
Optimal Altruism in Public Good Provision

ES Working Paper Series, September 2014

Robert W. Hahn, Smith School of Enterprise and the Environment, Oxford University Institute 
for New Economic Thinking (INET)
Robert A. Ritz , Faculty of Economics, Cambridge University Energy Policy Research Group 
(EPRG)

We would like to thank Toke Aidt, David Anthoff, Elizabeth Baldwin, John Feddersen, Reyer Gerlagh, Thomas 
Greve, Cameron Hepburn, Charles Mason, Grischa Perino, Rick van der Ploeg, John Quah, Robert Stavins, 
Paul Tetlock, Alexander Teytelboym, Richard Tol, and Alistair Ulph for helpful comments and advice, seminar 
participants at EPRG, OxCarre, Cambridge, and Toulouse for discussions. The usual disclaimer applies.

Abstract

We present a model of altruistically-minded—yet rational—players contributing to a public good. A key 
feature is the tension between altruism and crowding-out effects. We present three main results: (1) More 
altruistic behaviour often reduces social welfare; (2) It is almost always optimal for a player to act more 
selfishly than her true preference; (3) A player’s optimal altruistic commitment is often low or zero—even 
with strongly altruistic preferences. Applications to a range of public good problems, including climate 
policy, are discussed. Our results highlight that it will generally be difficult to infer social preferences from 
observed behaviour.



1 Introduction

There is a growing recognition that social preferences may play an important role in

explaining economic outcomes such as those arising in problems of public good provi-

sion.1 We study the welfare impact of unselfish behaviour by altruistically-minded– yet

rational– players, and ask to what extent a preference for altruism is optimally reflected

in a player’s contribution to a public good. To our knowledge, this is the first attempt in

the literature to understand a notion of “optimal altruism”.

Our analysis is motivated in part by recent experience with climate policy, which many

consider to be one of the biggest public good problems of today (Stern 2008). Recent years

have witnessed a number of unilateral initiatives to combat climate change at the local,

national, and regional levels. For example, the EU has a program to reduce greenhouse

gas emissions by 20% (relative to 1990 levels) by 2020 while the UK aims to cut emissions

by 80% by 2050.2 Such initiatives have taken place in the absence of a global agreement

by countries to jointly reduce emissions, e.g., with a global cap-and-trade scheme.

Relatedly, there is an increasing use of the “social cost of carbon”(SCC) in regulatory

decision-making. The SCC reflects the marginal benefit to the world from reducing CO2
emissions– rather than only to an individual country or region. Several European countries

have applied the SCC (Watkiss and Hope 2012), and the US has also developed a measure

of the SCC (Greenstone, Kopits and Wolverton 2013) which to date has been applied to

selected energy and environmental regulations. At the same time, many other countries do

not incorporate the SCC in policymaking, and do not appear to have engaged in emissions

abatement beyond “business-as-usual”.

There is some evidence that the domestic costs associated with unilateral policies ex-

ceed domestic benefits. For example, Tol’s (2012) cost-benefit analysis of the European

Union’s 20/20/20 policy package finds a benefit-cost ratio < 1 across a range of scenar-

ios.3,4 In a similar vein, the UK Department of Energy and Climate Change’s impact

assessment of the 2008 Climate Change Act finds “the economic case for the UK contin-

uing to act alone where global action cannot be achieved would be weak”(DECC 2009).

It is diffi cult to reconcile these unilateral initiatives with standard economic theory,

including the theory of international environmental agreements (Barrett 1994, 2005). Put

simply, if unilateral action by local, national, or regional actors reduces their own domes-

tic welfare, then why are they doing it? But it seems possible that some of these climate

initiatives may be a reflection of “unselfish”or “altruistic”motives, in the sense of incor-

1See Sobel (2005) for an overview of interdependent preferences in economic analysis.
2Similiar climate-policy initiatives, many on a relatively small scale, also exist, for example, in Australia,

California, China, Japan, New Zealand and Norway, as well as at the city level.
3This policy package targets a 20% cut in greenhouse gas emissions, a 20% share of renewable energy,

and a 20% improvement in energy effi ciency by 2020.
4Similar issues have also emerged in the analysis of the recently proposed regulation to reduce carbon

dioxide emissions from the US power sector (EPA 2014). The economic analysis conducted by the EPA
suggests that the global benefits of this regulation exceed its costs but, in some scenarios, domestic benefits
accruing only to the US fall short of domestic costs (e.g., depending on the extent to which health-related
benefits are taken into account in addition to direct climate benefits).
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porating benefits that accrue outside the borders of the acting jurisdiction. This paper

seeks to understand the role that altruism can play in such public goods problems.5

We begin with a two-player model of (non-cooperative) public good provision with the

following key features. A player’s net benefit or “national welfare”Πk (k = i, j) equals the

benefit she derives from total contributions to the public good (by both players) minus

the cost of her own contribution, while “global welfare”W = Πi + Πj .6 Preferences may

depart from self-interest: A player’s true objective function Sk = (1− θk)Πk + θkW places

weight on both her own net benefits and global welfare, where θk ∈ [0, 1] represents her

degree of altruism.7 More altruistic behaviour by player i leads to an increase in its own

public good contribution but induces player j to cut back (“crowding out”). We refer to

the rate at which the other player’s effort contracts as the “leakage” rate. The tension

between altruism and leakage lies at the core of our analysis. Our modelling approach

is also consistent with a characteristic shared by many (global) public good problems:

The absence of a world government means that solutions enforced by a central mechanism

designer play a limited role.8

Our analysis highlights three main findings. First, we obtain the seemingly paradoxical

result that more altruistic behavior by an individual player often reduces social welfare.

For example, consider a small commitment to more altruistic behavior by player i. Such

a commitment raises the equilibrium net benefit enjoyed by player j but reduces i’s own

net benefit. We show that welfare is more likely to fall if player i derives an above-average

marginal benefit from contributions, and the leakage rate from her commitment is higher.9

Conversely, a necessary condition for more altruistic behaviour to raise such a player’s true

objective is that her degree of altruism exceeds her leakage rate. This already shows that

whether altruism is privately optimal and/or welfare-augmenting depends crucially on

5Our analysis focuses on “international altruism” between countries rather than “intergenerational
altruism”between different generations of people in a single economy. We differ from much of the literature
on altruism in that we often think of our unit of analysis as a country rather than an individual. Also,
we do not wish to claim that social preferences are the only possible way of explaining unilateral climate
action; in some cases, other explanations, e.g., domestic political economy, may be important.

6Our results are robust to different welfare definitions. Section 5 provides details.
7Our formulation of altruism has a continuum of preferences, ranging from entirely selfish to entirely

altruistic preferences. On a historical note, Edgeworth (1881) uses essentially the same formulation, by
writing Si = Πi + θiΠj and calling θi the “coeffi cient of effective sympathy”. Some other formulations of
altruism have conditional elements. For example, the models of inequity aversion due to Fehr and Schmidt
(1999) and Bolton and Ockenfels (2000) feature utility functions with reference points which determine
the degree of perceived inequity in payoffs (and also affect players’ actions, e.g., depending on whether
they are “ahead” or “behind”). Lange and Vogt (2003) show that a preference for equity can generate
cooperation in international environmental negotiations, while Kosfeld, Okada and Riedl (2009) argue that
fairness can play an important role in the formation of institutions geared towards improving public good
provision. See also Rabin (1993) on fairness in economic analysis.

8Key contributions on voluntary public-good provision include Bergstrom, Blume and Varian (1986) and
Cornes and Sandler (1996). We work with a simplified model with reduced-form benefit and cost functions,
as is standard in much of the environmental economics literature (e.g., Hoel 1991; Barrett 1994), which
captures the key feature that players’contributions are strategic substitutes.

9Hoel (1991) obtains a related result in an important early model of unilateral commitment in environ-
mental policy that does not feature social preferences. He shows that a small (exogenous) commitment to a
higher public good contribution by a player, starting from a world in which all players make entirely selfish
contributions, can reduce global welfare. Our work goes further by examining a world in which players
can behave altruistically to different degrees, and deriving a notion of optimal (endogenous) altruism.
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the details of the environment; a player may thus wish to find ways of making public

contributions that departs from her true objective.

Second, we show that a player who genuinely wants to maximize global welfare almost

always does best by being at least somewhat selfish. To see this, suppose that player i’s true

preference is entirely altruistic, θi = 1, while player j is altruistic only to some degree,

θj < 1. Should i make the contribution that maximizes its underlying global-welfare

objective? No. Intuitively, a small decrease in its own contribution only leads to a second-

order loss in global welfare (by the envelope theorem). But the resulting induced increase

in the other player’s effort leads to a first-order gain (whenever the other player is not

already choosing the first-best effort).10 This is what we call “reverse leakage”– a weaker

commitment reduces free-riding by other players, and this can raise social welfare.

Third, we find that a player’s optimal altruistic commitment is often “low”or zero–

even with strongly altruistic preferences. In some cases, it is optimal for a player who cares

about global welfare to act entirely selfishly, maximising only her own net benefit. We thus

highlight that caution is required in inferring whether or not players are “being selfish”

from their observed behaviour; selfish behaviour may be a welfare-maximising response to

crowding-out effects, especially with heterogeneous players.

We characterize optimal altruistic commitments using the following modelling device:

Player k has a strategic objective function Ωk = (1 − λk)Πk + λkSk, where λk ≥ 0 is

her strategic preference. A player chooses a public good contribution according to her

true preference if λk = 1, but whenever λk < 1 (λk > 1) acts more (less) selfishly than

would be her true preference. We determine a player’s optimal commitment λ∗k(θi, θj)

to incorporate its altruism into public good contribution. In particular, we always have

λ∗k ≤ 1, almost always find λ∗k < 1 (for k = i, j), and, in a range of cases, λ∗i ≈ 0 and/or

λ∗j ≈ 0.11 Only where all players have entirely altruistic preferences θi = θj = 1, is a full

commitment λ∗k = 1 (for k = i, j) optimal, in which case the first-best outcome obtains.

We show that these results are very robust to a variety of different model specifications.

This includes the generalization to n ≥ 3 players– where we exploit the fact that players’

contributions are made in an “aggregative game”(in the sense of Corchón 1994; see also

Cornes and Sandler 2007); moderate degrees of cross-country cost spillovers (e.g., in renew-

able energy technologies such as solar or wind); and different representations of altruism in

players’objective functions, including the “warm glow”of Andreoni (1989, 1990). Thus,

our results apply with both “pure”and “impure”forms of altruistic preferences.

One way of thinking about how a player can commit to actions that depart from her

true preference is in terms of the theory of strategic delegation. For example, citizens may

delegate decision-making on abatement targets to politicians, and may wish to appoint

politicians whose climate-policy preference differs from their own (e.g., from those of the

10These basic insights rely on crowding-out effects but not on whether leakage rates are “high”or “low”.
11To illustrate, two countries’ true preferences may be to apply the global SCC to 100% and 46% of

projects respectively, that is, (θi, θj) = (1, 6
13

). But if (λ∗i , λ
∗
j ) = ( 1

2
, 0), say, then optimal altruism involves

using the SCC only in 50% (= 1
2
× 1) of projects for country i and not at all for country j (= 0 × 6

13
).

(The details underlying this numerical example are at the end of Section 6.)
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median voter). Commitment can also be achieved by political or regulatory institutions–

perhaps independent of government– which adopt particular rules and practices.

The classic reference on such delegation is Schelling (1960), and the idea has been

applied widely to different contexts such as bargaining (Segendorff 1998), monetary policy

(Persson and Tabellini 1993), and the theory of the firm (Vickers 1985). It is fairly well-

known that an incentive to misrepresent preferences exists in virtually any game (Heifetz,

Shannon and Spiegel 2007)– although this, in itself, says little about how preferences will

be distorted in a particular game.

We differ from this literature in several respects. To begin with, we consider a different

class of game, and examine a setting in which agents are not driven by pure self-interest;

many of our themes thus have no analog in previous models.12 Moreover, our main

application to climate policy has at least two advantages compared to other delegation

applications. First, there is significant empirical evidence that players’efforts are strategic

substitutes: A very large majority of work on unilateral climate policy finds that carbon

leakage rates are positive, as in our model.13 Second, climate policy is characterized by

something close to an “informational level playing field”between countries: The climate-

change debate is highly public and global (based, in part, on scientific evidence) and

countries’abatement policies are commonly known (perhaps with a few exceptions), as is

whether or not they have adopted the SCC.14

Our analysis also shows that altruism can, at least in principle, neutralize the strategic

incentive to distort preferences which is emphasized by this literature. Our model always

features strategic substitutes, so contributing less induces a favourable response from the

other player; but if both players are fully altruistic, they recognize that such preference

distortion no longer yields any gain (as it induces a move away from first-best). So an

incentive to distort play may exist in a standard game with selfish players– but not in an

otherwise identical game featuring social preferences.

