ¡k2(d ¡a + c ¡ b) + k[2n(c ¡ b) +d ¡ a¡ (c ¡ b)] ¡n2(c ¡ b)

As a function on the whole interval [0;n];' is concave and takes its unique maximum value

at

k¤ = n(c ¡ b)=(d ¡a + c ¡ b) + 1=2[d ¡ a ¡ (c ¡ b)]=[d ¡ a + c ¡ b] = (n ¡ 1)p+ 1=2

Maximum values of ' for integers are attained for the integer(s) closest to k¤: This yields

the same solution as above. Moreover, if there are two closest integers, they have the same

potential. Thus, all the equilibria have the same potential. QED.

For instance, when p is close to 1 (speci…cally, p > 1 ¡ 1=n), the relative payo¤ of

A is much higher than the relative payo¤ of B. In this case, Nash equilibria are states

with one agent playing B and all the other agents playing A (see also Proposition 4.3).

Note that the state where all the agents play one strategy is never a Nash equilibrium of

a complementarity game played on a graph. If all the neighbors of an agent play A, this

agent has an incentive to play B, independently of the payo¤s.
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When p = 1=2, A and B have the same relative payo¤. If n is even, equilibria are states

with n=2 players playing A and n=2 players playing B. These equilibria are strong. If n is

odd, equilibria are states with (n ¡ 1)=2 players playing one strategy and (n +1)=2 players

playing the other strategy. These equilibria are weak: players playing the majority strategy

are indi¤erent.10

Proposition 4.1 is similar to theorem 5 in Kandori et al. (1993), and to the classical

result in biology for a population playing the Hawk-Dove game, e.g. Hofbauer and Sigmund

(1998, ch.6.1). This result corresponds to the usual economic situation of global decreasing

returns. Agents reach their indi¤erence point between the two strategies. An increase of the

relative payo¤ of A with respect to the relative payo¤ of B translates into a proportional

increase of the number of people playing A. How does this traditional economic intuition

apply when agents are embedded in a social network?

4.2 Bipartite graphs

A …rst element of the answer is that there is a general class of graphs, called bipartite

graphs, on which highest potential equilibria do not depend on the payo¤s of the com-

plementarity game. First, let us de…ne bipartite graphs, e.g., Bondy and Murty (1976),

ch.8.

Definition 4.1 A graph is bipartite if there is a partition (A;B) of the set of agents such

that all the links occur between A agents and B agents. Such a partition is then called a

bipartition of the graph.

In other words, a graph is bipartite if there is a vector of strategy x such that n(AA) =

n(BB) = 0: This implies that for every complementarity game ¡; '(¡; g;x) = 0: Recipro-

cally, if there is a complementarity game ¡̂ and a vector of strategies x such that '(¡̂; g; x) =

0, it implies that n(AA) = n(BB) = 0; and the graph is bipartite. I now state the property

of bipartite graphs.
10A noteworthy consequence is that if n is odd, the myopic best-reply process P under the randomized

tie-breaking rule is ergodic, see Appendix 1.
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Proposition 4.2 Bipartite graphs are the graphs for which highest potential equilibria do

not depend on the payo¤s of ¡. When a bipartite graph is connected, it has two highest

potential equilibria symmetric to one another.

Proof: If the graph is bipartite, the potential is maximized for n(AA) = n(BB) = 0.

This occurs for any bipartition of the graph, which do not depend on the payo¤ of the com-

plementarity game. Reciprocally, suppose that highest potential equilibria do not depend

on the payo¤s of ¡: Consider a game for which M > n ¡ 1: Proposition 4.3 (see below)

implies that there cannot be a BB link in equilibrium, hence in highest potential equilibria.

Now consider a game for which 1=M > n ¡ 1. This time, there cannot be a AA link in

equilibrium. Therefore n(AA) = n(BB) = 0 and the graph is bipartite. Highest potential

equilibria are the bipartitions of bipartite graphs. When a bipartite graph is connected, it

has only two bipartitions: (A; B) and (B;A). QED.

On bipartite graphs, the number of people playing A does not depend on the payo¤s of

¡. This number is a structural parameter that only depends on the graph. Some bipartite

graphs are symmetric (nA=n ¼ 1=2), and some are highly asymmetric (nA=n ¼ 0 and 1).

