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Abstract 
 

Large secular gains in cognitive ability (the Flynn Effect) show that large, 
environmentally induced changes in measured cognitive ability are possible, but several 
studies have suggested that secular gains are not gains in general cognitive ability and are 
therefore not substantive. This paper extends the model of a single cognitive ability 
presented by Dickens and Flynn (2001) to multiple abilities. It shows that such a model 
can account for all the important facts about general cognitive ability without postulating 
any common underlying physiological cause for different mental abilities. A general 
intelligence factor arises in the model because people who are better at any cognitive skill 
are more likely to end up in environments that cause them to develop all skills. Scores on 
the resulting general ability factor can be highly heritable even while they are potentially 
subject to considerable environmental influence. Loadings of subtest scores on the 
general ability factor can be positively correlated with subtest heritabilities. In the model, 
discrimination against a social group in access to cognitively demanding environments 
can produce subtest score differences from other groups that are strongly correlated with 
both the g loadings and heritabilities of those subtests. Despite this, there is no reason to 
expect that meaningful secular gains should be correlated with g loadings across subtests.  
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 It is well established that environmental interventions can have substantial effects 
on measured cognitive ability (Lazar and Darlington 1982) and that family environment 
plays a notable role in explaining differences in cognitive ability between school age 
children (Plomin et al. 2001). However, it is also well established that the effects of 
interventions fade over time and that the fraction of variance in cognitive ability 
explained by shared family environment drops to insignificant levels as children become 
adults.2  
 The findings on secular gains in cognitive ability -- often referred to as The Flynn 
Effect -- are something of a contrast. These are environmentally induced gains3 that 
affect people at all points in their life. There can be little doubt that large and persistent 
environmentally induced changes in measured cognitive ability are possible.   
 What is not clear is that meaningful permanent changes in cognitive ability are 
possible. Although the evidence is somewhat mixed,4 most results suggest that secular 
gains are not gains in general intelligence or g. It has been claimed that the predictive 
validity of tests of cognitive ability for both academic (Jensen,1998, p. 276) and job 
performance (Ree et. al. 1994) is due almost entirely to the high correlation of test scores 
and g.5  So a number of authors have questioned whether secular gains in measured 
ability reflect substantive gains in cognitive ability or simply reflect changing “bias” in 
the tests.6

 Much of the skepticism about the meaningfulness of secular gains originates with 
those who favor a particular view of the causes of differences between people in general 
intelligence. This view holds that most, or all,7 differences in general cognitive ability in 
                                                 