Other applications. Questions of altruistic behaviour arise in other environmental prob-
lems. For example, there is an ongoing debate about the motivations behind the Montreal

Protocol to reduce chlorofluorocarbons (CFCs) which deplete the ozone layer. While

Barrett (1994) argues that the protocol was broadly consistent with the outcome of a

12Perhaps closest to us, though in a rather different setup without altruism, Roelfsema (2007) considers
a model of imperfect competition with strategic trade policies, in which delegation to a politician who cares
more about the environment than the median voter can be optimal because this induces other countries
to do the same. (This result relies on a particular form of competition in product markets.)
13Many empirical estimates are derived from numerical simulations of multi-sector, general equilibrium

models which focus on climate initiatives by OECD countries that result in carbon leakage to non-OECD
countries. These typically find leakage in the range of 5—40%, with many estimates below 20%. Leakage
estimates for individual sectors (such as the cement and steel industries in the EU Emissions Trading
Scheme) are frequently higher, e.g., above 50%, but also rarely exceed 100%. See Babiker (2005), Copeland
and Taylor (2005), Ritz (2009), and the references cited therein.
By contrast, in delegation models on the theory of the firm, it is often diffi cult to tell with confi-

dence whether competition between firms is in strategic substitutes (Cournot) or in strategic complements
(Bertrand)– and many results are known to depend critically on this unobservable feature of the model.
14 In practice, there is significant uncertainty over the costs and benefits of CO2 abatement; the key point

for us is that actions are easily observable and informational asymmetries between countries are small.
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non-cooperative game, Sunstein (2007) notes that the US used a relatively low discount

rate in evaluating its commitment– which might be interpreted as a form of altruism.

The key features of our model are shared by other problems of the commons. In fisheries

policy, for example, there is a strong tendency towards overexploitation; individual players

have a suboptimal incentive to limit their catch (Stavins 2011) and catch reductions are

typically strategic substitutes (Levrahi and Mirman 1980), leading to a leakage problem

analogous to ours. Similarly, in a classic paper, Olson and Zeckhauser (1966) suggest

that small countries tend to free-ride on the defense investments of large countries, and

observe that countries’military expenditures are often strategic substitutes. It is more

diffi cult to pinpoint altruism empirically in these applications, partly because there is no

clear equivalent to the adoption of the SCC. However, it seems conceivable that individual

European countries, say, also care about the welfare of the EU as a whole when it comes

to policies affecting the environment or defense.15

Our results can also apply to problems from other domains that share public good

characteristics. For example, suppose family member j pursues some useful activity;

family member i derives indirect benefits from the activity, and can help out at some cost.

If altruistic, i also cares about the benefits accruing to j in choosing how much to help.

But the more i helps, the less j does himself– the leakage problem. While i’s help always

raises j’s private payoff, it need not raise overall welfare or i’s own altruistic objective.

Optimal altruism typically involves λ∗i < 1, so i’s help falls short of her true preference.16

To be concrete, a parent may want to help a child with its homework on 4 out of 5 days a

week (θi = 4
5 , say), but realizes that, because of incentive effects, λ

∗
i = 1

2 , say, is optimal–

and thus only helps twice a week. In practice, such a well-meaning but stern commitment

may be achieved by putting certain rules into place, or the parent may engage a tutor (or

sibling) twice a week and abstain from helping directly.17

Plan for the paper. Section 2 sets up our benchmark model. Section 3 examines the
impact of “small” altruistic commitments. Section 4 analyzes in detail players’optimal

commitments, and Section 5 shows that our main results are robust in a variety of di-

rections. Section 6 points out some further properties of our model, with a focus on its

empirical implications. Finally, Section 7 discusses recent climate policy initiatives in light

of our results, and offers some suggestions for future research. (The proofs are in Appendix

A, and the details of the robustness analysis are in Appendix B.)

15A related application is the problem faced by large charities like the Bill & Melinda Gates or Rockefeller
foundations. It seems clear that the broad objective of such organizations is to enhance some measure of
global welfare. At the same time, there are well-known concerns that their contributions can “crowd out”
others, such as local governments, the private sector, and smaller charities. This corresponds quite directly
to the tension between altruism and leakage in our analysis.
16The “rotten kid theorem” (Becker 1974) does not apply in our model. It states that, under certain

conditions (Bergstrom 1989), an altruistic head who makes transfers to self-interested household members
induces the effi cient outcome– despite limited altruism in the family overall. By contrast, our setup does
not feature a design with transfer payments (see also our concluding discussion in Section 7). (Recall also
that the rotten kid theorem itself can fail in public-good settings, despite transfers.)
17Our model assumes the tutor is optimally chosen and incentivized by the parent (strictly speaking, at

zero cost) and has no special skills– although this is clearly not essential for the results.
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2 A model of altruism in public good provision

Setup of the model. Two players, i and j, contribute to the provision of a public good.
Player k (k = i, j) makes a contribution (e.g., shared investment, emissions reduction, or

“effort”) denoted by Xk, and derives benefits Bk(Xi+Xj) which depend on the aggregate

effort by the two players. The marginal benefit satisfies B′k(·) > 0 and B′′k(·) < 0. The cost

function Ck(Xk) is player-specific, with marginal cost satisfying C ′k(·) > 0 and C ′′k (·) > 0.

To guarantee an interior solution, assume Ck(0) = C ′k(0) = 0 and B′k(Xk) − C ′k(Xk) < 0

for some Xk < ∞. Define a player k’s “net benefit” or “national welfare” as Πk =

Bk(Xi +Xj)− Ck(Xk), and “social surplus”or “global welfare”as W = Πi + Πj .

In our model, each player’s preferences may be at least partly altruistic. In particular,

player k’s true objective function is given by

Sk = (1− θk)Πk + θkW , (1)

where the parameter θk ∈ [0, 1] represents her true preference for altruism. Player k is

purely self-interested if θk = 0 (so Sk = Πk), and entirely altruistic if θk = 1 (so Sk = W ),

in which case her preference reflects the full global benefit of contributions, Bi+Bj . More

generally, a higher value of θk represents a “more altruistic” preference that gives more

weight to the other player’s net benefit. For our application to climate policy, we can

interpret θk = 0 as an underlying preference for the “business-as-usual” (BAU) level of

emissions, while θk = 1 corresponds to a desire to incorporate the global “social cost of

carbon”(SCC) into decision-making.

We next introduce a modelling device in form of a strategic objective function:

Ωk = (1− λk)Πk + λkSk. (2)

A strategic objective is a convex combination of a player’s net benefit Πk and her true

objective Sk, with a relative weight given by the strategic preference λk ∈ [0, θ−1k ]. If

λk = 0, the strategic objective is entirely selfish, so Ωk = Πk (regardless of the underlying

true objective Sk). If λk = 1, the player’s strategic objective is identical to her true

objective, so Ωk = Sk. We restrict attention to λk ≤ θ−1k ⇔ λkθk ≤ 1 to focus on

the typical situation where each player contributes too little to the public good from a

social-welfare perspective– rather than too much. (Whenever θk < 1, we do allow for

the possibility that λk > 1 so the strategic objective could place more weight on altruism

than the true objective– although we will see that, in equilibrium, this does not occur.)

This (λi, λj)-modelling device allows us to analyze the welfare impact of players following

through on their altruistic preferences, and, building on this, to understand the extent to

which players optimally engage in altruistic behaviour.18

The timing of the model is as follows. At Date 0, each player is endowed with a

18 In the literature on international environmental agreements, countries typically make a binary decision
on joining an agreement (“in or out”). By contrast, countries here choose the intensity of their commitment.
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benefit function and a cost function, Bk(·) and Ck(·), as well as with a true objective
Sk(·) that reflects her degree of altruism, θk ∈ [0, 1]. Then, at Date 1, each player chooses

her strategic preference λk ∈ [0, θ−1k ] to maximize her true objective Sk. Finally, at Date

2, each player– or her agent– chooses effort according to the strategic objective function

Ωk. (For environmental applications, a country’s choice of Xk is equivalent to choosing a

domestic price on emissions.19)

We focus on the subgame-perfect Nash equilibrium of the game, and follow the dele-

gation literature in assuming that players’strategic objective functions, Ωi and Ωj , form

credible commitments.20 The plausibility of this assumption will, of course, vary de-

pending on the application in question. As explained in the introduction, we think that

commitment value is reasonably likely to obtain in the climate-policy context, given some-

thing close to an informational level playing field between countries, as well as in other

public good problems.

Key properties of the model. We begin by establishing the key properties of the model
at Date 2. For player i, say, the first-order condition for its contribution is

∂Ωi/∂Xi = (B′i − C ′i) + λiθiB
′
j = 0. (3)

The “first-best” benchmark is nested where (i) both players have entirely unselfish true

preferences, θi = θj = 1, and (ii) both players choose their respective effort levels accord-

ingly, λi = λj = 1. In this case, players at Date 2 make contribution decisions to maxXkW

(where k = i, j), thus each incorporating the full global benefit of their actions.

The first-order condition also defines player i’s best response to player j’s contribution,

Ri(Xj). The slope of this function is given by

R′i(Xj) =

(
B′′i + λiθiB

′′
j

)
(−B′′i + C ′′i − λiθiB′′j )

∈ (−1, 0). (4)

A key property of the model is that players’efforts are strategic substitutes. This captures

a “crowding out”effect: If one player increases her effort, this reduces the marginal benefit

of effort for the other player, who therefore responds by cutting back. In the context of

climate policy, Li ≡ [−R′j(Xi)] ∈ (0, 1) is the marginal rate of “carbon leakage”(IPCC,

2007) resulting from country i’s effort. Borrowing this terminology:

Lemma 1 The leakage rate due to player k’s effort is given by Lk ∈ (0, 1).

19To see this, imagine splitting country k’s abatement decision at Date 2 into two parts. At Date 2b, a
representative, price-taking firm chooses emissions abatement Xk to maximize its profits pkXk −Ck(Xk),
where pk is the domestic emissions price, such that pk = C′k(Xk), in equilibrium. This defines an upward-
sloping abatement supply curve with dXk/dpk = 1/C′′k (Xk) > 0. At Date 2a, policymakers choose the
domestic price pk to maximize the strategic objective Ωk. This setup is exactly equivalent to the benchmark
model since choosing the domestic emissions price is equivalent to choosing an abatement effort.
20This is essentially equivalent to assuming that players’contributions are publicly observable, which,

in turn, corresponds to i knowing j’s λjθj when choosing her contribution policy at Date 2 (as benefit and
cost functions are commonly known). (We do not require that i then knows j’s true preference θj .)
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Leakage rates quantify the severity of the crowding-out problem; they are positive but

less than 100%. This is a common feature of public good models across different domains,

including environmental problems, military protection, fisheries, and charitable giving.

We next confirm the intuition that more altruistic behaviour by a player leads to an

increase in her effort. (The result from Lemma 1 ensures that the equilibrium is unique,

stable, and exhibits well-behaved comparative statics.)

Lemma 2 If player k’s true preference θk > 0, her effort satisfies dX∗k/dλk > 0.

A higher value of λk inflates the marginal return to public good contribution, which,

by stability, also increases its equilibrium level. So an increase λi, say, raises X∗i (Lemma

2) and also raises X∗i +X∗j , but not by as much (Lemma 1).

To complete our preliminary discussion, we show that a player with an entirely selfish

true preference, θk = 0, does not want to engage in a strategic commitment.

Lemma 3 If player k’s true preference θk = 0, her optimal effort solves maxXk Πk.

As a notational convention, we refer to such an optimal commitment as λ∗k = 0.21

3 The welfare impact of small altruistic commitments

To build intuition, we begin our analysis by considering “small”commitments. Suppose

that player i’s true preference θi > 0 is altruistic at least to some extent (while θj ≥ 0),

and that initially both players act purely in their self-interest, i.e., λk = 0 for k = i, j.

What is the impact of a small commitment dλi > 0 by player i towards incorporating her

true altruistic preference in her public good contribution?

Proposition 1 The impact of a small unilateral commitment dλi > 0 by player i on her

equilibrium true objective

dS∗i
dλi

∣∣∣∣
λi=λj=0

=

[(
θiB

′
j −B′iLi

) dX∗i
dλi

]
λi=λj=0

is (a) positive if the ratio of marginal benefits satisfies B′i ≤ B′j and her true preference

exceeds the leakage rate θi > Li, and (b) negative for a ratio of marginal benefits B′i/B
′
j

suffi ciently large or for a true preference θi suffi ciently small.

Whether a small altruistic commitment is beneficial for a player depends crucially on

the details of the environment. If she either derives a relatively large marginal benefit, or

her true preference contains only a small degree of altruism, it is never a good idea for

someone to make such a commitment. However, two simple conditions which are jointly

21This convention makes an altruistic player’s strategic commitment directly comparable with a selfish
player; note that, if θk > 0, then the contribution solves maxXk Πk if and only if λk = 0. (Recall that we
are restricting attention to cases where λk ≥ 0.)
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suffi cient for dS∗i > 0 are that the player has a relatively low marginal benefit as well as

a true preference that exceeds the rate of leakage.

