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I. Generative Explanation 

 

 The scientific enterprise is, first and foremost, explanatory.  While agent-based modeling 

can change the social sciences in a variety of ways, in my view its central contribution is to 

facilitate generative explanation [see Epstein (1999)].  To the generativist, explaining 

macroscopic social regularities, such as norms, spatial patterns, contagion dynamics, or 

institutions requires that one answer the following question: 

 

How could the autonomous local interactions of heterogeneous boundedly rational agents 

generate the given regularity?   

 

Accordingly, to explain macroscopic social patterns, we generate—or “grow”—them in 

agent models.  This represents a departure from prevailing practice.  It is fair to say that, 

overwhelmingly, game theory, mathematical economics, and rational choice political science are 

concerned with equilibria.  In these quarters, “explaining an observed social pattern” is 

essentially understood to mean “demonstrating that it is the Nash equilibrium (or a distinguished 

Nash equilibrium) of some game.” 

By contrast, to the generativist, it does not suffice to demonstrate that, if a society of 

rational (homo economicus) agents were placed in the pattern, no individual would unilaterally 

depart—the Nash equilibrium condition.  Rather, to explain a pattern, one must show how a 

population of cognitively plausible agents, interacting under plausible rules, could actually arrive 

at the pattern on time scales of interest.  The motto, in short, is [Epstein (1999)]:  If you didn’t 

grow it, you didn’t explain it.  Or, in the notation of first-order logic: 

 

[1]     )( ExGxx ¬⊃¬∀  

 

To explain a macroscopic regularity x is to furnish a suitable microspecification that suffices to 

generate it.1  The core request is hardly outlandish:  To explain a macro-x, please show how it 

could arise in a plausible society.  Demonstrate how a set of recognizable--heterogeneous, 

autonomous, boundedly rational, locally interacting--agents could actually get there in 
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reasonable time.  The agent-based computational model is a new, and especially powerful, 

instrument for constructing such demonstrations of generative sufficiency.   

 

II. Features of Agent-Based Models 

 

 As reviewed in Epstein and Axtell (1996) and Epstein (1999), key features of agent-based 

models typically include the following:2 

 

Heterogeneity 

 

Representative agent methods—common in macroeconomics—are not used in agent-

based models. Nor are agents aggregated into a few homogeneous pools.  Rather, every 

individual is explicitly represented.  And these individuals may differ from one another in 

myriad ways: by wealth, preferences, memories, decision rules, social network, locations, 

genetics, culture, and so forth, some or all of which may adapt or change endogenously over 

time.  

 

Autonomy 

 

There is no central, or “top down,” control over individual behavior in agent-based 

models.  Of course, there will generally be feedback between macrostructures and 

microstructures, as where newborn agents are conditioned by social norms or institutions that 

have taken shape endogenously through earlier agent interactions. In this sense, micro and macro 

will, in general, co-evolve. But as a matter of model specification, no central controllers (e.g., 

Walrasian auctioneers) or higher authorities are posited ab initio. 

 

Explicit Space 

 

Events typically transpire on an explicit space, which may be a landscape of renewable 

resources, as in Epstein and Axtell (1996), an n-dimensional lattice, a dynamic social network, or 
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any number of other structures.  The main desideratum is that the notion of “local” be well-

posed. 

 

Local Interactions 

 

Typically, agents interact with neighbors in this space (and perhaps with sites in their 

vicinity).  Uniform mixing (mass action kinetics) is generically not the rule.  Relatedly, many 

agent-based models, following Herbert Simon, also assume: 

 

Bounded Rationality 

 

There are two components of this: bounded information and bounded computing power. 

Agents have neither global information nor infinite computational capacity.  Although they are 

typically purposive, they are not global optimizers; they use simple rules based on local 

information. 

 

Non-equilibrium Dynamics 

 

Non-equilibrium dynamics are of central concern to agent modelers, as are large-scale 

transitions, “tipping phenomena,” and the emergence of macroscopic regularity from 

decentralized local interaction.  These are sharply distinguished from equilibrium existence 

theorems and comparative statics, as is discussed below.  

 

III.   Recent Expansion  

 

 The literature of agent-based models has grown to include a number of good collections 

(e.g., The Sackler Colloquium, Proceedings of the National Academy of Sciences, 2002), special 

issues of scholarly journals (Computational Economics 2001, The Journal of Economic 

Dynamics and Control, 2004), numerous individual articles in academic journals (such as 

Computational and Mathematical Organization Theory), the science journals (Nature, Science), 

and books [e.g., Epstein and Axtell (1996), Axelrod (1997), Cederman (1997)].  New journals 
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(e.g., The Journal of Artificial Societies and Social Simulation) are emerging, computational 

platforms are competing (e.g., Ascape, Repast, Swarm, Mason).  International societies for 

agent-based modeling are being formed.  Courses on agent-based modeling are being offered at 

major universities.  Conferences in the U.S., Europe, and Asia are frequent, and agent-based 

modeling is receiving considerable attention in the press.  The landscape is very different than it 

was a decade ago.    

