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Abstract

Innovations often spread by the communication of information among potential
adopters. In the marketing literature, the standard model of new product
diffusion is generated by information contagion: agents adopt once they hear
about the existence of the product from someone else. In social learning models,
by contrast, an agent adopts only when the perceived advantage of the
innovation -- as revealed by the actions and experience of prior adopters -
exceeds a threshold determined by the agent’s prior beliefs. We demonstrate
that learning with heterogeneous priors generates adoption curves that have an
analytically tractable, closed-form solution. Moreover there is a simple statistical
test that discriminates between this type of process and a contagion model.
Applied to Griliches’ classic results on the adoption of hybrid corn, this test
shows that learning with heterogeneous priors does a considerably better job of

explaining the data than does the contagion model.



1. Overview

The adoption of new technologies and practices frequently follows an S-curve: at
first a few innovators adopt, then others hear about the idea and they adopt, and
the process takes off -- first accelerating and later decelerating as the saturation
level is reached. In the marketing literature this phenomenon is usually
modeled as an information contagion process: people hear about the innovation
from prior adopters, and they adopt - possibly with a lag - once they have
heard about it. This is analogous to a model of disease transmission in which |
previously uninfected individuals become infected with some probability when
they interact with people who are already infected. The contagion model
generates S-shaped curves that have been fitted to a wide variety of data,

particularly the adoption of new products (Bass, 1969, 1980).

In the economics literature, by contrast, the standard explanation for adoption is
that individuals learn about an innovation either by directly observing its
outcomes for others, or by inferring positive outcomes given the fact that others
have adopted. Processes of this type are called social learning models." Although
there is a sizable literature on social learning -- both theoretical and empirical —
its implications for the shape of the adoption curve have not previously been

studied in any generality.

The purpose of this paper is to analyze adoption curves generated by social
learning when agents have heterogeneous priors, and to draw a contrast with the
curves generated by contagion models. Learning is a more complex process

than contagion, because it involves two separate effects: as more people adopt,

' Some authors restrict the term “social learning” to situations in which agents make indirect
inferences about the outcomes for other agents instead of observing the outcomes themselves.
Here we focus on the case where agents learn by directly observing the outcomes for other
agents or are told what the outcomes are.
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more information accumulates that helps persuade the remaining people to
adopt; in addition, however, the remaining people are inherently more
pessimistic and hence harder to persuade.” The main theoretical contribution of
the paper is to show that such a process can be modeled in a very general form
by a family of differential equations with closed-form solutions. We formulate a
simple nonparametric test that can differentiate between this class of curves and
those generated by contagion. In particular, if the agents’ prior beliefs are
unimodally distributed, the relative acceleration of the adoption process will be
nonlinear: rising in the early phases of adoption and declining in the later phases.
This is quite different from a contagion model, which predicts that the relative
acceleration decreases at a uniform rate throughout the process. In the second
part of the paper we apply this test to Griliches” adoption curves for hybrid corn
and show that they are more consistent with a learning than with a contagion
model. The aggregate nature of the data means that we cannot identify learning
as the cause of adoption. Nevertheless we can decisively reject the contagion
model and demonstrate that the curves have nonlinear properties that are

predicted by the learning model.’
2. Prior literature

The literature on innovation is very extensive, and includes work in economics
sociology, and marketing. Here we shall touch on the relationship between our
approach and the prior literature without attempting' to provide a

comprehensive view.’

* An epidemiological analog would be a disease such that the number of exposures must rise
above an individual’s exposure threshold before he can contract it. Most diseases have just the
opposite property: multiple exposures usually decrease the likelihood of getting sick because
immunity builds up.

* Of course we do not claim that learning from prior adopters is always the most appropriate
model; Valente (1993) discusses a number of cases where other factors, such as the mass media,
played a major role in the adoption dynamics.



In sociology there is a long tradition of studying the diffusion of innovations
through the interactions among agents.” In this literature it is common to assume
that each agent has an adoption threshold, that is, a minimum proportion of
adopters that will induce him to adopt also.’ Sociologists usually think of these
thresholds as reflecting differences in responsiveness to social pressure or a
desire to conform rather than as differences in beliefs, although they certainly
could arise for the latter reason. While it has been argued informally that
threshold heterogeneity could account for the S-shaped pattern of adoption
curves (see especially Valente, 1995, 1996), the analytical implications for the
shape of the adoption curve have not been worked out in any generality, as we
shall do here.

In the economics literature, some form of learning is usually assumed to be the
driving force behind adoption, but not necessarily with heterogeneity in beliefs
(several exceptions will be discussed below). Some authors posit that agents
know enough about the payoff structure of the situation to be able to make
sophisticated inferences about the innovation’s payoffs given that others have
already adopted, as in the herding literature.” Other authors assume some form
of boundedly rational learning in which people act on word-of-mouth
information about the payoffs to prior adopters or the relative popularity of
different choices among prior adopters.” In these models heterogeneity in beliefs
does not drive the adoption process; moreover the focus of analysis is on the
long-run stochastic dynamics and the conditions under which the long-run

outcome is efficient, rather than on the shape of the adoption curve per se.