These results can be understood as follows. With a slight abuse of notation, let dX∗i > 0

denote the increase in i’s effort due to its small unilateral commitment dλi > 0. (More

formally, dX∗i =
[
(dX∗i /dλi)λi=λj=0

]
dλi > 0 by Lemma 2.) Due to the crowding-out effect

(Lemma 1), j adjusts its effort by dX∗j = (−Li) dX∗i < 0 in response. By the envelope

theorem, the direct effect of a small change in each player’s effort on its own net benefit

is zero. The reason is that both players were initially choosing their respective efforts

selfishly to maximize their own net benefit, so any (small) change their own contribution

only has a second-order effect. However, the unilateral commitment by i also has two

strategic effects, one positive and one negative. First, the increase in i’s effort yields an

increase in the benefits enjoyed by the other player j of B′jdX
∗
i > 0. Second, the induced

reduction in j’s effort means that i’s benefit changes by B′idX
∗
j = (−B′iLi) dX∗i < 0. Player

i’s true objective Si = Πi + θiΠj places weight θi ∈ [0, 1] on the first (positive) strategic

effect and full weight on the second (negative) strategic effect. The weighted sum of these

effects, (θiB
′
j − B′iLi)dX∗i , thus determines the impact of a small unilateral commitment

on its own true objective function and behaves according to Proposition 1.

Intuitively, a unilateral commitment by i increases the net benefit Π∗j enjoyed by j

but acting unselfishly hurts its own net benefit Π∗i . The commitment thus enhances its

own true objective if (and only if) the former effect outweighs the latter. The positive

effect will be large if j’s marginal benefit is large, and receives large weight according to

i’s degree of altruism, θi. The negative effect will be small if there is little leakage, and if

i’s own marginal benefit is small.

We can also address when a small altruistic commitment improves global welfare:

Proposition 2 The impact of a small unilateral commitment dλi > 0 by player i on

equilibrium global welfare

dW ∗

dλi

∣∣∣∣
λi=λj=0

=

[(
B′j −B′iLi

) dX∗i
dλi

]
λi=λj=0

is (a) positive if the ratio of marginal benefits satisfies B′i ≤ B′j, and (b) negative for a

ratio of marginal benefits B′i/B
′
j suffi ciently large.

The logic underlying Proposition 2 follows that of Proposition 1. Again, the direct

effects on each player’s net benefit are both zero by the envelope theorem. The only

difference arises because, from a global-welfare perspective, the combined effect of the

two strategic effects depends on their unweighted sum. So the increase in the benefits

enjoyed by the other player j of (B′j)dX
∗
i > 0 plus the induced reduction in i’s benefit

of [B′i (−Li)]dX∗i < 0 yield an overall welfare impact dW ∗ = (B′j − B′iLi)dX∗i . The sign
of this expression, too, is ambiguous. However, note that Proposition 2(a) implies that a

small commitment must be global welfare-enhancing for at least one of the two players.
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A small commitment, if it occurs, is of course more likely to raise global welfare than i’s

true objective. For example, with identical benefit functions, Bi(Xi+Xj) = Bj(Xi+Xj),

i’s small commitment always raises equilibrium global welfare W ∗ (Proposition 2, since

Li < 1) but its own true objective S∗i may still decline (Proposition 1, for θi < Li).22

4 Optimal altruistic commitments

This section develops our main results on “optimal altruism”. Our analysis so far has

already shown that a more altruistic commitment can raise or reduce social welfare; this

already suggests that players may wish to make public good contributions in ways that

depart from their true objectives.

We begin by deriving a generalized formula for the welfare impact of more altruistic

behaviour, and then use this to establish our main arguments. First, we show that op-

timal altruism almost always means that players act more selfishly than would be their

true preference. Second, optimal commitments are often much lower than players’true

preferences and, in a range of cases, a socially-concerned player does best by acting en-

tirely selfishly. Thus it will generally be diffi cult to empirically infer social preferences

from observed behaviour.

The general model. In the general version of the model, each player chooses optimally
how altruistically to act so as to maximize her true objective Sk; this yields equilibrium

values λ∗k(θi, θj) for players’strategic preferences (k = i, j). This analysis is more compli-

cated because our previous argument, based on the envelope theorem, that the two direct

effects of commitment are zero no longer applies (since players no longer necessarily act

selfishly “at the outset”).

By Lemma 2, however, a small increase dλi > 0 in, say, i’s strategic preference (not

necessarily starting from λi = 0), leads to an increase in its own effort of dX∗i > 0. By

Lemma 1, j adjusts its effort by dX∗j = (−Li) dX∗i < 0 in response.

The two strategic effects of an additional commitment are also as before. First, the

increase in i’s effort yields an increase in the benefits enjoyed by the other player of

B′jdX
∗
i > 0. Second, the induced reduction in j’s effort means that i’s benefit changes by

B′i (−Li) dX∗i < 0.

The direct effect of a small change dX∗i in i’s effort on its own net benefit Πi, in general,

is equal to (B′i − C ′i)dX∗i . Using i’s first-order condition from (3), this generalized direct

effect can also be written as (−λiθiB′j)dX∗i ≤ 0. Similarly, the direct effect of a small

(induced) change dX∗j on j’s net benefit Πj is equal to (B′j −C ′j)dX∗j . Again, by its first-
order condition, the generalized direct effect equals (−λjθjB′i) dX∗j = (λjθjB

′
iLi) dX

∗
i ≥ 0.

The overall equilibrium impact of an incremental commitment by i on its true objective

22Similarly, if marginal costs are identical in the initial equilibrium C′i(X
∗
i ) = C′j(X

∗
j ), then a small

commitment by i always improves global welfare W ∗, but has an ambiguous impact on its true objective
S∗i . (In the initial equilibrium, B

′
k = C′k (k = i, j) as both are entirely selfish.)
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Si = Πi + θiΠj takes into account all of these effects, with appropriate weights:

dS∗i = (−λiθiB′j)dX∗i︸ ︷︷ ︸
direct effect

on player i ( ≤ 0)

+
(
−B′iLi

)
dX∗i︸ ︷︷ ︸

strategic effect

on player i ( < 0)

+ θi︸︷︷︸
true altruism

of player i ( ∈ [0, 1])

× [
(
λjθjB

′
iLi
)
dX∗i︸ ︷︷ ︸

direct effect

on player j ( ≥ 0)

+
(
B′j
)
dX∗i︸ ︷︷ ︸

strategic effect

on player j ( > 0)

].

This decomposition shows that, in general, selfless action reduces a player’s own net benefit

(dΠ∗i < 0) but helps the other player (dΠ∗j > 0). Writing it more compactly yields:23

Lemma 4 The generalized impact of a small unilateral commitment dλi > 0 by player i

on her equilibrium true objective satisfies

dS∗i
dλi

=
[
(1− λi)θiB′j − (1− λjθiθj)B′iLi

] dX∗i
dλi

.

Lemma 4 tells us the marginal equilibrium impact of more altruistic behaviour by

player i on her true objective, taking into account its impacts on both i’s own contribution

effort and the incentive effect on j’s contribution. By inspection, it is clear that the impact

is ambiguous in general.

Main results. We can now establish the key result that a “full commitment”with λi = 1

is almost never optimal for player i.

Proposition 3 (a) If both players’ true preferences are entirely altruistic θi = θj = 1,

then their optimal commitments λ∗i = λ∗j = 1 achieve first-best effort levels;

(b) If at least one player has partially selfish true preferences θi < 1 or θj < 1, then

optimal commitments λ∗i < 1 and λ∗j < 1 and both efforts fall short of first-best levels.

Part (a) of the result shows that the first-best outcome is sustainable in our model as

long as both players want to be entirely unselfish. The intuition is that if both players

care about global welfare, neither has an incentive to unilaterally deviate from a full

commitment since any such deviation, by construction, causes global welfare to fall.

Part (b) shows that this optimistic conclusion applies only where both players are en-

tirely altruistic. Whenever at least one player places greater weight on domestic welfare

in its true objective function, both players’optimal commitments fall short of a full com-

23The formulae in Proposition 1 (λi = λj = 0) and Proposition 2 (λi = λj = 0 and θi = 1) can be
obtained as special cases of Lemma 4.
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mitment, λ∗i < 1 and λ∗j < 1. In such cases, given the optimal strategic preference chosen

at Date 1, player i chooses Date 2 effort to maxXi Ωi = Πi + λ∗i θiΠj , with λ∗i θi < 1.24

Think about the impact of the “last step”towards a full commitment with λi = 1. In

this case, the negative direct effect on i is suffi ciently negative to entirely offset the weighted

positive strategic effect on j. The reason is that, with a full commitment, i already inter-

nalizes the externality of its choice on j (precisely to the extent it cares about her). Thus

the impact of the last step is determined solely by the two remaining effects, the strategic

effect on i plus the weighted direct effect on j. This equals [−(1− λjθiθj)B′iLi] dX∗i < 0,

and is negative since θi < 1 or θj < 1 by assumption (and also λj ≤ 1, in equilibrium).

Therefore, the last step reduces the equilibrium value of i’s true objective S∗i . The same

reasoning applies to the other player, so, in equilibrium, λ∗i < 1 and λ∗j < 1. It is optimal,

for instance, that each countries’citizens delegate decision-making regarding public good

provision to politicians whose preferences are closer to the national self-interest.

Perhaps the most striking statement of this latter result goes as follows: Suppose i is

entirely altruistic, so θi = 1, while j is unselfish only to some degree with θj < 1. Then

part (b) says that the optimal commitment by i satisfies λ∗i < 1, so a full commitment is

dominated by a weaker policy. The optimal way for i to maximize global welfare W is to

maximize a strategic objective Ωi = (1 − λ∗i )Πi + λ∗iW that is partially skewed towards

its own national welfare. In other words, a player who genuinely wants to maximize global

welfare does best by being at least somewhat selfish.

Intuitively, why can i do better than playing according to its true, entirely altruistic

preference? A small decrease in its own effort leads only to a second-order loss in global

welfare (by the envelope theorem). But the resulting induced increase in the other player’s

effort creates a first-order gain (whenever the other player is not already choosing the first-

best effort). So the reason why full commitment is almost never optimal is what we call

“reverse leakage”– a weaker commitment reduces free-riding by the other player.25

To further sharpen this argument, we now turn to the opposite limiting case: Our next

result shows that, in a range of cases, the optimal commitment for one or both players

is a zero commitment. More generally, we can show that optimal commitments are often

“low”, despite players having significantly altruistic preferences.

Proposition 4 (a) If at least one player’s true preference is not entirely altruistic, θi < 1

or θj < 1, and the ratio of marginal benefits B′i/B
′
j is suffi ciently large, then player i’s

optimal commitment λ∗i = 0;

(b) If players’true preferences θi > 0 and θj > 0 but both suffi ciently small, then players’

optimal commitments λ∗i = λ∗j = 0.

24Proposition 3 thus also rules out any values λ∗i > 1 or λ∗j > 1 as being sub-optimal. The reason,
loosely speaking, is that any such stronger commitment would directly hurt i’s own net benefit by more
than it can ever strategically benefit j.
25A full commitment would become approximately optimal for i in limiting cases where its leakage rate

tends to zero. This happens where players’marginal benefits are approximately constant (i.e., B′′k → 0 for
k = i, j), or where the other player’s production technology is highly inflexible (i.e., C′′j →∞) so its effort
choice becomes almost non-strategic.
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Part (a) of the result essentially gives a non-local version of our earlier findings, from

Propositions 1 and 2, that a small commitment by an individual player may not raise S∗i ,

or indeed W ∗. In extreme cases, it is optimal for an entirely altruistic player (when θi = 1

but θj < 1) to choose her effort level in her own strict self-interest (λ∗i = 0).

A further implication is that a policy of zero commitment may welfare-dominate one

of full commitment. Suppose that i has a completely altruistic true preference while j is

entirely self-interested, (θi, θj) = (1, 0). By Lemma 3, we have that λ∗j = 0 irrespective of

i’s policy. But also, if B′i/B
′
j is suffi ciently large, then equilibrium global welfare W ∗ is

higher with zero commitments (λi, λj) = (0, 0) than with (λi, λj) = (`, 0) for any 0 ≤ ` ≤ 1

(since then dW ∗/dλi ≤ 0 for all λi ∈ [0, `]). In this example, a global-welfare oriented

country does better by maximizing national welfare than by maximizing global welfare.

The reason for part (b) is that a player who is only somewhat unselfish places too little

weight on the positive direct and strategic effects that accrue to the other player for the

calculus to overcome the negative impact on its own net benefits. Applying this logic to

both players, optimal commitments are zero. Formally, the result requires that altruistic

preferences are “suffi ciently small”, yet a key observation is that this is compatible with

large degrees of altruism. To illustrate, let players have identical benefit functions, Bi(·) =

Bj(·), with altruism parameters lower than leakage rates, θk < Lk (for k = i, j). In this

setting, optimal commitments are zero, λ∗i = λ∗j = 0, even though social preferences could

be almost fully altruistic.26

A simple corollary is that (suffi ciently small) increases in one or both players’ true

levels of altruism (θi and/or θj), may, in equilibrium, have no impact at all on the quality

of public good provision since they are endogenously offset by crowding-out problems.

Interior commitments. To complete this part of our analysis, and move beyond the
limiting cases, we now provide a characterization of players’optimal commitments in an

interior equilibrium, in which (λ∗i , λ
∗
j ) ∈ (0, 1)2 (and thus also θi > 0 and θj > 0).