Numerous important graphs are bipartite, including stars, trees and lattices with nearest

neighbor interaction. Bipartite graphs are the graphs on which everybody can be di¤erent

from all their neighbors. When a graph is bipartite, two agents linked together cannot

be both linked to a common third agent. (In other words, bipartite graphs do not have

triangles). Bipartite graphs appear naturally in situations where agents are divided in two

groups, for example buyers and sellers, or men and women.

4.3 Some insights on the general situation

Proposition 4.2 shows that the graph of interaction plays a crucial role for complementar-

ity games. On bipartite graphs, equilibria do not depend on payo¤s of ¡: On the complete

graph, equilibria are proportionally related to payo¤s of ¡: Most graphs are neither bipar-

tite, nor complete. What can be said for the general case?

In this section, I show that …nding the maximum of the potential for an arbitrary graph
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is a hard problem unlikely to lead to closed form solutions. To obtain insights, I specify

the question in three directions. How to maximize the potential when relative payo¤s are

equal? How to maximize the potential when one strategy is highly preferred to the other

strategy? For a given graph, how do maxima of the potential change when relative payo¤s

change?

First, when relative payo¤s are equal, maximizing the potential is equivalent to …nding

the minimum number of links that have to be severed from g to obtain a bipartite graph.

Equivalently, highest potential equilibria are bipartitions of maximal bipartite subgraphs of

g. To see this, notice that maxx2fA;Bgn '(¡; g; x) = ¡(d¡a)minx2fA;Bgn[n(AA)+Mn(BB)]:

When M = 1 maximizing the potential is equivalent to minimizing n(AA)+n(BB); which

is the number of links between similar agents. The graph obtained from g by severing these

links is bipartite. Therefore, maximizing the potential is equivalent to …nding the minimum

number of links that have to be severed from g to obtain a bipartite graph. This number

minx2fA;Bgn [n(AA) + n(BB)] is a measure of how far a graph is from being bipartite,

that I call the frustration of the graph.11 Moreover, remember that n(AA) + n(BB) =

jgj ¡ n(AB): Thus, maximizing the potential is equivalent to maximizing n(AB); which

is the number of links of the bipartite subgraph of g induced by the partition (A;B). In

other words, highest potential equilibria correspond to bipartitions of maximal bipartite

subgraphs of g.

Reformulating maximization of the potential in graph theoretic terms should allow us

to rely on results from graph theory to characterize highest potential equilibria. In fact,

…nding the maximal bipartite subgraphs of a graph is a well known problem of combinatorial

optimization called MAX CUT (with my notation, the ‘cut’ of the graph g by the partition

A;B is n(AB)). A fundamental …nding of computer scientists is that MAX CUT is a

NP-complete problem, see Garey and Johnson (1979).12 For our purposes, the fact that
11Note that frustration and more generally minx2fA;Bgn[n(AA) +Mn(BB)] with M > 0 are increasing

with respect to graph inclusion, hence are maximal for the complete graph.
12In a few words, a problem is NP-complete when there is no algorithm that solves the problem in

polynomial time (unless P=NP). MAX CUT is solvable in polynomial time for planar graphs, see Hadlock
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MAX CUT is NP-complete indicates that we are not likely to be able to obtain closed form

descriptions of the highest potential equilibria in general.13

Second, when the relative payo¤ of one strategy is much higher than the relative payo¤

of the other strategy, I obtain a simple characterization of the Nash equilibria of ¡g .

Proposition 4.3 Suppose that M > n¡ 1, so that strategy A is highly preferred to strategy

B. Nash equilibria of ¡g are the states in which every agent is connected to an agent playing

B and no two agents playing B are connected.14

Proof: Notice that ui(A; x¡i) > ui(B;x¡i) , ni(A) < Mni(B): Suppose agent i has at

least one neighbor playing B: ni(B) ¸ 1: This implies that ni(A) · (n¡1) < M · Mni(B),

and ui(A;x¡i) > ui(B;x¡i): An agent connected with another agent playing B always

plays A: Suppose now that ni(B) = 0: Then, ui(B;x¡i) ¡ ui(A; x¡i) = (d ¡ a)ni > 0:

When surrrounded only by agents playing A, one has an incentive to play B. Reciprocally,

consider a state without BB link and such that every agent playing A is connected to an

agent playing B. Agents playing B are only connected with agents playing A, hence do not

have an incentive to switch. Agents playing A are connected to at least one agent playing

B, hence do not have an incentive to switch. QED.