2 Some have suggested that this might not be true for disadvantaged populations in which the role of shared 
family environment is greater (Turkheimer et al. 2003). 
3 Mingroni (2004 and forthcoming) argues that the secular gains may be due to heterosis or out breading. 
Flynn (forthcoming, chapter 5) documents how implausible it is that heterosis could account for more than 
a tiny fraction of secular gains. 
4 Colom et al. (2001) Jaun-Espinosa et al. (2000) find strong correlations between g loadings and IQ gains. 
Jensen (1998, pp 320-321) reviews a number of studies of the relation between subtest gains and g 
loadings, all of which show weak positive correlations.  Rushton (1999) finds that a measure of g 
developed on the WISC has loadings that are negatively correlated with subtest gains in several countries. 
But Flynn (2006) argues that IQ gains are greatest on tests of fluid g rather than crystallized g and finds a 
positive (though statistically insignificant) correlation between a measure of fluid g he develops and IQ 
gains in the same data used by Rushton. Must et al. (2002, 2003) find no correlation between g loadings 
and gains on two tests in Estonia, but these are achievement tests with a strong crystallized bias. 
5 See Currie and Thomas (2001) and Heckman et al. (1997) for dissenting views. See also Sternberg and 
Warner (1993) and Ceci (1986) and Ceci and Roazi (1994) for a discussion of the importance of g relative 
to practical intelligence for career success.   
6 See for example Jensen (1998), Rushton (1999), and Rushton and Jensen (2005). Wichert’s et al. (2004) 
are the first to refer to describe secular gains as changes in bias.  
7 Most studies attribute 20 to 40 percent of the variance in adult cognitive ability to non-shared 
environment, but see Molenaar et al. (1993) and Jensen (1997) who suggest that what is called non-shared 
environmental variance may actually reflect physiological differences due to random influences on brain 
development. 
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adults reflect physiological differences that are predominantly genetically determined. It 
is the existence of general cognitive ability that gives rise to the pervasive correlation of 
performance on different measures of mental skills. Principal components analysis of 
scores across individual test items or subtests typically yields a first component that 
accounts for a large fraction of the standardized variance. Alternatively, if hierarchical 
factor analysis is performed, a second or third order factor emerges on which all lower 
order factors have positive loadings (Carroll 1993).  The positive correlation between 
subtest loadings on the general factor and subtest heritabilities is cited as evidence of the 
genetic origins of general intelligence as is the high heritability of measures of general 
intelligence constructed as individual scores on the general intelligence factor.  
 The nature of general intelligence plays an important role in another debate. 
Jensen (1985, 1987) has shown that subtest loadings on the general intelligence factor are 
positively correlated with white-black differences on subtests. Dolan (2000) finds that a 
single factor model can adequately explain the pattern of white-black subtest differences, 
but Dolan et al. (2004) find that they can reject the hypothesis that the black-white gap is 
due to a difference on single factor in two other data sets. Rushton (1999) factor analyzes 
black-white differences, the extent to which subtest scores are depressed by inbreeding 
and secular gains and finds that the first two load on the same factor while secular gains 
do not. Jensen (1998), Rushton and Jensen (2005) and many others have cited the 
correlation of black-white subtest differences with g loadings and heritabilities as 
evidence that white-black differences in cognitive ability are mainly differences in 
general cognitive ability and largely genetic in origin. It is the existence of the correlation 
between black-white differences and within group heritabilities of subtests that drives the 
results of Jensen’s (1998, p464-465) and Rowe and Cleveland (1996). Those authors 
conclude, using a structural equation estimation technique, that between 36 and 74 
percent of the black white gap on several different tests is explained by differences 
between the groups in their average genetic endowment.  
 There are some weaknesses in the support for this view. First, there is increasing 
evidence that different cognitive skills are located in different parts of the brain, are 
activated independently, and can be damaged without direct effect on other skills (Blair 
2006, Gardner 1983, Maguire et al. 2000). Second, although a number of physiological 
correlates of g have been found, at best they explain a small fraction of the variance in 
general intelligence across individuals (Jensen 1998, Chapter 6). All the obvious 
candidates (nerve conductive velocity, brain size, density of neuron connections, etc.) 
have been examined and show surprisingly little relationship to general cognitive ability. 
Interestingly, Colom et al. (2006) find that gray matter densities in several specific and 
different parts of the brain are related to g using the method of correlated vectors. This is 
a finding we will return to later. The high heritability of a wide range of measures of 
cognitive ability leaves no doubt that physiological differences between individuals play 
a large role in explaining differences in ability between people from similar backgrounds, 
but the failure to find any one overarching physical difference between people with 
widely different general measures of cognitive ability should cast doubt on the claim of a 
close causal link between physiology and general ability. 
 This paper presents an alternative view of the origin and meaning of general 
cognitive ability in adults. People who have superior ability in any dimension are more 
likely to gain access to environments that give them practice in a wide range of cognitive 
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skills. This practice produces gains and these gains improve access so those who are good 
at any type of mental task are likely to do well on a wide range of mental tasks. The 
model below shows that this alone could account for all the facts about general cognitive 
ability described above. The model is similar in some respects to that of van der Maas et 
al. (2006), but differs in its explicit treatment of the roles of genetic endowment and 
environmental influences in the genesis of interpersonal differences, and in its sole 
concern with developed cognitive ability in adults. The specification of a model of the 
development of cognitive ability in children is left for the future and the integration of the 
model in this paper with that of van der Maas et al. might be a fruitful approach. Baltes 
and Nesselrode (1973) present a simulation model where correlated environmental effects 
produce a g factor in ability. The analysis presented here models genetic influences as 
well as the environmental feedback process and derives a much richer set of results. 