* For reviews of the various literatures see Mahajan and Peterson, 1985; Geroski, 2002; and
Valente, 2005.

* The seminal paper is Ryan and Gross (1943). Rogers (2003) provides many empirical examples;
for a recent review of the literature see Valente (2005).

® See among others Granovetter, 1978; Granovetter and Soong, 1983, 1986, 1988; Macy, 1990, 1991;
Valente, 1995, 1996, 2005.

” See in particular Banerjee, 1992; Bikhchandani, Hirshleifer, and Welch, 1992; Smith and
Sorensen, 2000; Gale and Kariv, 2003; Banerjee and Fudenberg, 2004; Munshi, 2004. Strategic
issues are considered by Kapur, 1995.



There is, however, another branch of the economics literature in which
heterogeneity does play an important role. In these models, potential adopters
differ in some characteristic that establishes different thresholds at which they will
adopt. For example, they may differ in their degree of risk aversion, or their
pessimism about the prospects of the new technology, or (in the case of firms)
their size. As time runs on, some key parameter -- such as the cost of production
or amount of information -- changes and causes an increasing fraction of the

population to adopt.’

Within this literature Jensen (1982) is the closest to the present paper. He posits
that differences in beliefs are the source of heterogeneity, and then derives the
consequences for the shape of the adoption curve explicitly. Specifically, he
assumes that agents directly observe the realized payoffs of two competing
technologies, one of which is better on average than the other. An agent
irreversibly adopts one or the other technology as soon as his posterior estimate
of the payoff difference reaches a critical level, which is determined by his prior
belief. Assuming that the priors are uniformly distributed, Jensen shows that the
resulting adoption curve is, in expectation, either S-shaped or concave. The
principal difference between Jensen’s framework and ours is that we derive
results for any distribution of priors -- in fact for any distribution of adoption
thresholds, whether generated by priors or otherwise. We also formulate a
simple statistical test that can distinguish between this model and standard

contagion models.

® Kirman, 1993; Arthur, 1989; Ellison and Fudenberg, 1993, 1995; Bala and Goyal, 1998; Chatterjee
and Hu, 2002.

’ See David, 1975; Davies, 1979; Stoneman, 1981; Jensen, 1982, 1983; Balcer and Lippman, 1984.
There is also an empirical literature on social learning that has been largely concerned with the
problem of disentangling learning from other factors, such as spatial correlation of outcomes,
similarity among neighbors, and so forth (Besley and Case, 1994; Foster and Rosenzweig, 1995;
Conley and Udry, 2003; Munshi and Myaux, 2005). This approach requires micro-level data,
whereas ours uses macro-level data on the shape of the adoption curve.
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3. Contagion models

We begin by recalling the basic features of contagion models, after which we
shall contrast them with social learning models. Consider a group of n
individuals who are exposed to a new idea, technology, or practice beginning at
time t =0. Let p(t) denote the proportion of the group who have adopted the idea
by time t. Suppose that at time t = 0 a nonempty subgroup has heard about the
innovation through external sources, that is, p(0) > 0. In its simplest form, the
contagion model posits that in each period the probability that a given individual
adopts for the first time is proportional to the number who have already adopted

up to that time. In expectation this leads to a discrete-time process of form

p(t+1) —p(t) = ap(t)(1-p(t). (1)

where a € (0, 1). This process can be motivated as follows: in the (t + 1) period
each individual i who has not yet adopted meets someone at random. Assuming
uniform mixing in the population, the person he meets is a prior adopter with
probability p(t). This leads agent i to adopt in the current period with probability
o, that is, 1 - o is the degree of inertia in decision making. Since the current
proportion of non-adopters is 1 — p(t), the expected number of converts in the

(t + 1) " period is given by (1). The continuous-time analog is

p(t) =Ap®( - p(t), ()

where A € (0, 1] is the instantaneous conversion rate. The solution is the logistic

function



p()=1/[1+ce™], c=-1+1/p(0). 3)

We shall call this the simple contagion model. The resulting adoption curve is
decidedly S-shaped, with the particular feature that it is symmetric about p = .5

for all A, a fact that can be used to test its empirical plausibility.

A useful generalization is the following model due to Bass (1969, 1980). Suppose
that people hear about the innovation partly from internal sources and partly
from external sources (see also Lekvall and Wahlbin, 1973). Let A be the
instantaneous conversion rate when the information comes from other members
of the group, and let y be the instantaneous conversion rate when the information

comes from outside the group. We then obtain the differential equation

pt) =2 p(t)(1- p(t) + v(1-p(t)). 4
Assuming that A and y are both positive, the solution is
p(t) = [1-Bye® "/[1 + Bye™* 7], (5)
where p is a positive constant. If p(0) = 0, then B = 1/y and we obtain
p(H) = [1-e**"1/[1 + (Wy) €. ©)

This is known as the Bass model of product diffusion (Bass, 1969, 1980). Note that

when v =0 and A > 0, we obtain the simple contagion model of equation (3).