When M > n ¡ 1 in equilibrium, n(BB) = 0. Highest potential equilibria are the Nash

equilibria with the minimum number of AA links. Proposition 4.3 provides a simple way

to list all the Nash equilibria, when the relative payo¤ of one strategy is much higher than

the relative payo¤ of the other strategy.

Third, I derive comparative statics result. For a given graph g, how do highest potential

equilibria vary when the bene…t of playing A increase?
(1975). For general graphs, relatively good ‘approximation’ algorithms have been designed, see Goemans

and Williamson (1995).
13When M 6= 1, …nding the minimum of n(AA) +Mn(BB) is a problem that has not been studied

by computer scientists, although is very probably NP-complete as well, Samir Khuller (2000, personal

communication).
14In graph theoretic terms, the set of agents playing B is an ‘independent’ set of the graph g , maximal

with respect to inclusion, see Bondy and Murty (1976, ch. 7).
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A …rst result is that there are graphs on which an increase in the bene…t of playing A

actually decreases the number of agents playing A. To see this, de…ne the graph gn;k as

follows. In the center, n agents are connected to each other through a complete graph. In

addition, each of these central agents is connected with k other agents through one by one

links (see Appendix 3 for a picture of g4;2). The total number of agents is n + nk and the

total number of links is n(n¡ 1)=2+nk: In equilibrium, every ‘border’ agent has to play the

opposite strategy from the central agent with whom he is linked. Hence the contribution

of border agents to the potential is 0, and maximizing the potential on gn;k is equivalent to

maximizing the potential for the complete graph with n agents. From Proposition 4.1, we

know that the number of agents playing A in the center is almost pn. Each of these agents

induce k border agents to play B: Therefore nA ¼ pn + (1 ¡ p)nk = nk + p(n ¡ nk). If

k = 1, nA is independent of the payo¤s of ¡ (even if the equilibria are not) and if k > 1, nA

decreases when p increases.

Example 4.1 On gn;k when k > 1 the number of agents playing A in highest potential

equilibria decreases when the bene…t of playing A increases.

How to understand this paradoxical result? gn;k is a particular graph in which most

agents have few links and few agents have many links. Highly connected agents have more

in‡uence on the shape of the equilibria. On the subset of these highly connected agents, an

increase in the payo¤ of A increases the number of agents playing A (center e¤ect). However,

every highly connected agent who plays A induces several poorly connected agents to play

B (border e¤ect). On the whole population, the border e¤ect may overcome the center

e¤ect. Note that gn;k has a low frustration compared to the total number of agents. A low

number of links determines the strategies played by the whole population.

Despite the previous example, one can still obtain regular monotonicity conditions.

However, these conditions concern the links between agents instead of the agents themselves.

Proposition 4.4 When M increases, n(AA) increases and n(BB) decreases. If M 0 >

M > 1; n(AB) increases and if M < M 0 < 1, n(AB) decreases.
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Proof: Suppose that M < M0 and denote by xM a solution of minx[n(AA) + Mn(BB)]:

We have:

n(AA)(xM) + Mn(BB)(xM ) · n(AA)(xM0) +Mn(BB)(xM0) and

n(AA)(xM0) +M 0n(BB)(xM0 ) · n(AA)(xM) + M0n(BB)(xM)

This is equivalent to

M 0[n(BB)(xM0)¡n(BB)(xM)] · n(AA)(xM )¡n(AA)(xM0) · M [n(BB)(xM0)¡n(BB)(xM )]

Since M < M 0; n(BB)(xM0) · n(BB)(xM) and n(AA)(xM0) ¸ n(AA)(xM )

Moreover, n(AB) = #g ¡n(AA) ¡n(BB), thus

(M0¡1)[n(BB)(xM0)¡n(BB)(xM )] · n(AB)(xM0)¡n(AB)(xM ) · (M¡1)[n(BB)(xM0)¡
n(BB)(xM)]

If M0 < 1, n(AB)(xM0) ¸ n(AB)(xM ), and if M > 1; n(AB)(xM0) · n(AB)(xM). QED.

Thus, when the relative payo¤ of a strategy increases, the number of links between

agents playing this strategy increases and the number of links between agents playing the

other strategy decreases, whereas the e¤ect on the number of agents playing the strategy is

ambiguous.