 

IV. Epistemological Issues 

 

Einstein wrote that, “Science without epistemology is—in so far as it is thinkable at all—

primitive and muddled.” [Pais (1982)].  Given the rapid expansion of agent-based modeling, it is 

an appropriate juncture at which to sort out and address certain epistemological issues 

surrounding the approach.  In particular, and without claiming comprehensiveness, the following 

issues strike me as fundamentally important, and in need of clarification, both within the agent 

modeling community and among its detractors.   

 

(1) Generative sufficiency vs. explanatory necessity 

(2) Generative agent-based models vs. explicit mathematical models  

(3) Generative explanation vs. deductive explanation 

(4) Generative explanation vs. inductive explanation 

(5) Generality of agent models 

 

I will attempt to address these and a variety of related issues.  At several points, there will be a 

need to distinguish claims from their converses.  The first example of this follows.  

 

Generative Sufficiency 

 

The generativist motto [1] cited above was: 

 

[1]     )( ExGxx ¬⊃¬∀  
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If you didn’t grow it, you didn’t explain it. It is important to note that we reject the converse 

claim. Merely to generate is not necessarily to explain (at least not well). A microspecification 

might generate a macroscopic regularity of interest in a patently absurd—and hence non-

explanatory—way.  For instance, it might be that Artificial Anasazi [Axtell, et al. (2002)] arrive 

in the observed (true Anasazi) settlement pattern stumbling around backward and blindfolded.  

But one would not adopt that picture of individual behavior as explanatory.  In summary, 

generative sufficiency is a necessary, but not sufficient condition for explanation.   

Of course, in principle, there may be competing microspecifications with equal 

generative sufficiency, none of which can be ruled out so easily.  The mapping from the set of 

microspecifications to the macroscopic explanandum might be many-to-one.  In that case, further 

work is required to adjudicate among the competitors.  

For example, if the competing models differ in their rules of individual behavior, 

appropriate laboratory psychology experiments may be in order to determine the more plausible 

empirically.  In my own experience, given a macroscopic explanandum, it is challenging to 

devise any rules that suffice to generate it.  In principle, however, the search could be 

mechanized.  One would metrize the set of macroscopic patterns, so that the distance from a 

generated pattern to the target pattern (the pattern to be explained) could be computed.  The 

“fitter” a microspecification, the smaller the distance from its generated macrostructure to the 

empirical target.  Given this definition of fitness, one would then encode the space of permissible 

micro-rules and search it mechanically—with a genetic algorithm, for example (as in Crutchfield 

and Mitchell 1995).  

In any event, the first point is that the motto [1] is a criterion for explanatory candidacy. 

There may be multiple candidates and, as in any other science, selection among them will 

involve further considerations.3   

 

The Indictment: No Equations, Not Deductive, Not General   

 

Plato observed that the doctors would make the best murderers.  Likewise, in their heart 

of hearts, leading practitioners of any approach know themselves to be its most capable 

detractors.  I think it is healthy for experienced proponents of any approach to explicitly 

formulate its most damaging critique and, if possible, address it.  In that spirit, it seems to me 
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that among skeptics toward agent modeling, the central indictment is tripartite:  First, that in 

contrast to mathematical “hard” science, there are no equations for agent-based models.  Second, 

that agent models are not deductive;4 and third, that they are ad hoc, not general.  I will argue 

that the first two claims are false and that, at this stage in the field’s development, the third is 

unimportant. 

 

Equations Exist   

 

The oft-claimed distinction between computational agent models, and equation-based 

models is illusory.  Every agent model is, after all, a computer program (typically coded in a 

structured or object-oriented programming language).  As such, each is clearly Turing 

computable (computable by a Turing machine).  But, for every Turing Machine, there is a unique 

corresponding and equivalent partial recursive function [see Hodel (1995)]. 

This is precisely the function class constructible from the zero function, the successor 

function, and the “pick out” or projection function (the three so-called initial functions) by finite 

applications of composition (substitution), bounded minimization, and--the really distinctive 

manipulation--primitive recursion.  This, as the defining formula below suggests, can be thought 

of as a kind of generalized induction. 