Proposition 5 In an interior equilibrium with (λ∗i , λ
∗
j ) ∈ (0, 1)2, player i’s optimal com-

mitment λ∗i satisfies

λ∗i =

[
θi(1− LiLj)− (1− θiθj) (B′i/B

′
j)Li

]
θi (1− θiθjLiLj)

∈ (0, 1),

where the equilibrium rates of leakage

Li =

[
1 + λ∗jθj(B

′′
i /B

′′
j )
]

[
1 + (C ′′j /|B′′j |) + λ∗jθj(B

′′
i /B

′′
j )
] ∈ (0, 1),

and player i’s equilibrium effort satisfies X∗i = C ′−1i

(
B′i + λ∗i θiB

′
j

)
> 0.

26Of course, as long as leakage rates are even higher; this is always true, e.g., where players’marginal
costs are approximately constant, C′′k → 0.
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Proposition 5 implicitly describes players’optimal interior commitments, leakage rates,

and contribution efforts given their respective benefit and cost functions as well as their

true preferences for altruistic behaviour. In principle, a numerical solution for the six

unknowns can be obtained by making specific assumptions on the functional forms of

Bk(·) and Ck(·). The basic informational requirement is as follows: The ratio of players’
marginal benefits, B′i/B

′
j , and slopes of marginal benefits, B

′′
i /B

′′
j ; each player’s ratio of

the slopes of marginal cost to the slope of marginal benefits, C ′′k/ |B′′k | (with all functions
evaluated at equilibrium); and each player’s true preference for unselfishness θk (k = i, j)

The solution can be simplified under some commonly-made assumptions. Let player

k’s benefit function Bk(·) = µkB(·), where µk > 0 is the weight placed on a global benefit

function B(Xi + Xj). This has the advantage that the ratios B′i/B
′
j = B′′i /B

′′
j = µi/µj

become invariant to the details of players’contributions. Also assume that marginal costs

and benefits are linear, B′k(Xi + Xj) = [αk − βk (Xi +Xj)] and C ′k(Xk) = δkXk, so that

C ′′k/ |B′′k | = δk/βk is constant, too.
27 Optimal commitments can then be determined more

easily– as the solution to a system of four equations and four unknowns (λ∗i , λ
∗
j , Li, Lj) ∈

(0, 1)4, for given underlying true preferences (θi, θj).

Inferring how altruistic players are. Suppose it is observed or otherwise estimated
that player i’s public good contribution appears to be entirely selfish; this corresponds

to λ∗i θi = 0 in our model. As the above analysis shows, it does not follow that this

player’s underlying true preference is completely selfish. Little or no additional effort can

be consistent even with highly altruistic true preferences– simply because it may arise

from λ∗i = 0 rather than θi = 0. So caution is required in inferring whether or not a player

is “being selfish” from her observed behaviour.

More generally, how does players’optimal altruism compare with true preferences?

Proposition 6 (a) For true preferences 0 < θi = θj < 1, optimal commitments may

satisfy λ∗i θi 6= λ∗jθj;

(b) For true preferences 0 < θj < θi, optimal commitments may satisfy λ∗jθj > λ∗i θi;

(c) If true preferences 0 < θj < θi, as well as B′i ≥ B′j, and Li ≥ Lj, optimal commitments
in an interior equilibrium satisfy (λ∗i θi − λ∗jθj) < (θi − θj).

Part (a) observes that players with identical true preferences toward altruism may

have different degrees of optimal altruism. Except in knife-edge cases, this will always

occur if they have different benefit and/or cost functions. Part (b) notes that the general

relationship between true and strategic preferences is even less clear-cut. A player who

cares more about global welfare may, in equilibrium, be the player whose actions are

closer to self-interest. In short, players with identical true degrees of altruism may behave

differently, and a “more altruistic” player may optimally behave less altruistically than
27This latter assumption is essentially equivalent to the classic analysis of Weitzman (1974) on whether

price- or quantity-based regulation is socially preferable. It can be seen as a second-order approximation
to the unknown shapes of the underlying cost and benefit functions (see also Barrett, 1994).
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another player. Part (c) shows that, in an interior equilibrium, there is a tendency for

strategic considerations to compress any cross-player differences in altruism: The difference

in optimal degrees of altruism is often less than that of true degrees of altruism.

Taken together, these findings pose obvious challenges for making cross-country infer-

ences on true degrees of altruism based on countries’observed choices.

5 Robustness of the main results

The main results from the benchmark model are that the welfare impact of an altruistic

commitment is ambiguous (Propositions 1 and 2), a full commitment is optimal only if both

players have entirely unselfish true preferences (Proposition 3), and, in some cases, a zero

commitment may be optimal despite significantly altruistic preferences (Proposition 4).

We have emphasized these limiting cases because, as explained in detail in this section,

we believe that these insights are robust to a large variety of changes to the model’s

specification.

Discussion. In the above, we have, for simplicity, written each player’s strategic objective
as a weighted average of the form Ωk = (1−λk)Πk+λkSk. But observe that our results on

the ambiguous impact of a small altruistic commitment do not rely on Ωk at all. Player i,

say, raises her level of effort by a small amount dXi– what exactly induces this is irrelevant

for the local results of Propositions 1 and 2. Moreover, our result that a full commitment

is almost never optimal, due to reverse leakage, is based on small “profitable” (that is,

S∗i -increasing) deviations away from the case where λk = 1. Again, this analysis does not

depend importantly on the functional form of Ωk(·).28 (Of course, the precise values of
(λ∗i , λ

∗
j ) in an interior equilibrium are, in general, sensitive to the formulation of Ωk(·), for

instance in Proposition 5.)

Our results are also robust to different definitions of “global welfare”. Our above

definition W = Πi + Πj is appropriate for the climate problem and corresponds to the

usage of the SCC. In some applications, one might instead consider social welfare to be

W = Si + Sj , where Si = Πi + θiΠj (symmetrically for j), which directly incorporates

players’altruistic preferences. The only results potentially affected are Propositions 2 and

3. It is easy to see, using W = (1 + θj)Πi + (1 + θi)Πj , that Proposition 2 certainly

goes through as above if θi = θj . More generally, part (a) becomes that dW ∗ > 0 if

B′i ≤ [(1 + θi)/(1 + θj)]B
′
j , while part (b) remains unchanged. Moreover, Proposition 3

continues to hold, noting only that the first-best effort levels that maximize W will, in

general, differ from the benchmark model (again, unless θi = θj).

We also assumed that a player’s benefits Bk(Xi +Xj) depend on the unweighted sum

of efforts, which is an appropriate assumption for a range of applications. But observe

that the underlying intuition does not depend crucially on the pure public good property.

28For instance, we could write Ωk = (1−λk)Π
φk
k +λkS

1−φk
k , with the weight φk ∈ (0, 1), or more generally

Ωk = hk((1−λk)Πk, λkSk), where the function hk(·, ·) is strictly increasing in each of its arguments. Key is
that maximizing any of these alternative strategic objective boils down to maximizing Sk whenever λk = 1.
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The two important features of our setup, in addition to altruistic motives, are (i) that

each player would, as such, like the other player to contribute more (∂Si/∂Xj > 0),

and (ii) the leakage problem that more effort by one player crowds out the other player

(dX∗j /dXi < 0). Our basic insights also apply to many situations with impure public

goods, including examples we discussed in the introduction.29

In the remainder of this section, we show that our key results are also robust in several

other directions, in particular, to the generalization to n ≥ 3 players, to moderate degrees

of cross-country spillovers in costs, and to alternative representations of altruism in the true

objective function Sk, including the “warm glow”of Andreoni (1989, 1990). (Appendix B

provides detailed proofs.)

Generalization to n ≥ 3 players. The analysis quickly gets more complex as the

number of players increases; each individual player may have a different benefit and cost

function, a different true preference for altruism towards other players, and her own leakage

rate. Nevertheless, we can exploit the fact that the model with n ≥ 3 players remains an

aggregative game (Corchón, 1994) at Date 2 when players make contribution decisions.30

The key is that an increase in i’s effort now induces each of the n − 1 other players to

cut back; in other words, player-specific leakage rates Lij ≡ [−R′j(Xi)] are positive. But

the overall leakage rate Li ≡
∑

j 6=i Lij ∈ (0, 1) remains less than 100% and so global

contributions rise (corresponding to Lemma 2).31

Consider a small commitment by player 1 (beginning in a completely selfish world with

{λk}nk=1 = 0), and, to illustrate, suppose that n = 3. The increase in 1’s effort directly

raises the net benefits of 2 and 3. It also induces 2 to contribute less, which hurts 1

but now also hurts 3. Similarly, reduced effort by 3 hurts 1 and 2. So 1 is hurt twice

due to leakage, and it now induces positive and negative effects on each of the other two

players– which it cares about depending on its true preference for altruism. In general,

the number of effects to take into account is of order n2.

The welfare impact of a small commitment is, as before, ambiguous. In particular,

we can show that our earlier conditions from Proposition 1 generalize cleanly: dS∗i > 0

holds whenever i has a marginal benefit that is (weakly) below average B′i ≤ B
′
−i, its true

preference exceeds the leakage rate θi > Li, and the covariance between the n − 1 other

players’marginal benefits and their leakage rates is non-negative cov(B′j , Lij) ≥ 0.32 The

latter condition ensures that those players that cut effort back more strongly are also those

29Our assumption that players hold Nash conjectures when choosing effort levels at Date 2 also does not
seem critical for our results (that is, we could let i conjecture a non-zero response by j when choosing Xi).
30 In an aggregative game, each player’s payoff depends only on her own action and a summary statistic

of all other players’actions (in our case, the unweighted sum of others’efforts).
31We note that many of our basic insights would also apply in settings in which some player-specific

leakage rates are zero (or even negative), so long as the overall leakage rate remains suffi ciently high.
32Formally, we define this covariance based the following:

1

(n− 1)

∑
j 6=iB

′
j(Li − Lij) =

(
1

(n− 1)

∑
j 6=iB

′
j

)(
1

(n− 1)

∑
j 6=i(Li − Lij)

)
− cov(B′j , Lij).
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which benefit more strongly from i’s altruism. (Signing cov(B′j , Lij) is an empirical issue

which may have different answers for different public good problems and different players

therein.) Conversely, if B′i/B
′
−i is suffi ciently large and cov(B′j , Lij) ≤ 0, then dS∗i < 0.

The conditions for dW ∗ ≶ 0 follow similarly, and generalize Proposition 2.

Our “reverse leakage” intuition also applies with n ≥ 3 players. Say player 1 cares

about global welfare and suppose it engages in a full commitment. Since player-specific

leakage rates are positive, a small decrease in its effort– which comes at a second-order

loss to global welfare– induces each of the n−1 other players to increase effort. As long as

at least one of the other players was doing too little from a global-welfare viewpoint, the

reverse-leakage effect leads to at least one first-order gain. In a sense, a larger number of

players makes altruistic behaviour more diffi cult to justify– a single “bad apple”is enough

to make all players’optimal commitments fall short of first-best.

Using analogous arguments to those in the benchmark analysis, a zero commitment is

optimal for a player who derives suffi ciently low marginal benefits or with a suffi ciently

low (yet non-zero) true degree of altruism.

Cross-country cost spillovers. It is frequently argued, notably in the context of the
development of renewable energy sources such as solar and wind, that more CO2 abatement

effort by one country creates knock-on benefits for other countries in that it leads to a

reduction in their (marginal) abatement costs, for instance, due to learning-curve effects

and technology spillovers.

We can represent such a scenario in the model by considering a more general cost

function Ci(Xi, Xj) which depends on both countries’effort levels. We assume that B′′i <

∂2Ci/∂Xi∂Xj < 0 and ∂Ci/∂Xj < 0 ≤ ∂2Ci/∂X2
j ; more investment by country j reduces

country i’s total cost (at a decreasing rate), and also reduces its marginal cost (but not

too strongly, ∂2Ci/∂Xi∂Xj > B′′i ). These conditions are suffi cient to ensure the model

remains well-behaved, and leakage rates remain strictly positive– as is consistent with the

existing empirical evidence for climate policy.33

Cost spillovers are a two-edged sword. Consider the impact of a small altruistic com-

mitment by i. This increases j’s national welfare, appropriately weighted, by θi(B′j −
∂Cj/∂Xi)dX

∗
i > 0, which, loosely speaking, is more positive than before. However, the

resulting carbon leakage affects i’s own national welfare by −[(B′i− ∂Ci/∂Xj)Li]dX
∗
i < 0,

which is more negative than before. Thus, cost spillovers make it easier to help the other

player, but also exacerbate the leakage problem for the altruistic player. The welfare impact

of a small commitment thus remains ambiguous in general– even if i cares about global

welfare (with θi = 1).

Our reverse-leakage argument also applies, again in a sense more strongly than in the

33 If cost spillovers are so strong that they turn leakage rates negative, this would alter the fundamental
nature of the public-good game. Then the externality between countries would turn positive at the margin,
and a full commitment would generally become optimal (or an even stronger commitment insofar as a
country is able to commit to placing less than full weight on its own national welfare). See also our
concluding discussion in Section 7.
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benchmark model. A small reduction in i’s commitment away from the full-commitment

level still induces j to increase effort; this is now doubly beneficial in that it increases i’s

benefits but now also reduces her costs.