4.4 Welfare analysis

I now provide a welfare analysis of ¡g: For coordination games, tension between maxi-

mization of the potential and Pareto optimality is clear. If the risk dominant equilibrium

of ¡ Pareto dominates the other equilibrium, highest potential equilibria of ¡g are Pareto

optimal, otherwise they are not. What is the counterpart of this tension for complementar-

ity games? There are several ways to de…ne the social welfare associated with a vector of

strategies x in the game ¡g. In this paper, I focus on a simple way. I de…ne the welfare of

a vector of strategies x, denoted W (x), as the sum of the utilities

W(x) =
nX

i=1
ui(x)

States maximizing W are Pareto optimal, but the converse need not be true. Welfare

is directly related to links of g: A link between two agents playing A generates for each of

them a payo¤ of a. Therefore contribution of a AA link to welfare is 2a: Similarly, a AB link
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generates a payo¤ of c for the agent playing A and d for the agent playing B. Contribution

of a AB link to welfare is c + d.

Lemma 4.1 W (x) = 2an(AA) + (c + d)n(AB) +2bn(BB)

Proof: ui(A;x¡i) = ani(A) + cni(B), and ui(B;x¡i) = dni(A) + bni(B)

Therefore, W (x) =
P
i2A[ani(A) + cni(B)] +

P
i2B[dni(A) + bni(B)]

Moreover,
P
i2Ani(A) = 2n(AA) and

P
i2Ani(B) =

P
i2B ni(A) = n(AB). QED.

Using Lemma 4.1, one can see that welfare is associated with a certain potential function.

E¤ectively, since n(AA) +n(AB) + n(BB) = jgj,

W (x) = (c +d)jgj + (2a ¡ c ¡d)n(AA) + (2b ¡ c ¡d)n(BB)

Therefore, W (x) = (c +d)jgj + '(~¡; g; x), where

~¡ =

2
4 2a; 2a c + d;c +d

c + d; c + d 2b;2b

3
5

The game ~¡ is derived from the game ¡ when both agents act as a single unit whose payo¤

is the sum of individuals’ payo¤s. When playing ~¡, agents fully internalize the e¤ect of

their decision on the global welfare. Welfare maxima of ¡g are highest potential equilibria

of ~¡g:15 This property allows one to derive several results.

First, if ¡ is a coordination game, maximizing welfare implies that when 2a ¡ c ¡ d >

2b ¡ c ¡d , a > b, everybody plays A, which is the standard result.

Second, note that ~¡ is not always a complementarity game. When (c + d)=2 < a, ~¡

admits (A;A) for unique Nash equilibrium, and the potential is maximized for everybody

playing A (which is never a Nash equilibrium of a complementarity game played on a graph).

This situation corresponds to the games of exploitation and con‡ict presented in section 2.
15This provides an additional justi…cation to the study of the potential function and its maxima.
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Third, on bipartite graphs highest potential equilibria do not depend on the payo¤s.

Thus, as soon as ~¡ is a complementarity game, i.e., max(a;b) < (c +d)=2, highest potential

equilibria maximize welfare.

Fourth, the welfare function and the potential function are a priori aligned if and only

if c = d. In this case, agents receive the same payo¤s in every con…guration and there is no

externality.

Fifth, all the games with given a; b; and c + d have the same welfare function. In this

case, the greater jc ¡ dj the lower the welfare of the highest potential equilibria vis a vis

maximal welfare. Proposition 4.4 shows that highest potential equilibria have too much

and/or too few AA; BB; and AB links, depending on the values of a;b; c; and d:

In summary:

Proposition 4.5 If c = d or if the graph is bipartite and max(a;b) < (c + d)=2, highest

potential equilibria are the welfare maxima. If a > (c+d)=2, welfare is maximized for global

coordination on A. In general, highest potential equilibria do not maximize welfare and the

greater jc¡dj; the lower the welfare of highest potential equilibria vis a vis maximal welfare.

4.5 Mixed equilibria

In this section, I examine the mixed equilibria of ¡g: So far, I have focused on pure

strategy equilibria: agents played A or B, but did not play a random mix of both strategies.

Perhaps surprisingly, mixed equilibria of ¡g are much simpler to characterize than pure

strategy equilibria. However, I show that no mixed equilibrium is a global maximum of the

potential. This justi…es the focus on pure strategy equilibria, at least from the point of view

of potential maximization.