 

<Figure 1.> 

 

[See Hamilton (1988), Boolos and Jeffrey (1974), Epstein and Carnielli (1989), or Hodel (1995) 

for a technical definition of this class of functions.]  So, in principle, one could cast any agent-

based computational model as an explicit set of mathematical formulas (recursive functions).  In 

practice, these formulas might be extremely complex and difficult to interpret.  But, speaking 

technically, they surely exist.  Indeed, one might have called the approach “recursive social 

science,” “effectively computable social science,” “constructive social science,” or any number 

of other equivalent things.  The use of “generative” was inspired by Chomsky’s usage [Chomsky 

(1965)].  In any case, the issue is not whether equivalent equations exist, but which 

representation (equations or programs) is most illuminating.   
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To all but the most adept practitioners, the recursive function representation would be 

quite unrecognizable as a model of social interaction, while the equivalent agent model is 

immediately intelligible as such.  However, at the dawn of the calculus, the same would 

doubtless have been true of differential equations.  It is worth noting that recursive function 

theory is still very young, having developed only in the 1930s.  And, it is virtually unknown in 

the social sciences.  It is the mathematical formalism directly isomorphic [see Jeffrey (1991)] to 

computer programs, and over time, we may come to feel as comfortable with it as we now do 

with differential equations.  Moreover, it is worth noting that various agent-based models have, 

in fact, been revealingly mathematized using other, more familiar, techniques.  [See Dorofeenko 

and Shorish (2003), Pollicott and Weiss (2001), Young (1998).] 

In sum, the first element of the indictment, that agent models are “just simulations” for 

which no equations exist, is simply false.  Moreover, even if equivalent equations are not in 

hand, computational agent models have the advantage that they can be run thousands of times to 

produce large quantities of clean data.  These can then be analyzed to produce a robust statistical 

portrait of model performance over the parameter ranges (and rule variations) of interest.  

This critique, moreover, betrays a certain naiveté about contemporary equation-based 

modeling in many areas of applied science, such as climate modeling.  The mathematical models 

of interest are huge systems of nonlinear reaction diffusion equations.  In practice, they are not 

solved analytically, but are approximated computationally.  So, the opposition of analytically 

soluble mathematical models on the one hand, and computational models on the other, while 

conceptually enticing, is quite artificial in practice.  

 

Agent Models Deduce  

 

Another misconception is that the explicit equation-based approach is deductive, whereas 

the agent-based computational approach is not.  This, too, is incorrect.  Every realization of an 

agent model is a strict deduction.  There are a number of ways to establish this.  Perhaps the 

most direct is to note that it follows from the previous point. 

Every program can be expressed in recursive functions.  But recursive functions are 

computed deterministically from initial values.  They are mechanically (effectively) 

computable—in principle by hand with pencil and paper.  Given the nth (including the initial) 
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state of the system, the (n+1)st state is computable in a strictly mechanical and deterministic way 

by recursion.  Since this mechanical procedure is obviously deductive, so is each realization of 

an agent model.  

A more sweeping equivalence can be established, in fact.  It can be shown that Turing 

machines, recursive functions, and first-order logic itself (the system of deduction par 

excellence) are all strictly intertranslatable [see Hodel (1995)]. So, in a rigorous sense, every 

state generated in an agent model is literally a theorem.  Since, accepting our motto, to explain is 

to generate (but not conversely), and to generate a state is to deduce it as a theorem, we are led to 

assert that to explain a pattern is to show it to be theorematic. 

A third, slightly less rigorous way to think of it is this.  Every agent program begins in 

some configuration x—a set of initial (agent) states analogous to axioms--and then repeatedly 

updates by rules of the form; if x then y.  But, {x, x ⊃ y} is just modus ponens, so the model as a 

whole is ultimately one massive inference in a Hilbert-type deductive system.  To “grow” a 

pattern p (and to explain a pattern p) is thus to show that it is one of these terminal y’s—in effect, 

that it is theorematic, very much as in the classic hypothetico-deductive picture of scientific 

explanation. 

 

What About Randomness? 

 

If every run is a strict deduction, what about stochasticity, a common feature of many 

agent models?  Stochastic realizations are also strict deductions.  In a computer, random numbers 

are in fact produced by strictly deterministic pseudo-random number generators.  For example, 

the famous linear congruential method [Knuth (1998)] to generate a series of pseudo-random 

numbers is as follows: 

Define: m, the modulus (m>0); a, the multiplier (0≤a≤m); c, the increment (0≤c≤m), and 

x(0), the seed, or staring value (0≤x(0)≤m).  Then, the (recursion) scheme for generating the 

pseudo-random sequence is, for n≥0: 

 

< Figure 2.> 
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This determinism is why, when we save the seed and re-run the program, we get exactly the 

same run again.5 

 

What Types of Propositions are Deduced? 

 

In principle, the only objects we ever technically deduce are propositions.  When we 

deduce the Fundamental Theorem of Calculus, we deduce the proposition:  “The definite integral 

of a continuous real-valued function on an interval is equal to the difference of an anti-

derivative’s values at the interval’s endpoints.”  The result is normally expressed in mathematical 

notation, but, in principle, it is a proposition statable in English.6  In turn, we explain an 

empirical regularity when that regularity is rendered as a proposition and that proposition is 

deduced from premises we accept.  For example, we explain Galileo’s leaning Tower of Pisa 

observation (i.e., that objects of unequal masses dropped from the same height land 

simultaneously) by strictly deducing, from Newton’s Second Law and the Law of Universal 

Gravitation, the following proposition:  “The acceleration of a freely falling body near the 

surface of the earth is independent of its mass.”  