This work builds on Dickens and Flynn 2001.8 It extends that model of a single 
cognitive ability to many abilities and shows that it can account for all the important facts 
about general cognitive ability without postulating any common underlying physiological 
cause for different mental abilities. A general intelligence factor arises in the model. 
Scores on this factor can be highly heritable even while they are potentially subject to 
considerable environmental influence. Loadings of subtest scores on the general ability 
factor can be positively correlated with subtest heritabilities. In the model, discrimination 
against a socially isolated group in access to cognitively demanding environments can 
produce subtest score differences from other groups that are strongly correlated with both 
the g loadings and heritabilities of those subtests. Relatively small amounts of 
discrimination can give rise to large average differences in measured g. Despite this, 
there is no reason to expect that secular gains should be correlated with g loadings across 
subtests.  
 In the next section I provide an intuitive description of the model. The workings 
are illustrated with an analogy to basketball skills.  The section after that presents the 
mathematical model and discusses several propositions about the model. The discussion 
of the propositions provides a more precise description of how the model explains the 
many facts about general ability than the intuition provided by the basketball analogy. 
Finally, a conclusion reviews the main results and argues that since the new model does a 
better job of accounting for the size and pattern of secular gains it should be preferred to 
the traditional model.  
 
A Basketball Analogy 

Consider the development of peoples’ ability to play basketball. There are a number 
of physical and mental characteristics that will make a person a better basketball player. 
Height, and good hand-eye coordination are chief among them, but reflexes, speed, 
strength, endurance and the ability to anticipate where a dribbled ball will go next 
without looking are also important. Imagine that we knew that in very young children 
each of these characteristics was statistically independent of the others. If children were 
to grow up in an environment with no exposure to the game of basketball, and little or no 
exposure to other sports or athletic activities, we probably wouldn’t expect much 

                                                 
8 An earlier version of the model presented here was described and conjectures about its properties 
suggested in Dickens (2004). The model in this paper is different and the analysis of its properties more 
thorough. 
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correlation between peoples’ skills when they were teenagers. Field shooting skill might 
be correlated with free throw ability because of their functional similarity, but we 
wouldn’t be surprised if neither was very highly correlated with the ability to make lay-
ups. The ability to make lay-ups might be correlated with the ability to rebound because 
height gives advantage to both, but we might not expect either skill to be highly 
correlated with the ability to dribble, dodge or steal a ball since those skills depend more 
on reflexes, coordination and speed. On the other hand, we would not be at all surprised 
if all those skills were highly correlated among teenagers in the US today who have all 
been exposed to the game of basketball to varying degrees and had varying opportunities 
to practice those skills.  

In our 2001 paper Flynn and I made the point that a relatively small genetically 
induced physiological advantage (such as an extra inch or two in height) could grow into 
large differences in performance through feedback mechanisms. People of above average 
height play basketball a little better so they like the game more and play more often. As a 
result they get better and their improved performance makes them even more likely to 
choose playing basketball over other activities. This makes them better still so that some 
of them get chosen for teams where they get professional coaching and improve still 
more. The same virtuous cycle could magnify the effect of a persistent environmental 
advantage. A child with a next door neighbor who was a basketball fanatic would have a 
slight environmental advantage that could be multiplied by practice and coaching if the 
child became good enough to get on a team. However, unlike our genes that are always 
with us,9 environmental advantages are more likely to be transitory. The neighbor may 
move away or make new friends. When an environmental advantage is removed there 
will be a tendency for the virtuous cycle to unwind. If the initial advantage is particularly 
short lived, the full effect from the feedback from ability to environment to ability might 
not have the opportunity to work itself out. Thus there will be a tendency for genetic 
differences to dominate the explanation of cross sectional differences even while 
persistent environmental changes (such as those that might exist between different 
generations or socially distinct groups) could still have large effects.  