In some cases, again, a zero commitment is optimal. Essentially, this happens when

the net benefit to i of additional effort by j, (B′i − ∂Ci/∂Xj), is suffi ciently larger than

the net benefit to j of additional effort by i, (B′j−∂Cj/∂Xi). This generalizes the relative

marginal benefits condition from Proposition 4(a); a zero commitment is more likely for a

player who enjoys relatively strong cost spillovers from others’efforts. It is clear that the

conditions from Proposition 4(b) apply here too.

Other altruistic objective functions. Players’true objective functions in our bench-
mark model represent “pure” altruism: A player directly cares about another player’s

welfare. Suppose more generally that i’s true objective function Si = (1 − θ̃i)Πi + θ̃iΨi,

where Ψi(Xi, Xj). Define Φi ≡ (Ψi − Πi) so that we can write Si = Πi + θ̃iΦi.34 Policy

decisions are delegated, say, by way of a strategic objective Ωi = (1− λ̃i)Πi + λ̃iSi, where

the strategic preference λ̃i ∈ [0, 1].

Various alternative objectives can be represented this way, including forms of “impure”

altruism. For example, it has been argued that contributing to a public good yields a “warm

glow” (Andreoni 1989, 1990); such objectives are essentially equivalent to Φi = gi(Xi),

so the player derives direct utility-benefits from her effort (with g′i(·) > 0 and g′′i (·) ≤ 0).

Some countries might even be willing to “ignore”some of the CO2 abatement costs they

incur in unilateral climate action, that is, Φi = Ci(Xi) and θ̃i ∈ [0, 1] is the true preference

for cost understatement. Conversely, some countries may overestimate the benefits of their

actions, for example, by using “too high”a discount factor in policy analysis.

Under of any of these objectives, a stronger commitment by a player increases her own

contribution but raises global contributions by less (Lemmas 1 and 2). For other objectives,

these conclusions hold under mild assumptions; suffi cient conditions are ∂Φi/∂Xi > 0 and

∂Φi/∂Xj ≥ 0 as well as [(B′′i − C ′′i ) + ∂2Φi/∂X
2
i ] < 0 and ∂2Φi/∂Xi∂Xj ≤ 0.

Consider the impact of a small commitment dX∗i /dλ̃i > 0, starting from λ̃i = λ̃j = 0.

By similar arguments as in the benchmark model, this increases i’s true objective by

θ̂i (∂Φi/∂Xi) (dX∗i /dλ̃i) > 0. However, crowding-out affects i’s true objective accord-

ing to −{[B′i + θ̃i (∂Φi/∂Xj)]Li}(dX∗i /dλ̃i) < 0. The sign of the overall welfare impact

(dS∗i /dλ̃i)λ̃i=λ̃j=0 is thus ambiguous in general, even if θ̃i = 1. It is also not diffi cult to

confirm that the impact of a small commitment dλ̃i > 0 on equilibrium global welfare W ∗

is exactly as in Proposition 2 above.

Our reverse-leakage argument applies since i always wants j to increase its effort (that

is, ∂Si/∂Xj > 0). A small reduction away from a full commitment (with λ̃i = 1) leads

to a first-order increase in S∗i , such that the optimal commitment λ̃
∗
i < 1. This is always

the case for any of the “impure”forms of altruism discussed above, including the “warm

34 In the benchmark model, Ψk = W (for k = i, j) and so Φi = Πj (and vice versa).
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glow”(even if j is already choosing its effort to maximize global welfare).35

Finally, under some conditions on θ̂i and Φi(·), a zero commitment becomes optimal;
it turns out that a simple suffi cient condition for λ̃

∗
i = 0 is ∂Φi/∂Xi ≤ B′i, that is, a higher

national contribution raises benefits no less than the altruistic part of i’s objective.

6 Further properties of the model

To close our analysis, we highlight two other features of the benchmark model: First, the

impact of altruistic behaviour on leakage at Date 2, and, second, the strategic properties

of players’commitments at Date 1 of the game.

The impact of altruism on leakage. It may seem natural to conjecture that altruistic

behaviour tends to mitigate free-riding and reduce leakage. It turns out that, under some

circumstances, this intuition is quite misleading:

Proposition 7 (a) Suppose that B′′′j ≤ 0 and C ′′′j ≤ 0. Player i’s leakage rate is higher

when player j also has an unselfish commitment than when player j acts entirely selfishly,

Li|λ∗j>0 > Li|λ∗j=0.
(b) Suppose that B′′i /B

′′
j and B

′′
j /C

′′
j are both constant. Player i’s leakage rate increases

in player j’s commitment, (dLi/dλj)λ∗j≥0 > 0.

To understand the result, recall j’s first-order condition for its effort choice, ∂Ωj/∂Xj =

(∂Πj/∂Xj) + λjθj (∂Πi/∂Xj) = 0. The overall rate of leakage can hence be thought of in

two parts: Firstly, a selfish component ∂Πj/∂Xj , and, secondly, an altruistic component

∂Πi/∂Xj (which, in equilibrium, receives weight λ∗jθj). The key point is that the altruistic

component has a leakage rate of 100%. To see why, observe that holding ∂Πi/∂Xj =

B′i(Xi +Xj) fixed (along j’s reaction function) in response to a small increase in i’s effort

dXi > 0 requires a decrease in j’s effort dXj = −dXi < 0 that is exactly offsetting. Greater

weight on the altruistic part therefore certainly tends to increase the overall leakage rate

as long as the selfish part does not decline as a result. The conditions given in Proposition

7 are, respectively, (a) suffi cient for the selfish part to not decline, and (b) necessary and

suffi cient for it to stay constant.36

Although global welfare may (but need not) be higher when players pursue altruistic

objectives, the associated leakage rates can also be higher than with self-interested be-

haviour. Put differently, altruism can worsen the free-riding problem at the margin. From

an empirical point of view, this suggests a surprising possibility: Rates of carbon leakage

associated with unilateral climate action may be “high” precisely because countries are

35Compared to the benchmark model, the disadvantage of such other objective functions is that the
global-welfare preference (“social cost of carbon”) is no longer a natural special case.
36We note that the results of Proposition 7 would also apply if players’ altruistic commitments were

not chosen optimally; they speak generally to the impact of altruism on leakage, not necessarily that of
optimal altruism on leakage.
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behaving altruistically. The more general point is that leakage rates– though a useful and

important statistic– are not always a reliable welfare indicator.

Policy commitments: Strategic substitutes or complements? Finally, we explore
the strategic properties of the game at Date 1 where players choose their respective pol-

icy commitments. For this analysis, it will be useful to define a “leakage-commitment”

elasticity:

ηij ≡
dLi/Li
dλj/λj

.

This measures the elasticity of player i’s leakage rate with respect to a stronger com-

mitment by player j. For example, under the conditions of Proposition 7(b), we found

(dLi/dλj)λ∗j≥0 > 0, implying that, in such cases, the leakage-commitment elasticity ηij > 0

(in an interior equilibrium). Using this metric, we obtain the following result:

Proposition 8 Consider an interior equilibrium with (λ∗i , λ
∗
j ) ∈ (0, 1)2.

(a) Suppose that B′i/B
′
j is constant. Player i’s optimal commitment varies with player j’s

commitment according to

sign
{
dλ∗i
dλj

}
= sign

{
1

ηij
−
(

1− λ∗jθiθj
λ∗jθiθj

)}
where ηij ≡ [(dLi/Li)/(dλj/λj)]λk=λ∗k

is the (equilibrium) leakage-commitment elasticity.

(b) Suppose that B′i/B
′
j, B

′′
j /C

′′
j and B

′′
i /B

′′
j are all constant. Then the leakage-commitment

elasticity ηij ∈ (0, 1), and so dλ∗i /dλj > 0 if λ∗jθiθj ≥ 1
2 while dλ

∗
i /dλj < 0 if λ∗jθiθj is

suffi ciently small.

In general, therefore, it is ambiguous whether players’policy commitments are strategic

substitutes or strategic complements. If the leakage-commitment elasticity ηij > 0 and

the “joint-altruism” term λ∗jθiθj is suffi ciently small, then we have strategic substitutes

(dλ∗i /dλj < 0). By contrast, if ηij ≤ 0 or if λ∗jθiθj is suffi ciently large, then we have

strategic complements (dλ∗i /dλj > 0). Of course, the results from Proposition 7 suggests

that, in many cases, ηij > 0; if so, the level of λ∗jθiθj becomes the main determinant of a

commitment’s strategic properties.37

Proposition 8 strikes us as interesting for several reasons. First, the strategic properties

of the game in commitment space (Date 1) may thus differ from those of the effort game

(Date 2)– which is always characterized by strategic substitutes (Lemma 1). Second, it

has a similar flavour to an intuition found in other public good models: Commitments are

strategic complements if they are already “high”, but strategic substitutes when they are

“low” (see, e.g., the tipping-point analysis of Heal and Kunreuther, 2010).

37Cases with ηij < 0 seem relatively unusual but could occur where C′′′j is positive and large near
equilibrium, in other words, where effort costs are highly convex.
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We have not been able to derive a full set of results on the impact of a sequential

move order at Date 1, but conjecture that, in general, it is ambiguous whether sequential

commitment makes a difference, and if any such difference raises or reduces welfare.38

Illustrative example. We present a simplified example to illustrate our results from this
section, and to link them to our earlier findings. Suppose that players are symmetric with

identical benefit and cost functions, but asymmetric in that their true levels of altruism

differ, where θi = 1 but θj < 1. In particular, assume B′k(Xi +Xj) = α−Xi−Xj , so that

B′i/B
′
j = B′′i /B

′′
j = 1 is constant, and that C ′′k/ |B′′k | = 1 is constant (for k = i, j).

Without any further calculations, we know that λ∗i > 0 by Proposition 1(a) but also

that λ∗i < 1 and λ∗j < 1 by Proposition 3(b); here, we consider two scenarios:

First, suppose, that θj is suffi ciently small, in particular θj & 6
13 that λ

∗
j & 0. Using

Lemma 4, i’s optimal commitment then solves the first-order condition dS∗i /dλi ' (1 −
λi) − Li(λj) = 0 =⇒ λ∗i '

[
1− Li(λ∗j )

]
∈ (0, 1), where the equilibrium leakage rate

Li(λ
∗
j ) = (1 +λ∗jθj)/

(
2 + λ∗jθj

)
. It is then immediate that dλ∗i /dλj ' −(dLi/dλj)λj=λ∗j <

0. Put differently, in this example, Proposition 7(b) and the strategic substitutes part of

Proposition 8(b) are two sides of the same coin: i regards j’s commitment as a strategic

substitute because a stronger commitment by j drives up the leakage rate associated with

i’s own policy.39 In summary, (θi, θj) = (1, 613) =⇒ (λ∗i , λ
∗
j ) = (12 , 0), which also confirms

one of main arguments, based on Proposition 4, that large degrees of true altruism may

only lead to much lower degrees of optimal/observed altruism.

Second, and by contrast, assume that θj is suffi ciently large such that λ∗jθj ≥ 1
2 .
40

Then we have that dλ∗i /dλj > 0 by the other part of Proposition 7(b), and so commitments

become strategic complements. In such cases, loosely speaking, the additional commitment

by j is suffi ciently valuable, in that it raises the marginal return on i’s own commitment,

to offset the adverse impact of the higher leakage rate.

38That is, what happens if one player is a leader in choosing her strategic preference? A partial analysis
goes as follows: Whenever policy commitments are strategic complements (see Proposition 8), a stronger
commitment by the first-mover induces the follower to also raise her effort and so global contributions at
Date 2 rise. This, however, does not characterize optimal sequential commitments. A player’s optimal
commitment in our benchmark model may be zero (Proposition 4); in such cases, a change to sequential
moves may make no difference insofar as a player remains “stuck in a corner” (at λ∗j = 0). Moreover,
while global contributions may rise, the preceding analysis highlights that this need not yield a welfare
improvement. Finally, we have not characterized the conditions under which a player would, in fact,
want to become a first-mover in the first place. Nonetheless, based on these arguments, we arrive at the
conjecture described in the main text.
39To check when indeed λ∗j & 0, use j’s first-order condition to obtain dS∗j /dλj = (1 − λj)θj − (1 −

λiθj)Lj = 0 =⇒ (1 − λ∗j ) =
(
θ−1j − λ∗i

)
Lj . It follows that λ∗j & 0 whenever (θ−1j − λ∗i )Lj . 1 ⇐⇒ θj &

(L−1j +λ∗i )
−1. Now using λ∗i ' (1−Li) as well as Lj = (1+λ∗i )/ (2 + λ∗i ) ' (2−Li)/(3−Li), this can also

be written as λ∗j & 0 whenever θj &
(
(3−Li)
(2−Li)

+ (1− Li)
)−1
' 6

13
since then Li = (1+λ∗jθj)/(2+λ∗jθj) & 1

2
.