Well, if agent models explain by generating, and thus deducing, and if, as I have just 

argued, the only deducible objects are propositions, the question arises:  what sorts of 

propositions are deduced when agent models explain?  In many important cases, the answer is:  a 

normal form. 

 

Social Science as the Satisfaction of Normal Forms 

 

We explain a pattern when the pattern is expressed as a proposition and the proposition is 

deduced from premises we accept.  Seen in this light, many of the macroscopic patterns we, as 

social scientists, are trying to explain are expressible as large disjunctive normal forms, DNFs.  

In general a DNF, δ  has the logical form below  

 

φδ
ij

m

j

n

i
∧∨
==

=
11
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where φ ij
 is a statement form [see Hamilton (1988)].  Clearly, this discussion applies to 

arbitrarily large, but finite, populations.  

 

Example 1. Distributions 

 

Suppose, then, that we are trying to explain a skewed wealth distribution observed in 

some finite population of agents.  For simplicity’s sake, imagine three agents: A, B, and C.  And 

suppose we observe that 6 indivisible wealth units (the country’s GNP) are distributed as 3:2:1.  

That is the empirical target; and our model will be deemed a success if it grows that distribution, 

regardless of who has what.  What that means is that the successful model will generate any one 

of the six conjunctions in the following DNF, shown in braces (where A3 means “Agent A has 3 

units,” and so forth): 

 

{ 

(A1∧  B2∧C3) ∨   

(A1∧  B3∧  C2)∨   

(A2∧  B1∧  C3)∨   

(A2∧  B3∧  C1)∨   

(A3∧  B1∧C2) ∨   

(A3∧  B2∧  C1) 

} 

 

The model succeeds if it grows any one of these conjuncts, that is, a conjunction whose truth 

makes the DNF true.   

 

Example 2.  Spatial Patterns 

 

Likewise, suppose we are trying to model segregation in a population composed of two 

white and two black agents (W1, W2, B1, B2) arranged on a line with four positions: 1,2,3,4.  

The model works if it generates two contiguous agents of the same color, followed by two 

contiguous agents of the other color.  As above, we don’t care who is where so long as we get 
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segregation on the line.  The truth of any of the eight conjunctions of the following DNF will 

therefore suffice (here W12 denotes the proposition: “white agent 1 occupies position 2”): 

 

{ 

(W11∧W22∧B13∧B24) ∨  

(W11∧W22∧B23∧B14) ∨  

(W21∧W12∧B13∧B24) ∨  

(W21∧W12∧B23∧B14) ∨  

(B11∧  B22∧W13∧W24)∨  

(B11∧  B22∧W23∧W14)∨  

(B21∧  B12∧W13∧W24)∨  

(B21∧  B12∧W23∧W14) 

}. 

 

Again, success in generating “segregation” consists in generating any one of these 

conjunctions.  That suffices to make the DNF true.  While this exposition has been couched in 

terms of wealth distributions and distributions of spatial position, it obviously generalizes to 

distributions of myriad sorts (e.g., size and power), and with straightforward modification, to 

sequences of patterns over time.  A dynamic sequence of patterns would, in fact, be a 

Conjunctive Normal Form (CNF), each term of which is a DNF of the sort just discussed.7 

 

Generative Implies Deductive, But Not Conversely: Nonconstructive Existence 

 

A generative explanation is a deductive one.  Generative implies deductive.  The 

converse, however, does not apply.  It is possible to deduce without generating.  Not all 

deductive argument has the constructive character of agent-based modeling.  Nonconstructive 

existence proofs are clear examples.  Often, these take the form of reductio ad absurdum8 

arguments, which work as follows.  

Suppose we wish to prove the existence of an x with some property (e.g., that it is an 

equilibrium).  We take as an axiom the so-called Law of the Excluded Middle (LEM), that either 

x exists or x does not exist.  Symbolically: 
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xx ¬∃∨∃  

 

One of those must be true.  Next, we assume that x does not exist and derive a contradiction.  

That is, we show that 

 

][ ppx ¬∧⊃¬∃  

 

Since contradictions are always False, this has the form: 

 

Fx ⊃¬∃  

 

But this implication can be True only if the antecedent, x¬∃ , is False.  From this it follows from 

the LEM that x∃  is True and voila: the x in question must exist!  

But we have failed to exhibit x, or specify any algorithm that would generate it, patently 

violating our generative motto [1].  We have failed to show that x is generable at all, much less 

that it is generable on time scales of interest.  But, the existence argument is nonetheless 

deductive.   