Even if there was no underlying correlation in the physiological basis for basketball 
skills, someone growing up in the US who is tall is more likely than someone who is not 
to play a lot of basketball. Those who play a lot will practice all the skills involved in the 
game and will get better at them all. Those who get particularly good at the game will get 
coaching in school or in after school leagues that further improves all their basketball 
relevant skills. Height isn’t the only physical characteristic that might make one more 
likely to play basketball. Someone of unexceptional height with good hand-eye 
coordination will be better at shooting baskets and may prefer being a guard on the 
basketball team to running cross country. That person too will develop the full range of 
basketball skills (at least relative to those who play only infrequently). Even someone 
whose only talent was speed and endurance might tend to be more athletic than the 
average person and might play more basketball informally than the average person who 
was not athletically inclined. Such a person would likely be better at all the basketball 
skills than the average person who played basketball less.  

                                                 
9 While our genetic endowment doesn’t change, there is evidence that the effects of genetic endowment on 
cognitive ability change over time. None the less, there is evidence of substantial stability in genetic effects 
on cognitive ability (Fulker et al. 1993, McGue et al. 2002, and Plomin et al. 1994,). 
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Given this, we would not be surprised if data on individuals’ scores on many different 
tests of basketball skill showed them all to be strongly positively correlated. We would 
not be surprised if a principal components analysis of such data yielded a single factor 
that explained a substantial amount of the variance in basketball playing ability and all 
skills loaded positively on this factor. It is quite possible that we would find other factors 
besides the general skill factor. Functionally related skills like free throws and field 
shooting, or lay-ups and rebounding, would likely be more correlated with each other 
than with other skills. A hierarchical factor analysis of such data might yield several first 
order factors such as these but people’s scores on these factors would likely be correlated 
with each other and a general basketball ability factor would likely arise at the ultimate 
level. But, we would be wrong to conclude from this that there was necessarily some 
underlying physical difference between superior and inferior basketball players. Scores 
on the general ability factor would primarily reflect differing amounts of instruction and 
practice.  

Note that someone looking for a physiological cause of general basketball ability 
would find that height was moderately correlated with it, but the correlation would be far 
from perfect. Other physiological measures would also have small correlations with 
ability. Any ability that contributed to the likelihood that an individual would get more 
instruction would have at least a weak relationship. But again, this would not be evidence 
for a biological basis for the correlations across abilities that instead arise from the 
largely social mechanisms by which skills are generated and differentiated.  

Next consider which skills would be most highly correlated with general ability and 
therefore have the highest factor loadings. Those skills most important to superior 
performance in the game would be the ones that would be practiced most by those who 
are trying to excel. They would also be the skills most important for determining which 
people would be chosen for teams where they would get coaching in those skills and 
extra chances to practice those skills. Thus those with the most practice would have the 
most general skills and would be particularly likely to excel at the most important skills.  

If one wanted to construct an optimal index of skills to predict success in playing 
basketball one would want to put the most weight on the most important skills and less 
weight on skills that are tangential to success. The rank order of the weights would thus 
be very similar, if not identical, to the loadings of the skills on the general ability factor 
since it is those skills that are most important for success and are most practiced by those 
who want to excel. Thus it would be no surprise if individuals’ scores on the general 
ability factor were superior predictors of their overall performance as basketball players. 
Given that practice at any athletic activity is likely to improve skills and abilities relevant 
in other athletic activities we would not be surprised to find that the general basketball 
ability factor scores did a reasonably good job of predicting performance in other sports 
as well. 

Next consider what would happen if there was a minority group that was 
discriminated against in being chosen for teams and was scorned by the majority group in 
organizing pick-up games. They would be likely to get less practice than everyone else. 
All their skills would suffer, but particularly those that received the most attention in 
practice and coaching. As already noted, these skills would be those most important for 
success in the game and would be the same skills that would be most highly correlated 
with the general ability factor. We would thus not be surprised to find a positive 
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correlation between skills’ loadings on the general ability factor and the difference in the 
skill scores of the minority and majority group with differences being largest on the skills 
with the largest factor scores.  

Next, note that to the extent that physiological factors subject to substantial genetic 
influence help to make people more or less likely to get into environments where they 
will get more practice, the general ability factor could have a high heritability. It is also 
possible that those skills that are emphasized in practice will have a tendency to be the 
ones that will have the highest heritability. These are the same skills that load most 
heavily on the general ability factor and where a minority subject to discrimination in 
access to opportunities to play basketball would have the greatest deficits.  