Suppose that agents play mixed strategies, and denote by xi 2 [0; 1] the probability of

agent i to play A. An equilibrium of ¡g is mixed if 8i; xi =2 f0;1g: The expected utility of

agent i is

ui(x) =
P
j gij [axixj + cxi(1 ¡xj) + d(1 ¡ xi)xj + b(1 ¡xi)(1 ¡xj)]
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As usual, agent i has a possible interest to randomize if and only if he is indi¤erent between

the two strategies, i.e., @ui=@xi = 0. This is equivalent to

(a ¡d)
P
j gijxj = (b ¡ c)

P
j gij(1 ¡ xj)

The potential function is usually de…ned for pure strategies. For mixed strategies, I

consider the expected value of the potential:

'(x) = (a ¡ d)
P
i;j gijxixj +(b ¡ c)

P
i;j gij(1 ¡xi)(1 ¡xj)

' is simply a polynomial of second degree in x: The …rst order derivative of ' with respect

to xi is

@'=@xi = (a ¡d)
P
j gijxj ¡ (b ¡ c)

P
j gij(1 ¡xj)

Therefore, x is a mixed equilibrium of ¡g if and only if the …rst order derivatives of ' at

x are equal to 0. Using matrix notations, this can be rewritten as (a¡d)gx = (b¡c)g(1¡x),

where 1 denotes the vector of ones. This is equivalent to (a + b ¡ c ¡d)gx = (b ¡ c)g1 and

to g(x¡ p:1) = 0: In other words, x¡ p:1 is an element of Ker(g) = fu 2 Rn : gu = 0g:

Could these mixed equilibria be global maxima of the potential? One has to check the

second order conditions

@2'=@xi@xj = (a + b ¡ c ¡d)gij

Therefore, the Hessian of ' is proportional to g: The proportionality constant is positive

for coordination games and negative for complementarity games. Remember that diagonal

terms of g are equal to 0. This implies that Tr(g) = 0, hence g is neither a positive semi-

de…nite matrix, nor a negative semi-de…nite matrix (except for g = 0; the empty graph).

This means that maxima of ' cannot be interior solutions. To summarize these …ndings:

Proposition 4.6 x is a mixed equilibrium of ¡g if and only if 8i;xi =2 f0; 1g and x =

p:1 +u;u 2 Ker(g): No mixed equilibrium is a global maximum of the potential.

Note that Proposition 4.6 is valid for complementarity games as well as coordination

games.
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5 Conclusion

As advocated by sociologists, e.g., Granovetter (1985), Burt (1995), and increasingly

recognized by economists, e.g., Manski (2000), social structure frames economic outcomes.

Increasing returns embedded in social networks underlie many economic and social situa-

tions. Game theorists have analyzed such positive externalities with coordination games

played on graphs. The graph has a strong e¤ect on transitory situations, i.e., Nash equi-

libria, but not on long run outcomes, i.e., equilibria of highest potential. In this paper, I

have argued that decreasing returns embedded in social networks were equally important

and much less studied. Such negative externalities model situations of complementarity,

congestion, con‡ict, and nonconformism embedded in geographic or social structures. I

have investigated complementarity games played on graphs and shown that the graph had

a strong e¤ect on long run outcomes.

I …rst give a summary of the results. On the complete graph, the number of agents

playing one strategy is proportional to the relative payo¤ of this strategy. On bipartite

graphs, highest potential equilibria do not depend on the payo¤s of the complementarity

game. On arbitrary graphs, if strategies have the same relative payo¤s, highest potential

equilibria correspond to bipartitions of maximal bipartite subgraphs. This is known to be a

hard combinatorial optimization problem. When the relative payo¤ of one strategy is much

higher than the relative payo¤ of the other strategy, Nash equilibria are the independent

sets of the graph maximal with respect to inclusion. When the payo¤ of a strategy in-

creases, the number of links between agents playing this strategy increases and the number

of links between agents playing the other strategy decreases. This is not true for the agents

themselves. On certain highly asymmetric graphs, an increase in the bene…t of playing

a strategy decreases the number of agents playing this strategy. In most cases, highest

potential equilibria do not maximize welfare.