When A =0 and y > 0, the solution is the negative exponential distribution

p(t) =1-¢e™. (7)

This situation arises if the non-adopters hear about the innovation with fixed
probability y in each period. It also arises if everyone has already heard about the
innovation but they act with a probabilistic delay. Note, however, that this pure
inertian model generates an adoption curve that is concave throughout, not S-
shaped. This provides a straightforward test of the model’s plausibility when

empirical data on adoption rates is available.

4. Social learning with heterogeneous thresholds

The difficulty with the contagion model is the assumption that people adopt an
innovation simply because they have heard about its existence. A more plausible
hypothesis is that they weigh its benefits before adopting, where information
about benefits comes from the experience of prior adopters. In a social learning
model, a potential adopter looks at the innovation’s realized performance among
prior adopters, and combines this revealed payoff information with any prior
information he may have in order to reach a decision. Although this is similar in
spirit to other social learning models in economics, our approach differs in two
important respects from much of the literature (see the discussion in section 2
above). First, we assume that agents can (and typically do) have different prior
information, and hence require different thresholds of evidence before they
adopt. Second, we do not assume that agents know the distribution of prior
beliefs or have any other basis on which they can reasonably infer payoff
information from the decision of other agents to adopt. Instead, we shall assume

that agents can directly observe the realized payoffs of prior adopters.”

“ The theory discussed in sections 4-6 is developed more extensively in Young (2004).
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Specifically, we posit that each individual i has a critical value such that if the
observed payoffs of the innovation are high enough among enough other people,
then agent i will adopt also. Let h(c, m) be a real-valued function that is strictly
increasing in both o and m, where o is the number of people who have already
adopted and m is the mean payoff advantage of the innovation (relative to the
status quo) among the adopters. For analytical convenience we shall assume that
o can be any nonnegative real number (representing the “size” of the adopting

population).

For each agent i, assume that a real number 6, exists such that i is “ready to
adopt” if and only if h(a, m) 2 6, 6, is i’s critical value. We say “ready to adopt”
because we shall eventually want to build inertia into the process: an individual
who is ready to adopt may nevertheless fail to adopt immediately. Fix a

population size n and a payoff advantage m. For each agent i define

r(m, n) = inf {p € [0, 1]: h(pn, m) = 6,}

r(m, n) = e if there exists no such p. (8)

The number r(m, n) is i's resistance to adoption, also known as i’s adoption
threshold. It is the minimum proportion of the population such that i is ready to

adopt once that many other people have adopted.

Let us illustrate these ideas with a concrete example. Suppose that the
innovation in question has a random payoff X, to agent i, where X is normally
distributed N(m, ¢”). Assume that the status quo has zero payoff, hence m
represents the expected payoff advantage of the innovation, which we assume to be
positive. Individuals have heterogeneous prior beliefs about the value of m.

Suppose, in particular, that agent i thinks that m is normally distributed in the
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population with mean p and standard deviation 6, Here p’ may be positive or
negative: in the former case i is optimistic whereas in the latter case he is
pessimistic. Let us assume temporarily that there is no inertia: individuals adopt
as soon as their updated beliefs lead them to think that the innovation is at least
as good as the status quo. Thus, in the first period, only the optimists adopt. In
the second period, those who were slightly pessimistic to begin with see the
outcomes (which are positive in expectation) among the initial adopters, in

which case they too adopt.

In period t, let m, be the realized mean payoff among all those who have adopted
by period t, and let p(t) be the proportion who have adopted by t. Under suitable
assumptions on i’s beliefs about the variance of m, the posterior estimate of m is

a convex combination of the observed mean and the prior mean of form

nh t mtﬂi io 14 (9)
np(t) + 1,

where n is the number of people in the group and =, is a positive number that

[}

depends oni’s beliefs." As we would expect, agent i gives increasing weight to

the observed mean as the number of observations np(t) becomes large.

Assume that each agent is adopts in the first period t such that his posterior
estimate is nonnegative. Our interest is in the expected motion of the process,
hence we shall ignore variability in the realizations of m, and work with its

expectation m. Thus, in expectation, agent i adopts at time t + 1 if and only if

np(tm + tu’ 20. (10)
np(t) + 7,

' For example, (9) holds in a normal-normal updating framework (de Groot, 1970, Chapter 9).
We assume that multiple observations of the same individual do not convey additional
information to potential adopters, that is, the uncertainty lies in the distribution of payoffs
among individuals, not in their distribution among repeated trials by a given individual.
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In this case the function h takes the especially simple form h(c, m) = oun, where

o = p(t)n is the number of adopters at time t and i’s critical value is 6, = - 1, TR

Hence i’s resistance r, = r,(m, n) is

r,=0 if p’>0
r=-tu’/nm if 0< -t u’/nm<1 (11)
r = oo if -tp’/nm>1

In other words, i is ready to adopt if and only if either i is an optimist (i's
resistance is zero), or i is initially a pessimist but changes his mind once the

proportion of adopters is at least r, =-t,u’/nm.