Finally, imagine what might happen if a decision was made to double the length of all 
basketball games, and teams were prohibited from returning a player to a game after he or 
she had been substituted out (making basketball more like soccer). Suppose that those 
playing pick-up games react by playing somewhat longer than they did before and that 
coaches react by scheduling extra sessions emphasizing running and endurance training 
so that their players can all play the full game if necessary. No doubt the average 
conditioning of good basketball players would improve. If people spend somewhat more 
time playing basketball as a result of the games being longer there would be a tendency 
for all their skills to improve, but the improvement in their endurance would be out of 
proportion to the improvement in their other skills. Any index of basketball playing skills 
that put much weight on endurance would show large increases, but if one were to 
compare the increases across all the skills to the factor loadings or heritabilities of the 
skills one would not expect a strong positive correlation. Still, people would be better 
basketball players than before – particularly under the new rules.  

The relevance of the above analogy to cognitive ability is straight forward. The next 
section presents the formal model of cognitive ability and demonstrates that each of the 
results suggested by the intuition can be rigorously proved.  
 
The Formal Model 

Dickens and Flynn (2001) proposed a simple linear two-equation model to explain 
how both environment and genetic endowment could have large impacts on measured 
cognitive ability. Here that model is adapted to the case of several different measures of 
cognitive ability. The model in our 2001 paper was recursive, that is cognitive ability in 
the current period was affected by past environmental influences which had been 
determined in part by what was then a person’s cognitive ability. While the model was 
recursive our analysis of the model emphasized equilibrium behavior. The equilibrium 
properties of a recursive model are easily found by treating it as a system of simultaneous 
equations where the past and present values of the endogenous variables are assumed to 
be equal and finding the solution. That is how this analysis will proceed. 

Rather than a single cognitive ability, here several (K) cognitive abilities are modeled. 
These could be thought of as subtest scores from a battery of cognitive tests or as 
individual scores on factors at the penultimate level of a hierarchical factor analysis. 
Adopting the convention that upper case letters represent matrices, lower case letters 
vectors, and lower case Greek letters scalars, the scores for individual i measured in 
differences from the population mean are given by 
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(1) iii VeAgm +=  
 
where mi is a K length column vector of measured abilities of person i, gi is an L length 
column vector of genetic endowments, A is a KxL matrix relating each measure of 
genetic endowment to each measured ability, ei is a K length vector representing 
environmental influences on each measured ability (also measured as differences from 
the population average) and V is a KxK diagonal matrix that scales the impact of each 
element of ei on the corresponding element of mi.  

Unlike the standard linear decomposition of variance of test scores, it will be assumed 
that e and g can be correlated. Specifically, it is assumed that ei is given by 

 
(2)  iii WzBme +=

 
where B is a KxK matrix relating person i’s K abilities to the K environmental influences 
for those abilities, zi  is an M vector of exogenous environmental influences which are 
uncorrelated with genetic endowment, and W is a KxM matrix relating those exogenous 
influences to person i’s environment for each of the K abilities. It will be assumed that gi 
and zi are standardized random variables (mean zero, variance one). 
 Substituting (2) into (1) and solving for the vector m yields 
 

(3) [ ]iiiiii VWzAgVBIVBmVWzAgm +−=++= − 1)(  
 

where I is a KxK identity matrix. It will be assumed that the parameters of the model are 
such that equation 3 has a finite solution (and thus the matrix I-VB can be inverted). 
Inspection of equation (3) shows that the expected value for all elements of the vector mi 
are zero as they should be since it is measured in deviations from the population mean. 
 What makes this model different from the standard linear decomposition model is 
the presence of the Bmi term in equation 2. Without that term (if all elements of B equal 
zero) ei and gi would be uncorrelated.  If one or more elements of the vector g affected all 
the measured abilities then that could be the source of the correlation across abilities and 
the reason why factor analysis of cognitive abilities typically finds a general ability 
factor. Such a model would explain many of the facts about general ability and is 
probably the model that most advocates of g theory have in mind.  
 Note that in this simple model (B=0) one could have a general ability factor that 
arose because there were one or more exogenous environmental influences (zij s) that 
affected the environment for many different abilities (for example if the first column of 
matrix W had all positive values). This would give rise to a correlation across all 
measured abilities and factor analysis of the measured abilities would show a general 
factor. But, there would be no reason to expect this factor to be highly heritable or to be 
correlated with physiological characteristics unless those characteristics were caused by 
ability rather than being causes of it. Such a model couldn’t explain very many of the 
salient facts about general cognitive ability. 