I now discuss some possible extensions of the model. In the model, only two strategies

are available. How to generalize to k ¸ 3 strategies? The …rst di¢culty of this exercise

would be to de…ne what complementarity games are when the number of strategies is greater
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than 2. For k strategies, graphs on which everybody can be di¤erent from their neighbors

are graphs of ‘chromatic number’ less than or equal to k, see Bondy and Murty (1976, ch.8).

Therefore, graphs of chromatic number less than or equal to k are certainly the graphs on

which (certain) equilibria are insensitive to variations in payo¤s, hence would constitute the

appropriate generalization of bipartite graphs.

My model is a model of pure negative externalities embedded in unweighted symmetric

graphs and without private utilities. Agents could have private utilities vi(xi) independent

on choices of the others. Many models on social interactions assume that an individual’s

utility is the sum of a private and a social component, e.g., Durlauf (1997). Multiplicity

of equilibria usually appears when the magnitude of the social component is large enough.

Private utilities should decrease the in‡uence of the structure.

Links could be weighted and/or negative. Negative links and coordination are equivalent

to positive links and complementarity. Similarly, negative links and complementarity are

equivalent to positive links and coordination. Note that existence of a potential is still

guaranteed for weighted links and private utilities, as soon as links are symmetric, see Young

(1998). Axelrod (1997) applies such a framework to two instances of coalition formation:

the alignment of European nations in the Second World War (ch. 4), and competing UNIX

operating system standards (ch. 5).

Another promising way to explore is the endogenization of the network. What hap-

pens when agents choose with whom they interact, rationally form and sever social links?

Jackson and Watts (1999) and Goyal and Vega-Redondo (1999) study coordination games

played on endogenous graphs. Two common conclusions of these two studies are that sto-

chastically stable networks are (mostly) complete and, more surprisingly, coordination on

the risk dominated strategy may become stochastically stable. Endogenizing the network

for complementarity games would probably give a prominent role to (complete) bipartite

graphs.
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Appendix 1: the log-linear evolutionary process

In this appendix, I brie‡y describe the log-linear evolutionary process and how it relates

to the potential.16 The myopic best-reply process associated with ¡g is de…ned as follows.

At time t = 0, the system is in an initial state x0 = (x01; :::; x0n):

At time t +1, an agent i is chosen at random with probability 1=n and reevaluates his

choice.17

If ui(A;xt¡i) > ui(B;xt¡i) then xt+1
i = A

If ui(B; xt¡i) > ui(A;xt¡i) then xt+1
i = B

If ui(A;xt¡i) = ui(B; xt¡i); i is indi¤erent between A and B. Two possible tie

breaking rules are the inertial rule xt+1
i = xti and the randomized rule xt+1

i = A with

probability 1=2 and B with probability 1=2:

I denote by P this stochastic process. P is a myopic best reply process with stochastic

order of moves. P is a Markov process on the …nite set fA;Bgn: By construction, absorbing

states of P are Nash equilibria of ¡g. More precisely, absorbing states of P are weak equi-

libria of ¡g under the inertial tie breaking rule and strong equilibria under the randomized

one. Since ¡ is a potential game, every best reply increases the potential. This implies that

from any initial con…guration, P converges to a Nash equilibrium of ¡g with probability

one. Using the terminology of Markov processes, the only recurrent classes of P are the

absorbing states. In short, there is no cycle.

Perturbations of Markov processes have been used to investigate evolutionary selection

of equilibria, e.g., Kandori, Mailath and Rob (1993), Young (1993). Following Blume (1993)

and Young (1998), I introduce the log-linear perturbation of P , denoted by P ¯ where

¯ > 0:

P¯ is de…ned as P , except that if agent i is drawn, he chooses A with probability
16The reader is refered to chapter 3 of Young (1998) for a presentation of perturbed Markov processes and

their use in evolutionary game theory. In this appendix, I only give a sketch of the argument.
17Exact probabilities do not in‡uence stochastically stable states, if they are …xed and strictly positive for

every player.
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e¯ui(A;x
t
¡i)=(e¯ui (A;x

t
¡i) + e¯ui (B;x

t
¡i)) and B with probability e¯ui(B;x

t
¡i )=(e¯ui(A;x

t
¡i) +

e¯ui(B;x
t
¡i)): P¯ is another Markov process on fA; Bgn; approaching P (under the random-

ized tie breaking rule) as ¯ gets large.