Now, there are deductive and nonconstructive existence proofs that do not use reductio 

ad absurdum.  One of my favorites is the beautiful and startling index theoretic proof that, in 

regular economies, the number of equilibria must be an odd integer [see Mas-Colell (2001), 

Epstein (1997)].  This proof gives no clue how to compute the equilibria.  Like reductio, it fails 

to show the equilibria to be generable at all, much less on time scales of interest.  But, the 

existence argument is nonetheless deductive.   

Hence, if we insist that explanation requires generability, we are led to the position that 

deductive arguments can be non-explanatory.  Generative explanation is deductive, but 

deduction is not necessarily explanatory.   

We have addressed the first two points of the indictment: that there are no equations, and 

that agent modeling is not deductive.  The third issue was the generality of agent models.  I 

would like to approach this topic by a seemingly circuitous route, extending the preceding points 

on existence and generability into the areas of incompleteness and computational complexity.  
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Incompleteness (Attainability at All) and Complexity (Attainability on Times Scales of Interest) 

in Social Science 

 

As background, in mathematical logic, there is a fundamental distinction between a 

statement’s being true and its being provable.  I believe that in mathematical social science there 

is an analogous and equally fundamental distinction between a state of the system (e.g., a 

strategy distribution) being an equilibrium and its being attainable (generable).  I would like to 

discuss, therefore, the parallel between the following two questions:  (1) Is every true statement 

provable? and (2) Is every equilibrium state attainable?   

In general, we are interested in the distinction between satisfaction of some criterion (like 

being true, or being an equilibrium) and generability (like being provable through repeated 

application of inference rules, or being attainable through repeated application of agent 

behavioral rules).   

Now, mathematico-logical systems in which every truth is provable are called complete.9  

The great mathematician David Hilbert, and most mathematicians at the turn of the Twentieth 

Century, had assumed that all mathematical systems of interest were complete, that all truths 

statable in those systems were also provable in them (i.e., were deducible from the system’s 

axioms via the system’s inference rules).  A major objective of the so-called Hilbert Programme 

for mathematics was to prove precisely this.  It came as a tremendous shock when, in 1931, Kurt 

Godel proved precisely the opposite: all sufficiently rich10 mathematical systems are incomplete. 

In all such systems, there are true statements that are unprovable!  Indeed, he showed that there 

were true statements that were neither provable nor refutable in the relevant systems—they were 

undecidable.11  [See Godel (1931), Smullyan (1992), Hamilton (1988)]. 

Now, truth is a special criterion that a logical formula may satisfy.  For example, given an 

arbitrary formula of the sentential calculus, its truth (i.e., its tautologicity) can be evaluated 

mechanically, using truth tables. Provability, by contrast, is a special type of generability.  A 

formula is provable if, beginning with a distinguished set of “starting statements” called axioms, 

it can be ground out—attained, if you will--by repeated application of the system’s rule(s) of 

inference.   
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Equilibrium (Nash equilibrium, for example) is strictly analogous to truth: it too is a 

criterion that a state (a strategy distribution) may satisfy.  And the Nash “equilibriumness” of a 

strategy configuration (just like the truth of a sentential calculus formula) can be checked 

mechanically.   

I venture to say that most contemporary social scientists—analogous to the Hilbertians of 

the 1920s—assume that if a social configuration is a Nash equilibrium, then it must also be 

attainable.  In short, the implicit assumption in contemporary social science is that these systems 

are complete.    

However, we are finding that this is not the case.  Epstein and Hammond (2002) offer a 

simple agent-based game almost all of whose equilibria are unattainable outright.  More 

mathematically sophisticated examples of incompleteness include Prasad’s result, based on the 

unsolvability of Hilbert’s 10th Problem: 

 

For n-player games with polynomial utility functions and natural 

number strategy sets the problem of finding an equilibrium is not 

computable.  There does not exist an algorithm which will decide, 

for any such game, whether it has an equilibrium or not…When the 

class of games is specified by a finite set of players, whose choice 

sets are natural numbers, and payoffs are given by polynomial 

functions, the problem of devising a procedure which computes 

Nash equilibria is unsolvable. Prasad (1997)  

 

Other examples of uncomputable (existent) equilibria include Young and Foster (2001), Lewis 

(1985, 1992a, 1992b), and Nachbar (1997).  Some equilibria are unattainable outright. 

A separate issue in principle, but one of great practical significance, is whether attainable 

equilibria can be attained on time scales of interest to humans.  Here, too, we are finding models 

in which the waiting time to (attainable) equilibria scales exponentially in some core variable.  In 

the agent-based model of economic classes of Axtell, Epstein and Young (2001), we find that the 

waiting time to equilibrium is exponential in both the number of agents and the memory length 

per agent, and is astronomical when the first exceeds 100 and the latter 10.  Likewise, the 
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number of time steps (rounds of play) required to reach the attainable equilibria of the Epstein 

and Hammond (2002) model was shown to grow exponentially in the number of agents.   