Let us return now to the general situation. Fix the population size n and the
payoff advantage of the innovation m, which we assume to be positive. Denote
agent i’s resistance by r, = r(m, n). It follows from the definition of r, that i first

adopts at time t + 1 if and only if

pt-1) <5< p(b). (12)

Let F(r) be the cumulative distribution function of the resistance parameter r in

the population. We then obtain the discrete-time process

Vt>0, p(t+1)=Fp). (13)

We can easily extend the model by introducing an inertia parameter. Let F(r) be
the distribution function of r. At time t + 1, F(p(t)) — p(t) is the proportion of
individuals who are prepared to adopt (because their resistance has been

overcome), but they may not do so immediately out of inertia. These are the
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susceptible individuals at time t + 1. Suppose that each susceptible individual

adopts with probability o in the current time period. This leads to the discrete-

time process

p(t +1) = a[F(p(t)) - p(t)] + p(t). (14)

The continuous-time analog is a differential equation of form

p(t) = A [F(p(1) - p(t)]. (15)

where A > 0. Assume that F(0) > 0 and p(0) = 0. Let

b=min {r: F(r) < r}. (16)
Then (15) is a separable ODE with the solution

X

Vxe [0,b), t=p'(x)=1/A jo dr/(E(r) - ). (17)

We assume here that p(0) = 0, hence the constant of integration is zero. Note that
if F(r) is any c.d.f. satisfying F(r) > r everywhere on the interval [0, b), then (17)
can be integrated to obtain the function p”(x), which uniquely determines p(t)
provided that p™(x) is strictly increasing. The differential equation (15) and its
solution (17) will be called a heterogeneous resistance model with distribution function
F and inertia parameter 1/A. It applies to any process that is driven by
heterogeneous adoption thresholds, whether or not they arise from ex ante

differences in beliefs.

13



5. Examples

To illustrate, consider the normal-normal learning model and suppose that the
numbers 0, = -Tu,” are normally distributed. Then the resistances have a truncated
normal distribution with point masses at 0 and 1, corresponding to the optimists

and ultra-pessimists respectively. The adoption curve takes the form

Vxe [0,b), t= p'l(x) = 1/A jodr/(N((r -Ww/o)-r), (18)

where N is the cumulative standard normal distribution, p is the mean and ¢’
the variance. Figure 1 illustrates the case where p = .20 and ¢ = .10. The point
mass at r = 0 represents the optimists who propel the adoption process forward
initially; there is also a tiny point mass at r = 1 (not shown here) that represents
the individuals who are so pessimistic they will never adopt. The middle panel
shows the cumulative distribution function. The bottom panel shows the
adoption curve generated by this distribution when A = 1. (Notice that A
determines the time scale, but does not alter the shape of the trajectory, so there

is no real loss of generality in fixing its value.)

6. Structural characteristics of adoption curves generated by learning

We have seen how to derive the adoption curve from the distribution of
resistances and the degree of inertia. In practice, however, we often want to go
in the other direction and test whether a given adoption curve is consistent with
a given class of distribution functions and inertia levels. There is a

straightforward way to do so.
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Let p(t) be an empirically observed adoption curve over the time interval
0<t<T. For analytical convenience assume that p(t) is strictly increasing and
twice differentiable. If p(t) is generated by a social learning model, then it
satisfies equation (15) for some unknown cumulative distribution function F(r).

Differentiating (15) we obtain

vte [0, T], p(t) =2 [f(p(t)) pt) - pt)l. (19)

By assumption p(t) is strictly increasing, so p(t) > 0 and we obtain

vte [0, T], p(t)/p(t) = ME(p(t) - 11 (20)

Assume that p(0) = 0 and let b = sup {p(t): 0<t<T}. For every r in the interval
[0, b), let g(r) be the relative acceleration rate when r is the proportion of the

population that has already adopted, that is,

Vre [0,D), g(r) = p(t)/p(t) where p(t) =r. (21)

By assumption p(t) is strictly increasing, so t, is uniquely defined. Equations (20)
and (21) imply that the relative acceleration function g(r) is a positive linear
transformation of the unobserved density function f(r), that is, for all r in some

subinterval [0, b),

g(r) = Alf((r) -1]. (22)
Note that g(r) is an observable: it can be computed directly from the slope of the

adoption curve. Note also that g(r) does not depend on time as such; rather it is

the acceleration rate at the time when the adoption level is r. Equation (22)
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shows that g(-) can be used to estimate the density function generating the data.
We claim further that g(-) can be used to evaluate the likelihood of the
alternative, namely, the contagion (or Bass) model. To see why, recall from (4)

that the Bass model is defined by the differential equation

p(t) = A pt) +v)(1 - p(t). (23)

Taking logarithms of both sides and differentiating with respect to t, we obtain

g(r) = A—y-2Ar. (24)

This is a linear decreasing function of r. Hence we can reject the contagion model if

we can reject the linearity of the observed function g(r).”