40By Proposition 3(a), we have that λ∗j → 1 as θj → 1, so also λ∗jθj → 1. Then, by continuity, we also
have that λ∗jθj ≥ 1

2
for θj suffi ciently large.
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7 Concluding remarks

We have studied the welfare impact of altruism in a model of public good provision,

and introduced a notion of “optimal altruism”. Altruistically-minded– yet rational–

players take into account the incentive effects of their actions on other players. Due

to crowding-out effects, optimal altruistic commitments are almost always weaker than

the true willingness to pursue unselfish action– and, in a range of cases, much weaker.

Thereby, we have highlighted that players who derive an above-average marginal benefit

from contributions, as well as those facing a high leakage rate, will find it more diffi cult to

follow through on their altruistic preferences– and that altruistic behaviour may actually

intensify crowding-out at the margin. We have argued that our main results– which mostly

emphasize limiting cases– are robust to a variety of natural changes in model specification,

including different types of public good problems and different representations of purely

and impurely altruistic preferences.

We can relate our findings to the unilateral climate-policy initiatives discussed in the

introduction. By incorporating countries’social preferences we can, in principle, explain

any outcome between the standard self-interested equilibrium and first-best. So the uni-

lateral actions observed at the local, national, and regional levels might indeed be driven

by altruistic preferences.

Our equilibrium analysis yields some sharper conclusions. Under our assumptions,

it is not optimal for an individual country– or any subset of countries– to unilaterally

commit to taking the full “social cost of carbon” into account in domestic policy. A

weaker commitment is better because of reverse-leakage: Others are induced to do more,

and this is socially (more) valuable. By contrast, using the SCC only in a selected range

of projects may seem broadly consistent with our results.

We can also provide a rationale for a puzzle: Little or no action beyond “business-as-

usual” by apparently altruistically-minded players. In our model, social preferences are

necessary– but not suffi cient– for countries to deviate from their self-interested levels of

contribution. Even large degrees of altruism (or increases in altruism) can, in equilibrium,

be negated by leakage, so optimal commitments are zero. We have highlighted that it

will generally be diffi cult to infer a player’s true preferences from its observed public good

contribution.

Our model provides what seems a natural way of thinking about the role that altruism

can play in public good problems characterized by the absence of central mechanism

designer. The basic message from our analysis is somewhat pessimistic: The tension

between altruism and crowding-out effects makes it more diffi cult to improve public good

provision. What, then, could lead to more favourable outcomes?

First, our model has examined the impact of altruism in a non-cooperative setting. In

practice, unilateral climate action, for example, by the EU and others has taken place “in

the shadow”of evolving cooperative talks between countries, and there may be strategic

interaction between them. One view is that leadership in form of unilateral initiatives
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signals a willingness to cooperate and thus facilitates agreement; some recent papers,

however, have noted that unilateral policy may, in fact, undermine future negotiations

(Beccherle and Tirole 2011; Harstad 2012).

Second, and perhaps most obviously, leakage rates may be zero or even negative in

some situations, i.e., public good contributions are strategic complements. Then players

may find it optimal to follow through on their altruistic preferences– and perhaps try to

find ways to commit to doing even more. However, as noted above, negative leakage is not

a particularly common feature of public good models, and we are not aware of any such

empirical evidence for our application to climate policy.

Third, and related, the relevant contracting space may be richer. Players might be able

to make their commitments conditional on what other players are doing. For example,

the EU has previously considered a commitment to augment its 2020 carbon-emissions

reduction from 20% to 30% if less-developed countries agree to certain abatement targets–

although this commitment was never actually activated.41 In terms of our model, this can

be interpreted as an attempt to “change the game”: i’s conditional commitment turns j’s

leakage rate negative, at least over some range, and thus encourages it to do more. (But

note that i’s own leakage rate remains positive.) Again, the existing literature draws mixed

conclusions. While conditional commitment is superior to unconditional commitment in

some situations (Hoel 1991), matching contributions are ineffective in others (Boadway,

Song and Tremblay 2007) and may actually worsen public good provision if commitments

are only made by a subset of players (Buchholz, Cornes and Rübbelke 2012).42

The existing public goods literature on the role of conditional commitments and the

evolution of policy negotiations over time has, however, paid little attention to the role of

altruistic preferences. Combining the optimal-altruism approach presented in this paper–

different players are altruistic to different degrees and recognize the incentive effects of their

actions– with such richer contracting environments may be an interesting and important

topic for future research.
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Appendix A: Proofs

Proof of Lemma 2. Observe that for player i, say, dX∗i /dλi = ∂X∗i /∂λi+R
′
i(X

∗
j )[dX∗j /dλi]

and dX∗j /dλi = R′j(X
∗
i )[dX∗i /dλi], so that

dX∗i
dλi

=
∂X∗i /∂λi[

1−R′i(X∗j )R′j(X
∗
i )
] =

∂X∗i /∂λi
(1− LiLj)

.
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The denominator of this expression is positive by Lemma 1. Differentiating i’s first-order

condition from (3) yields that the numerator ∂X∗i /∂λi = θiB
′
j/(−B′′i +C ′′i −λiθiB′′j ), from

which the result is immediate (since B′k > 0 > B′′k and C
′′
k > 0, k = i, j).

Proof of Lemma 3. Let Xs
i denote the level of effort that solves i’s first-order condition

∂Πi/∂Xi = 0 at Date 2. Committing at Date 1 to deviate from this affects i’s equilibrium

payoff according to
dΠ∗i
dXi

=
∂Π∗i
∂Xi

+
∂Π∗i
∂Xj

R′j .

The first term, ∂Π∗i /∂Xi, is non-positive: By definition, it equals zero at Xs
i , and it is

negative by the concavity of the payoff function Πi for any Xi > Xs
i . The second term,

(∂Π∗i /∂Xj)R
′
j , is negative since ∂Π∗i /∂Xj = B′i > 0 and R′j ≡ −Li < 0 by Lemma 1. So

a player k cannot do any better than choosing to her effort to maxXk Πk, as claimed.

Proof of Proposition 3. Before turning to the two parts of the proposition, we first
establish that λ∗k > 1 cannot be optimal. To see this, note using the formula from Lemma

4 that
dS∗i
dλi
≤
[
(1− λi)θiB′j − (1− θi)B′iLi

] dX∗i
dλi

(5)

since λjθj ≤ 1 by our assumption. It follows that (dS∗i /dλi)|λi>1 < 0 for any θi ∈ [0, 1]

such that the optimal commitment must satisfy λ∗i ≤ 1 (and analogously for j).

For part (a), setting θi = θj = 1 in the formula from Lemma 4 shows that

dS∗i
dλi

∣∣∣∣
θi=θj=1

=
dW ∗

dλi
=

[(
(1− λi)B′j − (1− λj)B′iLi

) dX∗i
dλi

]
θi=θj=1

.

So if j is playing λj = 1, then (dW ∗/dλi)|λj=1 = [(1 − λi)B
′
j ] (dX∗i /dλi) ≥ 0 for all

λi ∈ [0, 1]. So i’s best response is to also play λ̂i(1) = 1, and so optimal commitments

λ∗i = λ∗j = 1.

For part (b), we proceed in two steps, looking first at the case where θi < 1 and then at

the case where θi = 1. Suppose that θi < 1; then we have using (5) that

dS∗i
dλi

∣∣∣∣
λi=1

≤ −
[
(1− θi)B′iLi

] dX∗i
dλi

,

and so (dS∗i /dλi)|λi=1 < 0 whenever θi < 1. We conclude that if θi < 1, then λ∗i < 1.

Suppose now that θi = 1 but that θj < 1. From our previous argument, we know that

λ∗j < 1, so also λ∗jθj < 1. Again using the formula from Lemma 4, we thus have

dS∗i
dλi

< (1− λi)B′j
dX∗i
dλi

,

and so (dS∗i /dλi)|λi=1 < 0, again implying that λ∗i < 1. These arguments establish that

if either θi < 1 or θj < 1, then λ∗i < 1 and λ∗j < 1.
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Proof of Proposition 4. For part (a), use the formula from Lemma 4 to obtain

dS∗i
dλi

= B′j

(
(1− λi)θi − (1− λjθiθj)

B′i
B′j
Li

)
dX∗i
dλi

.

If θi < 1 or θj < 1, so also λ∗jθj < 1 by Proposition 3(b), then dS∗i /dλi < 0 for all

λi ∈ [0, θ−1i ] and λj ∈ [0, θ−1j ] if B′i/B
′
j is suffi ciently large, so that the optimal commitment

λ∗i = 0.

For part (b), observe similarly that dS∗i /dλi < 0 for all λi ∈ [0, θ−1i ] and λj ∈ [0, θ−1j ] if θi
is suffi ciently small. So if θi and θj are both suffi ciently small, then optimal commitments

λ∗i = λ∗j = 0 as claimed.

Proof of Proposition 5. In an interior equilibrium, i’s best response λ̂i(λj) satisfies the
first-order condition dS∗i /dλi = 0. Using the formula from Lemma 4, we thus have

λ̂iθi = θi − (1− λjθiθj)
B′i
B′j
Li.

Now using this together with the analogous expression for j’s best response λ̂j(λi) yields

that i’s optimal commitment λ∗i ≡ λ̂i(λ̂j) solves

λ∗i θi = θi −
[

(1− θiθj)
B′i
B′j
Li + θi(1− λ∗i θiθj)LiLj

]
,

which can be arranged to give

λ∗i =

[
θi(1− LiLj)− (1− θiθj) (B′i/B

′
j)Li

]
θi (1− θiθjLiLj)

as claimed. The expression for the rate of leakage Li is obtained from Lemma 1 and some

rearranging of (4). The expression for country i’s effort X∗i > 0 is obtained by rewriting

its first-order condition from (3) and noting that the inverse C ′−1i (·) is well-defined under
the maintained assumptions C ′i(·) > 0, C ′′i (·) > 0, and Ci(0) = C ′i(0) = 0.

Proof of Proposition 6. For part (a), note that this requires an interior equilibrium
(λ∗i , λ

∗
j ) ∈ (0, 1)2, and so rewrite the expression for λ∗i from Proposition 5 as

λ∗i θi = θi −
(1− θiθj)

(1− θiθjLiLj)

(
θiLj +

B′i
B′j

)
Li.

Thus the difference in the two players’degrees of altruism satisfies

(
θiλ
∗
i − θjλ∗j

)
= (θi − θj)−

(1− θiθj)
(1− θiθjLiLj)

[
(θi − θj)LiLj +

(
B′i
B′j
Li −

B′j
B′i
Lj

)]
. (6)
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Setting 0 < θi = θj < 1, it is clear that optimal commitments may satisfy λ∗i θi 6= λ∗jθj , as

claimed; in particular, this occurs whenever Li/Lj 6= (B′i/B
′
j)
2. For part (b), since θj < 1,

it follows that λ∗i = 0 by Proposition 4(a) for suffi ciently large B′i/B
′
j , and so λ

∗
i θi = 0.

Using the result from Lemma 4, dS∗j /dλj ≥ 0 for suffi ciently small values of λj ∈ [0, 1] if

B′i/B
′
j is suffi ciently large, so λ

∗
j > 0, and so λ∗jθj > 0. But since 0 < θj < θi, optimal

commitments in this example satisfy λ∗jθj > λ∗i θi, as claimed.

For part (c), with 0 < θj < θi, direct inspection of (6) shows that optimal commitments

in an interior equilibrium satisfy (λ∗i θi − λ∗jθj) < (θi − θj) if B′i ≥ B′j and Li ≥ Lj , as

claimed.

Proof of Proposition 7. For part (a), it follows from Proposition 4(b) that λ∗j > 0 must

imply that θj > 0, and so also λ∗jθj > 0. By contrast, λ∗j = 0 also means that λ∗jθj = 0.

By (4) and Lemma 1, the leakage rate when λ∗j = 0 equals

Li|λ∗j=0 =
1(

1 +
[
C ′′j /(−B′′j )

]
λ∗j=0

) ,
while leakage with λ∗j > 0 is given by

Li|λ∗j>0 =

(
1 + λ∗jθj

[
B′′i /B

′′
j

]
λ∗j>0

)
(

1 +
[
C ′′j /(−B′′j )

]
λ∗j>0

+ λ∗jθj
[
B′′i /B

′′
j

]
λ∗j>0

) .

So
[
C ′′j /(−B′′j )

]
λ∗j>0

≤
[
C ′′j /(−B′′j )

]
λ∗j=0

is a suffi cient condition for Li|λ∗j>0 > Li|λ∗j=0.

Furthermore, note that

d

dλj

[
C ′′j
−B′′j

]
=

1

(−B′′j )2

[
C ′′′j

dX∗j
dλ∗j

(−B′′j )− (−B′′′j )(1− Lj)
dX∗j
dλj

C ′′j

]

and so (since dX∗j /dλj > 0 by Lemma 2) we have that

sign

(
d

dλj

[
C ′′j
−B′′j

])
= sign

(
C ′′′j (−B′′j ) +B′′′j (1− Lj)C ′′j

)
,

where the right-hand side is certainly non-positive if B′′′j ≤ 0 and C ′′′j ≤ 0 (since Lj ∈ (0, 1)

by Lemma 1), from which the claim follows. For part (b), differentiation of the leakage

rate Li shows that it is increasing in λj if B′′i /B
′′
j and B

′′
j /C

′′
j are both constant, as claimed.