One wonders how the core concerns and history of economics would have developed if, 

instead of being inspired by continuum physics and the work of Lagrange and Hamilton [see 

Mirowski (1989)]—blissfully unconcerned as it is with effective computability—it had been 

founded on Turing.  Finitistic issues of computability, learnability, attainment of equilibrium 

(rather than mere existence), problem complexity, and undecidability, would then have been 

central from the start.  Their foundational importance is only now being recognized.  As Duncan 

Foley summarizes,  

 

The theory of computability and computational complexity suggest 

that there are two inherent limitations to the rational choice 

paradigm. One limitation stems from the possibility that the 

agent’s problem is in fact undecidable, so that no computational 

procedure exists which for all inputs will give her the needed 

answer in finite time. A second limitation is posed by 

computational complexity in that even if her problem is decidable, 

the computational cost of solving it may in many situations be so 

large as to overwhelm any possible gains from the optimal choice 

of action. [See Albin (1998).]   

 

For fundamental statements, see Simon (1982, 1987), Hahn (1991), and Arrow (1987).  Of 

course, beyond these formal limits on canonical rationality, there is the body of evidence from 

psychology and laboratory behavioral economics that homo sapiens just doesn’t behave (in his 

decision-making) like homo economicus.   

Now, the mere fact that an idealization (e.g., homo economicus) is not accurate in detail 

is not grounds for its dismissal.  To say that a theory should be dismissed because it is “wrong” is 

vulgar.  Theories are idealizations.  There are no frictionless planes, ideal gases, or point masses. 

But these are useful idealizations in physics.  However, in social science, it is appropriate to ask 

whether the idealization of individual rationality in fact illuminates more than it obscures.  By 

empirical lights, that is quite clearly in doubt.  



 

 16

This brings us to the issue of generality.  The entire rational choice project, if you will, is 

challenged by (1) incompleteness and outright uncomputability, by (2) computational complexity 

(even of computable equilibria), and by (3) powerful psychological evidence of framing effects 

and myriad other systematic human departures from canonical rationality.  Yet, the social 

science theory that enjoys the greatest formal generality12 (and mathematical elegance) is 

precisely the rational choice theory.  

 

Generality is Quantification Over Sets 

 

Now, generality has to do with quantification.  Universal gravitation says that for any two 

masses whatsoever, the attractive gravitational force is inversely proportional to the square of the 

separation distance.  Mechanics quantifies over the set of all masses.  Axiomatic general 

equilibrium theory quantifies over the set of all consumers in the economy, positing constrained 

utility maximization for every agent in the system.  Rational choice theory likewise posits 

expected utility maximization for all actors. 

Clearly, agent modelers do not quantify over sets this big.  There is a great deal of 

experimentation with tags, imitation, evolution, learning, bounded rationality, and zero-

intelligence traders, for example.  In many cases, however, the experiment is motivated by 

responsiveness to data.  Empirically successful (generatively sufficient) behavioral rules for the 

Artificial Anasazi of 900 A.D. probably should not look much like the agent rules in the Axtell-

Epstein (1999) model of U.S retirement norms, which in turn may have little relation to the rules 

governing agents in Axtell’s (1999) model of firms, or the Epstein, et al. (2004) model of 

smallpox response, or the zero-intelligence traders of Farmer, et al. (1993).  Yet, despite their 

diversity, these models are impressive empirically.  If reasonable fidelity to data requires us to be 

ad hoc (i.e., to quantify over smaller sets), with different rules for different settings, then that is 

the price of empirical progress.  

 

Truth and Beauty 

 

All of this said, the real reason some mathematical social scientists don’t like 

computational agent-based modeling is not that the approach is empirically weak (in notable 



 

 17

areas, it’s empirically stronger than the neoclassical approach).  It’s that it isn’t beautiful.  When 

theorists, such as Frank Hahn, lament the demise of “pure theory” in favor of computer 

simulation (Hahn 1991), they are grieving the loss of mathematical beauty.  I would argue that 

reports of its death are premature. Let us face this aesthetic issue squarely.    

On the topic of mathematical beauty, none have written more eloquently than Bertrand 

Russell (1957): 

 

Mathematics, rightly viewed, possesses not only truth, but supreme 

beauty—a beauty cold and austere, like that of sculpture, without 

appeal to any part of our weaker nature, without the gorgeous 

trappings of painting or music, yet sublimely pure, and capable of a 

stern perfection such as only the greatest art can show. 

 

Later, in the same essay, Russell writes: 

 

In the most beautiful work, a chain of argument is presented in which 

every link is important on its own account, in which there is an air of 

ease and lucidity throughout, and the premises achieve more than 

would have been thought possible, by means which appear natural 

and inevitable.  (emphasis added) 

 

Hahn (1991) defines “pure theory” as “the activity of deducing implications from a small number 

of fundamental axioms.”  And when he writes that “with surprising frequency this leads to 

beauty (Arrow’s Theorem, The Core, etc.),” it is clear that it is Russell’s beauty he has in mind.  