If the data are generated by social learning with a normal distribution of critical
values 6, then g(r) will be nonlinear. In this case there are three possible shapes
for g(r), depending on where the neutral value 6 = 0 falls in the distribution.
Recall that, in general, the tails of a normal density are strictly convex, while the
part between the tails is strictly concave. (These properties also hold for a variety
of other unimodal distributions, including the lognormal, the t, and the Cauchy

distribution.) Thus we have the following;:

* A comparison of (22) and (24) reveals that the Bass model is a special case of a social learning
model in which the density of resistances is a straight line with negative slope. While
conceivable, this would be a most unusual distribution; in any event it is rejected outright for
the data on hybrid corn, as we shall show in section 7.
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1.If 8 = 0 lies in the right tail of the normal density, then g(r) is convex for all r.

2. If 6 = 0 lies between the two tails, then g(r) is concave for smaller values of r

and convex for larger values of r.

3. If 6 = 0 lies in the left tail, then g(r) is convex for smaller values of r, concave

for intermediate values of r, and convex for larger values of r.
7. The diffusion of hybrid corn

One of the most carefully documented examples of innovation diffusion is
Griliches’ study of hybrid corn (Griliches, 1957). Using extensive unpublished
data collected by the Field Crop Statistics Branch of the Agricultural Marketing
Service, he was able to show that regional differences in the rate of diffusion
were related to differénces in hybrid corn’s potential profitability relative to
traditional varieties. He also drew attention to the strongly S-shaped pattern of

diffusion in almost all of the regions he studied.

Griliches’ study is similar to ours in that he deduced certain qualitative features
of the individual learning process from the overall shape of the adoption curves:
in particular, he showed that in regions where the expected payoff from
adopting hybrid corn was high, the rate of adoption by individuals tended to be
high also. However, Griliches” approach differs from ours in several important
respects. First, he fitted logistic functions to the data, whereas we will use a
nonparametric estimation procedure.” Second, he did not provide a decision-
theoretic model of the individual adoption process, whereas we are able to

compare the implications of two alternative models -- learning with

* Subsequently Dixon (1980) re-analyzed Griliches’ data by fitting them to Gompertz functions
instead of logistic functions; he also used a longer data series. Although this produced a better
fit, the conclusion remained intact that the speed of adoption is positively correlated with the
expected payoff advantage of hybrid over traditional corn.
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heterogeneous thresholds and contagion. Of course, such an approach does not
identify learning as the driving force behind adoption; to go this far we would
need micro-level data on individual adoption behavior conditional on others’
behavior (controlling for common effects). Griliches’ data do not permit such an
analysis. Nevertheless, they are sufficient to distinguish statistically between

contagion and learning at the macro-level. *

Figure 2 shows the percentage of corn acreage planted in hybrid corn, by crop
reporting district, for a group of corn belt states in each year during the period
1933-1952. They were retrieved from Griliches’ papers in the Harvard University
Archives.” Unfortunately not all of the original data could be located, but we do
have results for seven of the twelve states in the corn belt: Ohio, Indiana,
Michigan, Illinois, Wisconsin, Iowa, and Kansas.” Each of these states contains

nine reporting districts, which yields 63 distinct adoption curves for the analysis.

Some qualitative differences among the states are worth noting. Kansas and
Michigan are distinguished by the fact that in several districts the rate of
acceleration was significantly slower and choppier than the norm. (In Michigan,
these were the districts in the northern part of the states and in Kansas they were
in the southwestern part of the state; in both cases these are the least desirable
areas for growing corn.) Ohio and Illinois present another interesting contract: In
Ohio the district curves rise rapidly and nearly in tandem, whereas in Illinois

they all rise rapidly but some lag behind others by as much as 4-5 years.

“ Moreover, we could not find any data sets that are more suitable for this purpose, because
statistical significance will require an adoption curve with a great many observations, or many
adoption curves running in parallel (as in Griliches’ case).

I am indebted to Diane Asseo Griliches for giving me access to her late husband’s papers.

* The “corn belt,” consists of the twelve states Ohio, Indiana, Michigan, Illinois, Wisconsin,
Minnesota, North Dakota, South Dakota, Iowa, Missouri, Kansas, and Nebraska (United States
Department of Agriculture, 1952).
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Overall, however, the great majority of the curves have the characteristic S-

shape, with a sharp acceleration in the early phases of adoption.

We now turn to the statistical estimations. Let x, be the percentage of hybrid
corn planted in state i in year t. The absolute rate of change from t to t + 1 is

givenby A, =x,,, — x,. Let

it+1

Yi= Ait/ A, if A, > 0,

(If A, = 0, y, is undefined; we do not include these points in the analysis.) Then
y. - 1 estimates the relative rate of acceleration at time t. The contagion model
implies that for each i, y, — 1 is a decreasing linear function x,, hence the same
holds for y,. The social learning model, by contrast, implies that y, — 1 (and

hence also y,) is a positive linear transformation of some unknown density f(x,).