Proof of Proposition 8. For part (a), in an interior equilibrium (which implies that

θk > 0 for k = i, j), i’s strategic choice of preference λ̂i(λj) is determined by its first-order

condition dS∗i /dλi = 0 at Date 1. Using the formula from Lemma 4, this condition can be
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written as

λ̂iθi = θi − (1− λjθiθj)
B′i
B′j
Li.

Differentiating, and using the assumption that B′i/B
′
j is constant, shows that the slope of

i’s best response curve satisfies

dλ̂i
dλj

θi =
B′i
B′j

[
θiθjLi − (1− λjθiθj)

dLi
dλj

]
.

At an interior equilibrium with (λ∗i , λ
∗
j ) ∈ (0, 1)2, this expression can be rearranged as

dλ∗i
dλj

θi
Li

=
B′i
B′j

[
θiθj −

(1− λjθiθj)
λj

ηij

]
where the leakage-commitment elasticity ηij ≡ [(dLi/Li)/(dλj/λj)]λk=λ∗k

is evaluated at

equilibrium, and from which the result follows immediately. For part (b), using (4) and

Lemma 1, we can write the leakage-commitment elasticity ηi ≡ (dLi/Li)/(dλj/λj) as

ηij =
λj

(
1 + λjθj

B′′i
B′′j

+
C′′j
−B′′j

)
(

1 + λjθj
B′′i
B′′j

) d

dλj

 1 + λjθj
B′′i
B′′j

1 + λjθj
B′′i
B′′j

+
C′′j
−B′′j

 .
Differentiating, using the assumption that B′′i /B

′′
j and B

′′
j /C

′′
j are both constant, and then

simplifying yields:

ηij =
λj

(
1 + λjθj

B′′i
B′′j

+
C′′j
−B′′j

)
(

1 + λjθj
B′′i
B′′j

)
θj B

′′
i

B′′j

[
1 + λjθj

B′′i
B′′j

+
C′′j
−B′′j

]
− θj B

′′
i

B′′j

[
1 + λjθj

B′′i
B′′j

]
[
1 + λjθj

B′′i
B′′j

+
C′′j
−B′′j

]2


=
λjθj

B′′i
B′′j(

1 + λjθj
B′′i
B′′j

)
[
C′′j
−B′′j

]
[
1 + λjθj

B′′i
B′′j

+
C′′j
−B′′j

]
Since λ∗jθj > 0 in an interior equilibrium, we have that the equilibrium value of the

elasticity ηij ∈ (0, 1). Observe that the condition from part (a) on the sign of dλ∗i /dλj
still applies as it was derived from weaker assumptions. Since now ηij ∈ (0, 1), it follows

by inspection that dλ∗i /dλj > 0 if λ∗jθiθj ≥ 1
2 , as claimed. Similarly, since ηij > 0, it is

easy to see that dλ∗i /dλj < 0 if λ∗jθiθj is suffi ciently small.
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Appendix B: Robustness (not necessarily for publication)

Generalization to n ≥ 3 players

Preliminaries. Consider the same setup as in the benchmark model but with n ≥ 3

players. Let N = {1, 2, ..., n} denote the set of players, and let i be a member of this
set. Player i’s national welfare Πi = Bi(X) − Ci(Xi), where global contributions X ≡∑

k∈N Xk, while global welfareW =
∑

k∈N Πk, and its true objective Si = (1−θi)Πi+θiW

and strategic objective Ωi = (1 − λi)Πi + λiSi, where θi ∈ [0, 1] and λi ∈ [0, θ−1i ]. The

interaction between players at Date 2, when each chooses effort to maximize her strategic

objective Ωk is an “aggregative game”(Corchón, 1994): each player’s objective depends

only on its own effort Xk and the (unweighted) sum of all players’efforts X.

Player i’s first-order condition for effort at Date 2 can be written as

0 =
∂Ωi

∂Xi
=

[
B′i(X)− C ′i(Xi) + λiθi

∑
j∈N\{i}

B′j(X)

]
≡ Ti(Xi, X, λi). (7)

The function Ti(Xi, X, λi) is strictly decreasing in both Xi and X (since C ′′k (·) > 0 and

B′′k(·) < 0, respectively for all k). Moreover, whenever θi > 0, the function Ti(Xi, X, λi)

is strictly increasing in the strategic preference λi. The model thus satisfies Assumptions

1, 2, and 4 of Corchón (1994). Applying Proposition 4 of Corchón (1994) shows that an

increase in λi leads to (a) a strict increase in X∗, (b) a strict increase in X∗i , and (c) a

strict decrease in X∗j for all j 6= i.

We can recast these results in terms of our model and terminology as

dX∗

dλi
=
dX∗i
dλi

+
∑

j 6=i
R′j(Xi)

dX∗i
dλi

=
(

1−
∑

j 6=i
Lij

) dX∗i
dλi

= (1− Li)
dX∗i
dλi

> 0,

where R′j(Xi) is the slope of j’s reaction function with respect to i’s effort choice. An

increase in i’s commitment λi leads to an increase in its equilibrium effort X∗i (as in

Lemma 2 of our benchmark model). This induces each of the n−1 other players to reduce

their efforts, that is, player-specific leakage rates Lij ≡ [−R′j(Xi)] > 0. However, the

overall leakage rate Li ≡
∑

j 6=i Lij ∈ (0, 1) such that global effort rises (as in Lemma 1).

Results. We first derive a generalized version of Lemma 4 from the benchmark model in

several steps. With n ≥ 3 players, the equilibrium impact of a stronger commitment by i

on her true objective can be written as

dS∗i
dλi

=

(
dS∗i
dXi
−
∑

j∈N\{i}

[
dS∗i
dXj

Lij

])
dX∗i
dλi

, (8)

and we next derive explicit expressions for its individual components.
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Step 1. An expression for dS∗i /dXi:

dS∗i
dXi

=
dΠ∗i
dXi

+ θi
∑

j∈N\{i}

dΠ∗j
dXi

= θi(1− λi)
∑

j∈N\{i}
B′j

where the second equality uses the first-order condition for i from (7) to obtain dΠ∗i /dXi =

(B′i−C ′i) = −λiθi
∑

j∈N\{i}B
′
j as well as the fact that dΠ∗j/dXi = B′j for any player j 6= i.

Step 2. An expression for dS∗i /dXj :

dS∗i
dXj

=
dΠ∗i
dXj

+ θi
∑

k∈N\{i}

dΠ∗k
dXj

= (1− θi)
dΠ∗i
dXj

+ θi

dΠ∗j
dXj

+
∑

k∈N\{j}

dΠ∗k
dXj


= (1− θi)B′i + θi

−λjθj ∑
k∈N\{j}

B′k +
∑

k∈N\{j}
B′k


= (1− θi)B′i + θi(1− λjθj)

∑
k∈N\{j}

B′k

where the second equality uses
∑

k∈N\{i} dΠ∗k/dXj = dΠ∗j/dXj +
∑

k∈N\{j} dΠ∗k/dXj −
dΠ∗i /dXj , and the third equality uses the first-order condition for j from (7).

Step 3. An expression for
∑

j∈N\{i} [(dS∗i /dXj)Lij ]:

∑
j∈N\{i}

[
dS∗i
dXj

Lij

]
=

∑
j∈N\{i}

(1− θi)B′i + θi(1− λjθj)
∑

k∈N\{j}
B′k

Lij


= (1− θi)B′iLi + θi
∑

j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{j}
B′k


where the first equality uses the expression for dS∗i /dXj from Step 2, and the second

equality uses the definition Li ≡
∑

j 6=i Lij .

Step 4. Another expression for dS∗i /dλi, to generalize Lemma 4:

dS∗i
dλi

=

θi(1− λi) ∑
j∈N\{i}

B′j − (1− θi)B′iLi − θi
∑

j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{j}
B′k

 dX∗i
dλi

,

(9)

which combines the expressions from Steps 1—3 into (8). We use this expression to verify

our main results.

(i) Welfare impact of a small commitment is ambiguous. Setting {λk}nk=1 = 0 in the
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expression from (9) yields

dS∗i
dλi

∣∣∣∣
{λk}nk=1=0

=

θi ∑
j∈N\{i}

B′j − (1− θi)B′iLi − θi
∑

j∈N\{i}

Lij ∑
k∈N\{j}

B′k

 dX∗i
dλi

Algebraic manipulation shows that this expression can also be written as:

dS∗i
dλi

∣∣∣∣
{λk}nk=1=0

=

θi ∑
j∈N\{i}

B′j −B′iLi + θiB
′
iLi − θi

∑
j∈N\{i}

Lij ∑
k∈N\{j}

B′k

 dX∗i
dλi

=

θi ∑
j∈N\{i}

B′j −B′iLi + θiB
′
iLi − θi

∑
j∈N\{i}

Lij
 ∑
k∈N\{i,j}

B′k +B′i

 dX∗i
dλi

=

θi ∑
j∈N\{i}

B′j −B′iLi − θi
∑

j∈N\{i}

Lij
 ∑
k∈N\{i}

B′k −B′j

 dX∗i
dλi

=

θi ∑
j∈N\{i}

B′j −B′iLi − θi

 ∑
j∈N\{i}

B′j(Li − Lij)

 dX∗i
dλi

Next use the covariance identity and define the average marginal benefit among all players

j 6= i as B
′
−i ≡ 1

(n−1)
∑

j 6=iB
′
j to obtain

∑
j∈N\{i}

B′j(Li − Lij) =
1

(N − 1)

∑
j 6=i

B′j
∑

j 6=i
(Li − Lij)− (N − 1) · cov(B′j , Lij)

= B
′
−i(N − 2)Li − (N − 1) · cov(B′j , Lij)

where the second equality uses the definition Li ≡
∑

j 6=i Lij . Using this in the previous

expression yields

dS∗i
dλi

∣∣∣∣
{λk}nk=1=0

=
[
θi(N − 1)B

′
−i −B′iLi − θi

(
B
′
−i(N − 2)Li − (N − 1) · cov(B′j , Lij)

)] dX∗i
dλi

=
[
θi [1 + (N − 2)(1− Li)]B

′
−i −B′iLi + θi(N − 1) · cov(B′j , Lij)

] dX∗i
dλi

We can now state conditions to sign the overall effect of a small commitment, generalizing

Proposition 1 from above. Jointly suffi cient for dS∗i > 0 are θi > Li, B
′
−i ≥ B′i and

cov(B′j , Lij) ≥ 0. Conversely, if B′i/B
′
−i suffi ciently large and cov(B′j , Lij) ≤ 0, then

dS∗i < 0.

For the global-welfare impact, set θi = 1 in the previous derivations to obtain

dW ∗

dλi

∣∣∣∣
{λk}nk=1=0

=
[
[1 + (N − 2)(1− Li)]B

′
−i −B′iLi + (N − 1) · cov(B′j , Lij)

] dX∗i
dλi
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So jointly suffi cient conditions for dW ∗ > 0 are B
′
−i ≥ B′i and cov(B′j , Lij) ≥ 0, while

dW ∗ < 0 if B′i/B
′
−i suffi ciently large and cov(B′j , Lij) ≤ 0, thus also generalizing Proposi-

tion 2 from the main text.

(ii) Full commitment is almost never optimal. Observe first that, since λjθj ≤ 1 for any

j 6= i the formula from (9) is bounded above according to

dS∗i
dλi
≤

θi(1− λi) ∑
j∈N\{i}

B′j − (1− θi)B′iLi

 dX∗i
dλi

.

It follows that λi > 1 cannot be optimal, so we can again henceforth restrict attention to

λk ∈ [0, 1] for all k = 1, 2, ..., n. Setting θ1 = θ2 = ... = θN = 1 (for short, θk = 1 ∀k) in
the expression from (9) shows that

dS∗i
dλi

∣∣∣∣
θk=1∀k

=
dW ∗

dλi
=

(1− λi)
∑

j∈N\{i}
B′j −

∑
j∈N\{i}

(1− λj)Lij
∑

k∈N\{j}
B′k

 dX∗i
dλi

.

So if each player j 6= i is playing λj = 1, then (dW ∗/dλi)|λj=1,∀j 6=i ≥ 0 for all λi ∈ [0, 1],

and so optimal commitments λ∗1 = λ∗2 = ... = λ∗N = 1 achieve first-best effort levels.