P¯ has the nice property of being irreducible, i.e., there is positive probability of moving

from any state to any other state in a …nite number of periods. On the contrary, P in general

is not irreducible, because of the multiplicity of Nash equilibria of ¡g. An irreducible

Markov process has a unique stationary distribution, i.e., a probability distribution over

states invariant through the process. If ¹¯ is the unique stationary distribution of P¯ ;

a state x is stochastically stable if lim¯!+1¹¯(x) > 0: Roughly, stochastically stable

states are equilibria of ¡ stable under the log-linear perturbation.

The potential property greatly simpli…es the evolutionary analysis. In fact, the potential

allows one to obtain an exact expression of the stationary distribution ¹¯ of P ¯.

8¯ > 0; 8x 2 fA;Bgn;¹¯(x) = e¯'(x)=
P
y2fA;Bgn e¯'(y) (see Young (1998), th. 6.1.).

Therefore:

Proposition (Young, 1998, th. 6.1) Stochastically stable states of ¡g under the log-

linear perturbation are maxima of the potential.

Of course, alternative perturbations of P could lead to di¤erent stochastically stable

states. To give a simple example of this, consider the following tree with 13 agents and a

complementarity game such that p = 1=2..
1

2 3 4

5; 6; 7 8;9; 10 11; 12; 13
1 is linked with 2;3; and 4: 2 is linked with 1; 5;6;and 7; and similarly for 3 and 4: Since

trees are bipartite, maxima of the potential are

state 1:

A

B B B

A; A; A A;A; A A;A; A

and state 2:

B

A A A

B;B;B B; B;B B;B;B
Now, under uniform trembles the following state is stochastically stable
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state 3:

A

B B A

A;A;A A; A;A B; B; B
The reason is that a single mutation of agent 4 is su¢cient to go from state 3 to state

1 and vice versa. (This is similar to the fact that for coordination games and uniform

trembles, the risk dominated equilibrium on the star is stochastically stable).

30



Appendix 2: complementarity vs coordination

In this appendix, I show how complementarity games played on graphs relate to coor-

dination games played on graphs. Consider a complementarity game ¡ and an graph of

interaction g:

First, note that the potential of a vector of strategies x is the opposite of the potential

of x for an associated coordination game ~¡ played on the same graph:

'(¡; g;x) = (a¡d)n(AA)+(b¡c)n(BB) = ¡[(d¡a)n(AA)+(c¡b)n(BB)] = ¡'(~¡; g;x)

with ~¡ =

2
4 d;d b; a

a; b c; c

3
5 :

Therefore the attraction basin of the complementarity game ¡ is the mirror image of

the attraction basin of the coordination game ~¡: Highest potential equilibria of ~¡ are lowest

potential states of ¡ and vice versa. For coordination games, states of high potential are

states with many links between similar agents. On the contrary, states of high potential for

complementarity games are states with few links between similar agents, and many links

between dissimilar agents.

Second, a priori being di¤erent from people with whom you are linked should be related

to being similar to people with whom you are not linked. To see how this intuition translates

on the potential, denote by gc the complementary graph of g; i.e., 8i 6= j; gcij = 1 ¡ gij ; and

h the complete graph, i.e., 8i 6= j;hij = 1: In a matrix sense, g + gc = h. Notice that the

potential function can be rewritten in a matrix formulation (see section 4.5)

'(¡; g; x) = 1=2[(a¡ d)txgx+ (b ¡ c)t(1 ¡ x)g(1 ¡ x)]

where x is the vector such that xi = 1 if agent i plays A, xi = 0 if agent i plays B, and

1 denotes the vector of ones. Therefore, the potential is a linear function of the graph, and

'(¡; g;x) = '(¡; h;x) ¡'(¡; gc;x) = '(¡;h;x)+ '(~¡; gc;x)

The potential for a complementarity game played on a graph is the sum between the

potential for the same complementarity game played globally and the potential of the as-

31



sociated coordination game played on the complementary graph. Complementarity and

coordination are dual notions, with respect to games and to graphs.
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Appendix 3: a representation of g4,2

The following picture describes an equilibrium of highest potential on g4,2 when the relative 
payoff of playing Black is greater than 2 times the relative payoff of playing White. (All the 
other highest potential equilibria are isomorphic to this one). The proportion of Black agents is 
3/4 on the complete subgraph in the center, but 5/12 for the overall graph.