To test the plausibility of the contagion model, we first pool the data from all
regions and estimate y as a quadratic function of x. Note that the quadratic term
is different from zero at an extremely high level of significance. Performing the
same analysis on each state separately we find that linearity is rejected at the 1%
level for five out of the seven states (see Table 3 in the Appendix). Overall, we

can therefore reject the contagion model with a high degree of confidence.

Table 1. Pooled data: OLS estimation of g(x) = ¢(1) + ¢(2)x + c(3)x".

Coefficient Std. Error t-Statistic
C(1) 2.413073 0.062948 38.33456

C(2) -0.048165 0.004232  -11.38173
C(3) 0.000313  4.89E-05  6.397485
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Next let us consider the social learning model. We begin by estimating the shape
of the acceleration function y = g(x) nonparametrically using the k nearest
neighbors method (Hirdle, 1990, Chapter 3). To control for outliers we use the
median value of the nearest k neighbors instead of the mean. The results for the
pooled data are shown in Figure 3. (We used k = 77, which is approximately a
10% span.)”

Figure 3. Relative acceleration rate g(x) as a function of adoption level x. Median

of 77 nearest neighbors (span = 10%). Pooled data.

The nonparametric fit supports our previous finding that g(x) is not a linear
function of x. Specifically, the curve is concave for low values of x: first it
increases, then it decreases at a decreasing rate. To check this pattern
parametrically, we divided the data into two disjoint subsamples: A, 0.5 < x 20
and B, 20 < x £90.” We then estimated a quadratic model separately on each
subsample by OLS after removing outliers.” The estimated quadratic coefficient

on subsample A is negative at the 1.1% level of significance, while on subsample

" Shorter spans produce rather choppy fits, whereas longer spans lose some of the resolution
needed to estimate the early part of the curve.

** Adoption levels of less than 0.5% were discarded because the estimation errors are very large.
Adoption levels above 90% were not included because this censors outcomes in regions that had
not reached full penetration by the end of the study period. Splitting the subsamples at 20% has
no particular significance; other values between 15% and 25% could have been used as well.

* Outliers were defined as points lying more than two standard deviations from the mean as
determined by a locally estimated model.
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B it is positive at the 3.7% level of significance (see Table 2). VThis lends further
support to the hypothesis that the curve is concave for low values of x and

convex for high values of x.
Table 2. Pooled data: quadratic estimation on two subsamples.

Subsample A: 0.5<x<20

Coefficient Std. Error  t-statistic 1-sided p-value

c(1) 2166858  0.136397  15.88636 1
c(2) 0.056931 0.041629  1.367586 0.9136
c(3) -0.005204  0.002247  -2.315373 0.01075

Subsample B: 20 < x<90

Coefficient  Std. Error t-Statistic  1-sided p-value
C(1) 1.778686 0.225581 7.884897 0
C(2) -0.02594 0.008685 -2.98668 0.9985
C(3) 0.000136 7.54E-05 1.798211 0.03655

A similar pattern emerges when the seven states are analyzed separately. Figure
4 shows the nonparametric curves estimated by the nearest neighbors method,
again using the median instead of the mean to control for outliers. (Here k = 11,
which represents a span of about 10%.) From the figure we see that five of the
seven states -- Ohio, Indiana, Illinois, Iowa, and Wisconsin -- exhibit an
increasing then decreasing pattern for low values of x. Indiana, Illinois, and
Wisconsin have a convex appearance for x > 20, while lowa appears to be almost
linear. Ohio peaks unusually early, and decreases very sharply thereafter.
Kansas and Michigan do not have a marked concave shape initially, and

decrease in more nearly linear fashion.

Next we test for concavity and convexity separately in each of the seven states.
Namely, for each state s let us choose a dividing point x* and test for concavity

below x* and for convexity above x*. (In the following we let x* = 20% in all
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states except Ohio, where x* = 10%. Even better results can be obtained by
tailoring the dividing points more finely on a state-by-state basis.) Table 4 in the
Appendix shows that below the dividing points the curves are concave -- the
estimated quadratic coefficients are negative - in six out of seven states. They are
significantly negative at the 5% level in two states (Illinois and Iowa), and at the
7% level or better in three states (Illinois, Iowa, and Ohio). Above the dividing
points the curves are convex -- the estimated quadratic coefficients are positive --
in six out of the seven states, and they are significantly positive at the 5% level or

better in three states (Kansas, Illinois, and Wisconsin).

Although not all of the values for individual states are statistically significant,
they are highly significant as a group.” To see why, let us compute the average
t-value of the quadratic coefficients on each of the subsamples: below the
dividing points the average t-value is -1.2004, while above the dividing points
the average t-value is 1.0347. For each of the state estimates the t-statistic has
over 30 degrees of freedom, hence they are very close to being normal with
mean 0 and variance 1. Assuming independent realizations, it follows that the
average t-values are very close to being normal with mean 0 and variance 1/7.
Hence the average t-value below the dividing points represents about 1.2004V7
= 3.176 standard deviations, which is significantly negative (in a one-sided
test) at the 1% level. Similarly, the average t-value above the dividing points is
about 1.0347V7 = 2.738 standard deviations, which is significantly positive at
the 1% level.