Generality (mathematical unification) for its own sake satisfies this fine impulse to 

beauty and has proven to be highly productive scientifically.  Physics is highly general, and so is 

mathematical equilibrium theory.  And, as Mirowski (1998) has documented, “physics envy” 

was quite explicitly central to its development.  This is entirely understandable.  Any scientist 

who doesn’t have physics envy is an idiot.  I am not advocating that we abandon the quest for 

elegant generality in favor of a case by case narrative (i.e., purely historical) approach.  By 

comparison to a beautiful (Newton-like) generalization, actual history is just this particular apple 
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bobbling down this particular hill.  To me, the mathematical theory of evolution is more 

beautiful than any particular tiger.  One of the most miraculous results of our own evolution is 

that our search for beauty can lead to truth.  But there are different kinds of beauty.  An analogy 

to music history may be apposite.  

Just as the German classical composers had the dominant 7th and circle of fifths as 

harmonic propulsion, so the neoclassical economists have utility maximization to propel their 

analyses.  And it is a style of “composition” subscribed to by an entire school of academic 

thought.  We agent modelers are not of this school.  We don’t have the Germanic dominant 7th of 

utility maximization to propel every analysis forward—more like the French impressionists, we 

must in each case be inventive to solve the problem of social motion, devising unique agent rules 

model by model.  If that makes us ad hoc, then so was Debussy, and we are in good artistic 

company.  

Schelling’s (1971) segregation model is important not because it’s right in all details 

(which it doesn’t purport to be), and it’s beautiful not because it’s visually appealing (which it 

happens to be).  It’s important because—even though highly idealized—it offers a powerful and 

counter-intuitive insight.  And it’s beautiful because it does so with startling Russellian 

parsimony.  The mathematics of chaos is beautiful not because of all the pretty fractal pictures it 

generates, useful as these are in stimulating popular interest.  What’s beautiful in Russell’s sense 

is the startlingly compact yet sweepingly general Li-Yorke (1975) theorem that “period three 

implies chaos.”  And when an agent-based model is beautiful in this deep sense, it has nothing to 

do with the phantasmagorical “eye candy”--Russell’s gorgeous trappings--of animated dot 

worlds.  Rather, its beauty resides in the far-reaching generative power of its simple micro-rules, 

seemingly remote from the elaborate macro patterns they produce.  Precisely as Russell would 

have it:  “the premises achieve more than would have been thought possible, by means which 

appear natural and inevitable.”  

The musical parallels are again irresistible.  To be sure, Bach’s final work, The Art of the 

Fugue, is gorgeous music, but to Bach, the game was to explore the generative power of a single 

fugue theme.  Bach wrote nineteen stunningly diverse fugues based on this single theme, this 

“premise,” if you will.13  In Bach’s hands, it certainly “achieves more than would have been 

thought possible.”  While its musical beauty is clear, the intellectual beauty lies not in the sound, 
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but in its silent unified structure.  Perhaps the best agent models unfold as “social fugues” in 

which the apparent complexity is in fact generated by a few simple individual rules. 

In any case, and whatever one’s aesthetic leanings, agent modelers are in good scientific 

company trading away a certain degree of generality for fidelity to data.  The issue of induction 

arises in this connection.  

 

Induction Over Theorem Distributions 

 

As noted earlier, one powerful mode of agent-based modeling is to run large numbers of 

stochastic realizations (each with its own random seed), collect clean data, and build up a robust 

statistical portrait of model output.  One goal of such exercises is to understand one’s model 

when closed form analytical expressions are not in hand (though these exist in principle, as 

discussed).  A second aim of such exercises is to explain observed statistical regularities, such as 

the distribution of firm sizes in the U.S. economy [Axtell (1999, 2001)].  In either case, one 

builds up a large sample of model realizations.  But, as emphasized earlier, each realization is a 

strict deduction.  So, while I have no objection to calling such activity inductive, it is induction 

over a sample distribution of theorems, in fact.  And it has quite a different flavor from 

“inductive” survey research, where one collects real-world data and estimates it by techniques of 

aggregate regression.  

 

V. Summary  

 

A number of uses of agent-based models have not been touched on here.  These include 

purely exploratory applications and those related to mechanism design, among others [see 

Epstein (1999)].  My focus has been on computational agent models as instruments in the 

generative explanation of macroscopic social structures.  In that connection, the main 

epistemological points treated are as follows:  

 

[1] We distinguish the generative motto from its converse.  The position is: 

 

)( ExGxx ¬⊃¬∀  
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If you didn’t grow it, you didn’t explain it.  But not conversely.  A microspecification that 

generates the explanandum is a candidate explanation.  Generative sufficiency is explanatorily 

necessary, but not explanatorily sufficient.  There may be more than one explanatory candidate, 

as in any science where theories compete.  