By contrast, setting λi = 1 in (9) gives

dS∗i
dλi

∣∣∣∣
λi=1

= −

(1− θi)B′iLi + θi
∑

j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{j}
B′k

 dX∗i
dλi

We distinguish between two cases. First, let θi < 1. Using our assumption λk ≤ θ−1k for

all k we have
dS∗i
dλi

∣∣∣∣
λi=1

≤ −(1− θi)B′iLi
dX∗i
dλi

so (dS∗i /dλi)|λi=1 < 0 whenever θi < 1, and so the optimal commitment λ∗i < 1. Second,

let θi = 1 but θj < 1 for at least one other player j 6= i, for which then also λ∗jθj < 1 by

our previous argument. Then we have that

dS∗i
dλi

∣∣∣∣
θi=1

=

(1− λi)
∑

j∈N\{i}
B′j −

∑
j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{j}
B′k

 dX∗i
dλi

and so

dS∗i
dλi

∣∣∣∣
θi=1,λi=1

= −

 ∑
j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{j}
B′k

 dX∗i
dλi

< 0

since λjθj ≤ 1 for any j 6= i, and λjθj < 1 for at least one of them. Therefore the optimal

commitment λ∗i < 1. In summary, if θk = 1 for all k, then λ∗k = 1 for all k; however, if

θi < 1 for at least one player i, then λ∗k < 1 for all k, thus generalizing our Proposition 3.
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(iii) Optimal commitments can be zero. Finally we generalize Proposition 4 from the

main text to show that (a) if θj < 1 for at least one player j (including i) and B′i/B
′
−i

suffi ciently large, then λ∗i = 0, and (b) if θk suffi ciently small for all k = 1, 2, ..., n, then

optimal commitments λ∗k = 0 for all k.

For part (a), rewrite the expression from (9) as

dS∗i
dλi

=

θi(1− λi) ∑
j∈N\{i}

B′j − (1− θi)B′iLi − θi
∑

j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{j}
B′k

 dX∗i
dλi

=

θi(1− λi) ∑
j∈N\{i}

B′j − (1− θi)B′iLi − θi
∑

j∈N\{i}

(1− λjθj)Lij

 ∑
k∈N\{i,j}

B′k +B′i

 dX∗i
dλi

=


θi(1− λi)

∑
j∈N\{i}

B′j − (1− θi)B′iLi − θiB′i
∑

j∈N\{i}
[(1− λjθj)Lij ]

−
∑

j∈N\{i}

(1− λjθj)Lij
∑

k∈N\{i,j}
B′k


 dX

∗
i

dλi

By assumption, θj < 1 for at least one player j (including i), so we have that λk < 1 for

all k by Proposition 3(b) and so also (1 − λjθj) > 0 for any j 6= i. It follows that the

previous expression is bounded above according to

dS∗i
dλi

<

θi(1− λi) ∑
j∈N\{i}

B′j − (1− θi)B′iLi − θiB′i
∑

j∈N\{i}
[(1− λjθj)Lij ]


=

θi(1− λi)(N − 1)B
′
−i −B′i

(1− θi)Li + θi
∑

j∈N\{i}
[(1− λjθj)Lij ]

 dX∗i
dλi

where second line uses the definition of B
′
−i and does some rearranging. It follows that

dS∗i /dλi < 0 for any λi if B′i/B
′
−i is suffi ciently large, such that the optimal commitment

λ∗i = 0 as claimed.

For part (b), observe that the expression for dS∗i /dλi from (9) is bounded above ac-

cording to

dS∗i
dλi

≤

θi(1− λi) ∑
j∈N\{i}

B′j − (1− θi)B′iLi

 dX∗i
dλi

≤

θi ∑
j∈N\{i}

B′j − (1− θi)B′iLi

 dX∗i
dλi

,

where the first inequality uses our assumption, λjθj ≤ 1 for all j 6= i, and the second

inequality our assumption that λi ≥ 0. It follows that, if θi is suffi ciently small, then

dS∗i /dλi < 0 for all λk ∈ [0, θ−1k ]n, and so i’s optimal commitment λ∗i = 0. So also, if θk is

suffi ciently small for all k, then optimal commitments λ∗k = 0, as claimed.
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Cross-country cost spillovers

Preliminaries. Let country k’s cost function Ck(Xi, Xj) depend on both countries’effort

levels. Country k’s national welfare Πk = Bk(Xi+Xj)−Ck(Xi, Xj), and global welfareW

as well as its true objective Sk and strategic objective Ωk are defined as in the benchmark

model above (k = i, j). The conditions B′′i < ∂2Ci/∂Xi∂Xj < 0 and ∂Ci/∂Xj < 0 ≤
∂2Ci/∂X

2
j are suffi cient for the model to remain well-behaved, and leakage rates to be

strictly positive (but less than 100%).

Country i’s first-order condition for its effort choice at Date 2 is given by

∂Ωi

∂Xi
=

(
B′i −

∂Ci
∂Xi

)
+ λiθi

(
B′j −

∂Cj
∂Xi

)
= 0. (10)

The leakage rates associated with increased effort by country j is thus

Lj ≡ [−R′i(Xj)] =

[
−(B′′i − ∂2Ci/∂Xi∂Xj)− λiθi(B′′j − ∂2Cj/∂Xj∂Xi)

−(B′′i − ∂2Ci/∂X2
i )− λiθi(B′′j − ∂2Cj/∂X2

i )

]
∈ (0, 1),

corresponding to Lemma 1. Using the same arguments as in the proof of Lemma 2,

sign(dX∗i /dλi) = sign(∂X∗i /∂λi), where

∂X∗i
∂λi

=
θi(B

′
j − ∂Cj/∂Xi)[

−(B′′i − ∂2Ci/∂X2
i )− λiθi(B′′j − ∂2Cj/∂X2

i )
] ,

so that dX∗i /dλi > 0 whenever θi > 0 (since ∂Ci/∂Xj < 0).

Results. In general, the equilibrium impact of a stronger commitment by country i on

its true objective can be written as

dS∗i
dλi

=

[(
dΠ∗i
dXi

+ θi
dΠ∗j
dXi

)
−
(
dΠ∗i
dXj

+ θi
dΠ∗j
dXj

)
Li

]
dX∗i
dλi

Note dΠ∗i /dXi = (B′i − ∂Ci/∂Xi), dΠ∗j/dXi = (B′j−∂Cj/∂Xi), dΠ∗i /dXj = (B′i − ∂Ci/∂Xj),

dΠ∗j/dXj = (B′j − ∂Cj/∂Xj), and use the two first-order conditions from (10) to obtain

dS∗i
dλi

=

[
θi(1− λi)

(
B′j −

∂Cj
∂Xi

)
− (1− λjθiθj)

(
B′i −

∂Ci
∂Xj

)
Li

]
dX∗i
dλi

, (11)

which is a generalization of Lemma 4 from the benchmark model.

(i) Welfare impact of a small commitment is ambiguous. Setting λi = λj = 0 in the

expression from (11), or using the envelope theorem, shows that

dS∗i
dλi

∣∣∣∣
λi=λj=0

=

[(
θi

(
B′j −

∂Cj
∂Xi

)
−
(
B′i −

∂Ci
∂Xj

)
Li

)
dX∗i
dλi

]
λi=λj=0

.

So, generalizing Proposition 1, dS∗i > 0 whenever (B′i − ∂Ci/∂Xj) ≤ (B′j − ∂Cj/∂Xi) and
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θi > Li, while dS∗i > 0 if the ratio (B′i − ∂Ci/∂Xj)/(B
′
j − ∂Cj/∂Xi) suffi ciently large, or

if θi suffi ciently small. By setting θi = 1, the impact on global welfare dW ∗ ≷ 0 according

as (B′j − ∂Cj/∂Xi) ≷ (B′i − ∂Ci/∂Xj)Li, thus also generalizing Proposition 2.

(ii) Full commitment is almost never optimal. Observe first that, since λjθj ≤ 1, by

assumption, the formula from (11) is bounded above according to

dS∗i
dλi
≤
[
θi(1− λi)

(
B′j −

∂Cj
∂Xi

)
− (1− θi)

(
B′i −

∂Ci
∂Xj

)
Li

]
dX∗i
dλi

.

It follows that λi > 1 cannot be optimal, so we can again restrict attention to λk ∈ [0, 1]

for k = i, j. Setting θi = θj = 1 in the expression from (11) shows that

dS∗i
dλi

∣∣∣∣
θi=θj=1

=
dW ∗

dλi
=

[
(1− λi)

(
B′j −

∂Cj
∂Xi

)
− (1− λj)

(
B′i −

∂Ci
∂Xj

)
Li

]
θi=θj=1

.

So if country j is playing λj = 1, then (dW ∗/dλi)|λj=1 ≥ 0 for all λi ∈ [0, 1], and so optimal

commitments λ∗i = λ∗j = 1, as in Proposition 3(a). By contrast, setting λi = 1 in (11)

shows that (dS∗i /dλi)|λi=1 < 0 whenever θi < 1 or θj < 1, and so optimal commitments

λ∗i < 1 and λ∗j < 1, as in Proposition 3(b).

(iii) Optimal commitments can be zero. Inspection of (11) shows that dS∗i /dλi < 0 for all

(λi, λj) ∈ [0, 1]2 if (a) θi < 1 or θj < 1 and (B′i − ∂Ci/∂Xj)/(B
′
j − ∂Cj/∂Xi) suffi ciently

large, so that the optimal commitment λ∗i = 0, or (b) θi and θj are both suffi ciently small,

so that optimal commitments λ∗i = λ∗j = 0. These results generalize parts (a) and (b),

respectively of Proposition 4.

Other altruistic objective functions

Preliminaries. As explained in the main text, write i’s true objective as Si = Πi + θ̃iΦi,

and its strategic objective as Ωi = (1−λ̃i)Πi+λ̃iSi, where θ̃i ∈ [0, 1] and also let λ̃i ∈ [0, 1].

To ensure the model remains well-behaved, we assume Φi(·) satisfies ∂Φi/∂Xi > 0 and

∂Φi/∂Xj ≥ 0 as well as [(B′′i − C ′′i ) + ∂2Φi/∂X
2
i ] < 0 and ∂2Φi/∂Xi∂Xj ≤ 0.

Player i’s first-order condition for her effort choice at Date 2 is given by

∂Ωi

∂Xi
=
(
B′i − C ′i

)
+ λ̃iθ̃i

∂Φi

∂Xi
= 0. (12)

The leakage rates associated with increased effort by j is thus

Lj ≡ [−R′i(Xj)] =

[
−B′′i − λ̃iθ̃i(∂2Φi/∂Xi∂Xj)

−(B′′i − C ′′i )− λ̃iθ̃i(∂2Φi/∂X2
i )

]
∈ (0, 1),

corresponding to Lemma 1. Using the same arguments as in the proof of Lemma 2,
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sign(dX∗i /dλ̃i) = sign(∂X∗i /∂λ̃i), where

∂X∗i
∂λ̃i

=
θ̃i(∂Φi/∂Xi)[

−(B′′i − C ′′i )− λ̃iθ̂i(∂2Φi/∂X2
i )
] ,

so that dX∗i /dλ̃i > 0 whenever θ̃i > 0 (since ∂Φi/∂Xi > 0).

Results. In general, the equilibrium impact of a stronger commitment by i on her true

objective can be written as

dS∗i
dλ̃i

=

[(
dΠ∗i
dXi

+ θ̃i
∂Φi

∂Xi

)
−
(
dΠ∗i
dXj

+ θ̃i
∂Φi

∂Xj

)
Li

]
dX∗i
dλ̃i

Noting that dΠ∗i /dXi = (B′i −C ′i) and dΠ∗i /dXj = B′i, and using the first-order condition

from (12) yields

dS∗i
dλ̃i

=

[
(1− λ̃i)θ̃i

∂Φi

∂Xi
−
(
B′i + θ̃i

∂Φi

∂Xj

)
Li

]
dX∗i
dλ̃i

, (13)

which corresponds to Lemma 4 from the benchmark model.

(i) Welfare impact of a small commitment is ambiguous. Setting λ̃i = λ̃j = 0 in the

expression from (13) shows that

dS∗i
dλ̃i

∣∣∣∣
λ̃i=λ̃j=0

=

[(
θ̃i
∂Φi

∂Xi
−
(
B′i + θ̃i

∂Φi

∂Xj

)
Li

)
dX∗i
dλ̃i

]
λ̃i=λ̃j=0

.

So dS∗i ≷ 0 according as θ̃i(∂Φi/∂Xi) ≷ [B′i+ θ̃i(∂Φi/∂Xj)]Li, with the ambiguous impact

corresponding to the result of Proposition 1 (even if θ̃i = 1). It is not diffi cult to check

that the conditions on global welfare dW ∗ ≷ 0 from Proposition 2 remain exactly the same

(given that the commitment is small).

(ii) Full commitment is never optimal. Setting λ̃i = 1 in the expression from (13) shows

that
dS∗i
dλ̃i

∣∣∣∣
λ̃i=1

= −
[(
B′i + θ̃i

∂Φi

∂Xj

)
Li
dX∗i
dλ̃i

]
λ̃i=1

< 0,

such that the optimal commitments satisfy λ̃
∗
k < 1, for k = i, j, thus providing a stronger

version of Proposition 3.

(iii) Optimal commitments can be zero. Inspection of (13) shows that dS∗i /dλ̃i ≤ 0 for all

(λ̃i, λ̃j) ∈ [0, 1]2 if θ̃i and Φi(·) are such that θ̃i(∂Φi/∂Xi) ≤ [B′i + θ̃i(∂Φi/∂Xj)Li]. Note

that a suffi cient condition is (∂Φi/∂Xi) ≤ B′i.
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