* In general, given n realizations of independent t-statistics, we cannot expect all of them to have
an equally high level of significance, but we can apply a test of significance to their average.
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Figure 4. Relative acceleration rate g(x) as a function of adoption level

x. Median of 11 nearest neighbors (span = 10%). State-level data.
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Overall, therefore, the state-level data are consistent with a social learning
model that is generated by unimodal distributions of resistances -- possibly
differing across states -- where the modal levels of resistance lie somewhere
between 0 and 20%. The state-level data are not consistent with the contagion

model, which is rejected at the 1% level in five of the seven states.

8. Social learning or social conformity?

The preceding analysis is predicated on a model of social learning with
heterogeneous beliefs. However, it could also describe an adoption process that
is driven by heterogeneity in other characteristics of the agents, such as a desire
to conform, or responsiveness to social pressure. As mentioned earlier, these
types of explanations are standard in the sociology literature (see among others
Ryan and Gross, 1943; Rogers, 1983; Granovetter, 1978; Granovetter and Soong,
1983, 1986, 1988; Macy, 1990, 1991; Valente, 1993, 1995, 1996). In the present case
the data allow us to distinguish between these explanations and social learning
based on realized payoffs. The reason is that, if the adoption dynamics were driven
purely by conformity, the payoff advantage from adopting hybrid corn should not matter
for the shape of the adoption curve. But Griliches’ analysis, as well as Dixon’s
subsequent re-analysis, shows that it does matter (Griliches, 1957; Dixon, 1980).
In particular, their analysis shows that the speed with which adoption occurs
within a given region increases with the expected gain in profitability from
adopting hybrid corn in that region. (This follows from their estimation of the

regional coefficients in the logistic and Gompertz functions respectively as a

function of regional profitability.) *

* Under the logistic function (3), the elapsed time t that the process takes to go from an adoption
level x to some higher level y is t = (1/A)In [(1/x - 1)/(1/y - 1)]. Griliches showed that A tends
to be higher in those regions where farmers could expect large gains in profitability by planting
hybrid corn instead of traditional open pollinated varieties. Subsequent studies of technology
adoption in agriculture have found, using micro-level data, that high realized payoffs in a
given farmer’s reference group increases his propensity to adopt (Foster and Rosenzweig, 1995;
Conley and Udry, 2003; Munshi, 2004).
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The same conclusion follows readily from our model with virtually no
assumptions about the parametric form of the distribution of beliefs. Suppose
that there is a common distribution of prior beliefs about the value of the mean
across regions, but that the actual mean differs among regions. Recall from (8)
that agent i’s resistance r,(m) is a function of i’s prior beliefs and the true mean m,
where by assumption r,(m) is strictly decreasing in m. (In the normal-normal case
r,(m) = (1/m)r,(1).) Consider two different regions, 1 and 2, with means m, < m,.
Let F(r) be the resulting distribution of resistances in region i, and assume that
both are strictly increasing in r. Then F, represents an upward shift relative to F,,
that is, F,(r) > F,(r) for all r. (In the normal-normal case, F,(r) = F ((m,/m,)r) >
F/(r).) Now consider any two realized levels of adoption x < y, and let T; (x, y) be

the time it takes in region i to go from x to y. From (17) it follows that

y
T,(x, y)=1/A der /(E (1) - 1). (25)

From the preceding discussion we know that the denominator of (25) is larger for
i =2 than for i =1 for all r € [x, y], hence T,(x, y) > T,(x, y). In other words, it
takes less time in expectation to go from adoption level x to a higher level y when
the payoff from the innovation is larger. This is effectively what Griliches (and
Dixon) showed: the rate of acceleration of the adoption curve is positively
correlated with the payoff advantage of the innovation. While we cannot rule
out the possibility that social pressure or conformity played some role, it seems
unlikely that they were the sole explanation for the S-shaped adoption pattern of
hybrid corn.
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lllinois

Indiana

lowa

Kansas

Michigan

Ohio

Wisconsin

Appendix

Table 3. OLS estimation of g(x) = c(1) + c(2)x + c(3)x’ by state.

c(1)
C(2)
c(3)

c(1)
C(2)
c@)

C(1)
C(2)
C(3)

c(1)
C(2)
C(3)

C(1)
C(2)
C(3)

C(1)
C(2)
C(3)

C(1)
c2)
c(3)