 

[2] For every agent model, there exist unique equivalent equations.  One can express any Turing 

Machine (and hence any agent model) in partial recursive functions.  Many agent models have 

been revealingly mathematized in other ways, as stochastic dynamical systems, for example. 

 

[3] Every realization of an agent model is a strict deduction.  So, )( DxGx ⊃ , but not conversely, 

as in non-constructive (reductio ad absurdum) existence proofs.  One can have ( GxDx ¬∧ ) and 

hence, by [1], )( ExDx ¬∧ .  Not all deduction is explanatory. 

 

[4] We often generate, and hence deduce, conjuncts satisfying Disjunctive Normal Forms, as 

when we grow distributions or spatial settlement patterns in finite agent populations.  

 

[5] We carefully distinguish between existence and attainability in principle.  And we 

furthermore carefully distinguish between asymptotic attainability and attainability on time 

scales of interest.  In short, we are attentive to questions of incompleteness (á la Godel) and of 

computational complexity (as in problems whose time complexity is exponential in key 

variables).  These considerations, when combined with powerful psychological evidence, cast 

severe doubt on the rational choice picture as the most productive idealization of human 

decision-making, and serve only to enforce the bounded rationality picture insisted on by Simon 

(1982).  

 

[6] Generality, while a commendable impulse, is not of paramount concern to agent-based 

modelers at this point.  Responsiveness to data often requires that we quantify over smaller sets 

than physics or neoclassical economics.  If that is ad hocism, I readily choose it over what Simon 

(1987) rightly indicts as an empirically oblivious a priorism in economics.  
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[7] Empirical agent-based modeling can be seen as induction over a sample of realizations, each 

one of which is a strict deduction, or theorem, and comparison of the generated distribution to 

statistical data.  This differs from inductive survey research where we assemble data and fit it by 

aggregate regression, for example.  

 

VI. Conclusion 

 

As to the core indictment that agent models are non-mathematical, non-deductive, and ad 

hoc, the first two are false, and the third, I argue, is unimportant.  Generative explanation is 

mathematical in principle; recursive functions could be provided.  Ipso facto, generative 

explanation is deductive.  Granted, agent models typically quantify over smaller sets than 

rational choice models and, as such, are less general.  But, in many cases, they are more 

responsive to data, and in years to come, may achieve greater generality and unification.  After 

all, a fully unified field theory has eluded even that most enviable of fields, physics. 

 

 

Notes 
                                                           
1In slightly more detail, if we let M={i : i is a microspecification}and let G(i,x) denote the proposition  that i 
generates x, then the proposition Gx can be expressed as (iG∃ i,x).  Then, longhand, the motto becomes: 

(x∀ )),( ExxiiG ¬⊃¬∃ .  
2 I do not claim that every agent-based model exhibits all these features.  My point is that the explanatory disiderata 
enumerated (heterogeneity, local interactions, bounded rationality, etc.) are easily arranged in agent-based models. 
3As noted, empirical plausibility is one such.  Theoretical economy is another.  In generative linguistics, for 
example, S.D. Epstein and N. Hornstein (1999) convincingly argue that minimalism should be central in selecting 
among competing theories.  See pp ix-xviii. 
4 Not everyone who asserts that computational agent modeling is non-deductive necessarily regards it as a defect.  
See, for example, Axelrod (1997). 
 
6 In principal, it can be further broken down into statements about limits of sums, and so forth. As a completely 
worked out simple example, consider the mathematical equation  
[1] 4lim 2

2
=

→
x

x
. 

It asserts:  “The limit of the square of x, as x approaches two, is four.”  In further detail, it is the following claim: 

[2] ]420)[0()0( 2 εδδε <−⇒<−<>∃>∀ xx  

 
In English, “For every number epsilon greater than zero, there exists a number delta greater than zero such that if the 
absolute value of the difference between x and 2 is strictly between zero and delta, then the distance between the 
square of x and four is less than epsilon.”  The fact that it is easier to manipulate and compute with mathematical 
symbols than with words may say something interesting about human psychology, but it does not demonstrate any 
limit on the precision or expressive power of English.  
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7 The general problem of satisfying an n-term CNF is NP-Complete.  Garey and Johnson (1979).  Based on this 
observation, it is tempting to conjecture that nonequilibrium social science—suitably cast as CNF satisfaction—is 
computationally hard in a rigorous sense.    
8 Reduction to an absurdity. 
9 Sometimes the terms adequate or analytical are used.  
10 For a punctilious characterization of precisely those formal systems to which the theorem applies, see Smullyan 
(1992). 
11 Importantly, he did so constructively, displaying a (self-referential) true statement that is undecidable; that is, 
neither it nor its negation are theorems of the relevant system.  
12 Here, I mean generality in the theory’s formal statement, not in its range of successful empirical application.  
13 Bach died before completing this work, and doubtless could have composed countless further fugues. 
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Figure 1.  Scheme for Primitive Recursion 
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Figure 2.  Linear Congruential Method 
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