Coefficient
3.060617
-0.075797
0.000559

Coefficient
2.368583
-0.0494
0.000371

Coefficient
2.354163
-0.024892
0.0000191

Coefficient
1.973356
-0.032913
0.00017

Coefficient
1.973356
-0.032913
0.00017

Coefficient
2.185582
-0.045885
0.000349

Coefficient
2.429842
-0.033255
0.000128

Std. Error
0.188065
0.011472
0.000126

Std. Error
0.131639
0.009134
0.000108

Std. Error
0.15061
0.011515
0.000135

Std. Error
0.126018
0.0074
8.39E-05

Std. Error
0.126018
0.0074
8.39E-05

Std. Error
0.279818
0.013443
0.000143

Std. Error
0.15327
0.011388
0.000135

32

t-Statistic
16.27422
-6.606876
4.436975

t-Statistic
17.993
-5.408568
3.42806

t-Statistic
15.63088
-2.161701
0.141644

t-Statistic
15.65934
-4.447779
2.03239

t-Statistic
15.65934
-4,447779
2.03239

t-Statistic
7.810739
-3.413248
2.437297

t-Statistic
15.85332
-2.920241
0.948789

p-value
0
0
0
p-value
0
0
0.0009
p-value
0
0.0346
0.8878
p-value
0
0
0.0455
p-value
0
0
0.0455
p-value
0
0.0011
0.0177
p-value
0
0.0049
0.3465



Table 4. OLS estimation of g(x) = c(1) + c(2)x + c(3)x* on subsamples by state.
Subsample A is 0.5 < x < 20 and subsample B is 20 < x < 90 except for Ohio,
where they are 0.5 <x <10 and 10 < x <90 respectively.

lllinois

Indiana

lowa

Kansas

Michigan

Ohio

Wisconsin

C(1)
C(2)
c(3)

c(1)
c(2)
c(3)

c(1)
c(2)
C(3)

c(1)
c(2)
C(3)

C(1)
C(2)
C(3)

c(1)
C(2)
C(3)

c(1)
C(2)
c(3)

Subsample A
Coefficient Std. Error
1.455313 0.313819
0.328757 0.105272
-0.018954 0.006221
Coefficient  Std. Error
2.925513 0.387747
-0.008494 0.141299
-0.004124 0.009119
Coefficient Std. Error
1.939869 0.329981
0.172919 0.105004
-0.010328 0.005426
Coefficient Std. Error
1.921343 0.338986
-0.050417 0.093235
0.00224 0.005059
Coefficient Std. Error
1.791391 0.316375
0.044601 0.091428
-0.004147 0.004781
Coefficient  Std. Error
1.822649 0.570476
0.704467 0.355268
-0.063179 0.039799
Coefficient  Std. Error
2.072809 0.2758
0.069304 0.086023
-0.005302 0.004489

33

t-Statistic
4637436
3.122942
-3.0466

t-Statistic
7.544897
-0.060116
-0.452209

t-Statistic
5.878734
1.64678
-1.903544

t-Statistic
5.667905
-0.540754
0.442719

t-Statistic
5.662248
0.487828
-0.867481

t-Statistic
3.194959
1.982918
-1.587478

t-Statistic
7.515611
0.805642
-1.181058

p-value
0.99995
0.998
0.00245

p-value
1
0.4763
0.3276

p-value
1
0.945
0.0333

p-value
1
0.29565
0.67

p-value
1
0.68495
0.19715

p-value
0.99675
0.9663
0.06735

p-value
1
0.787
0.1229



lllinois

Indiana

lowa

Kansas

Michigan

Ohio

Wisconsin

c(1)
C(2)
C(3)

c(1)
C(2)
c(3)

C(1)
C(2)
C(3)

c(1)
C(2)
c(3)

c(1)
C(2)
c(3)

c(1)
C(2)
C(3)

c(1)
C(2)
c(3)

Subsample B

Coefficient
2.735526
-0.04563
0.000221

Coefficient
1.101416
0.012206

-0.000221

Coefficient
2.000526
-0.019999
0.0000322

Coefficient
2.756219
-0.078598
0.000623

Coefficient
1.633805
-0.0204
0.000067

Coefficient
1.403541
-0.013028
4.10E-05

Coefficient
2.064414
-0.040594
0.00031
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Std. Error
0.257174
0.009841
8.47E-05

Std. Error
0.661786
0.026206
0.000229

Std. Error
0.16623
0.00648

5.66E-05

Std. Error
0.722111
0.027938
0.000244

Std. Error
0.431821
0.016629
0.000146

Std. Error
0.342773
0.014735
0.000135

Std. Error
0.537286
0.020588
0.000181

t-Statistic
10.63687
-4.636492
2.605663

t-Statistic
1.664309
0.465777
-0.965295

t-Statistic
12.03468
-3.086379
0.568914

t-Statistic
3.816893
-2.813338
2.555345

t-Statistic
3.78352
-1.22679
0.459487

t-Statistic
4.094661
-0.884144
0.30375

t-Statistic
3.842297
-1.971739
1.715367

p-value
0
0.99995
0.00725

p-value
0.0529
0.32225
0.8292

p-value
0
0.9977
0.28705

p-value
0.00015
0.9967
0.0066

p-value
0.0002
0.8873
0.3239

p-value
0.0001
0.80935
0.38135

p-value
0.00015
0.9729
0.04625