However, with the introduction of a role for ability in shaping environment that in 
turn affects phenotype ability we introduce reciprocal effects between phenotype ability 
and environment.  That induces gene x environment correlation that radically changes the 
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nature of the model. For each ability, the solution to the model above closely resembles 
the equilibrium behavior of model 2 from Dickens and Flynn (2001). The only difference 
is the additional feedback across abilities that will enhance the multiplier effects 
compared to the model with only one ability. Thus this model can explain the same 
phenomena that the 2001 model did – the coexistence of high heritability of cognitive 
ability with the potential for large environmental effects. The new model allows us to 
consider a wider range of cognitive phenomena. It is now possible to explain all of the 
attributes of general ability discussed above in a model in which environment plays a 
major role in explaining individual differences and is entirely responsible for group 
differences.  

To demonstrate this, a few additional assumptions will be made about the model 
to clarify the source of the results that will be derived. First, it will be assumed that A=Iα, 
and V=Iν -- that is the matrices A and V have the positive constants α and ν on the 
diagonal respectively and zeros everywhere else. Thus the first genetic influence and the 
first environmental influence affect only the first ability, the second of each affect only 
the second ability, and so on. It will also be assumed that W is a diagonal matrix with all 
positive elements on the main diagonal. Initially it will be assumed that all those elements 
are equal, but that assumption will be relaxed later. Combined together these assumptions 
imply that only its own genetic endowment and its own exogenous environmental 
influence directly affect each ability. Therefore any correlation between abilities arises 
because the environmental influences for different abilities are correlated, and this 
happens because people with different ability are matched to different environments as 
represented by the term Bmi.  

For clarity a very simple matching process will be used. It will be assumed that 
people split their time between environments that put no demand on their cognitive 
ability and a single generic cognitively demanding environment that puts demands on 
each ability according to the vector f.  The more demanding an environment is of an 
ability the more it contributes to the development of that ability to be in the environment.  
It will be assumed that all elements of f are positive, no two are the same, and that the 
abilities are arrayed so that the elements of f are in descending order (fi1>fi2>…>fiK). 
Next, person i will spend a fraction c’mi more than the average person in the cognitively 
demanding environment (less if c’mi is negative). Thus B=fc’.  Further, it is reasonable to 
assume that abilities that are most heavily used in the demanding environment would also 
be the ones that would be most influential in determining the amount of time spent in that 
environment.  For simplicity it is assumed that c=βf.  

The first thing to demonstrate is that with B defined this way all elements of mi 
will be positively correlated with all other elements of m (from here on I will drop the i 
subscript for individual) and that the abilities most used in the cognitively demanding 
environments will have the highest correlations with the other abilities.  
 
Proposition 1 Given the assumptions above,  
(i) all elements of the true correlation matrix (C) of the elements of m will be 

positive,   
(ii) and if Wii=Wjj then for all i<j and k ≠ i or j,        Cik > Cjk  and Cki > Ckj,  
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Proof 
The full proof can be found in the appendix. That all elements of the correlation matrix 
are positive follows directly from some manipulation of the covariance matrix of the m s, 
which, as shown in appendix 1, can be written 
 

)'')(''')('('))('''()()'()4( 11 fcIVVWWAAfcIVBIVVWWAAVBImmE μμ +++=−+−= −− , 
 
where μ=ν/(1-νc’f). Since all the terms in (4) are positive by assumption, and since the 
correlation is the covariance divided by the standard deviations of the two variables 
(which are necessarily positive) the first part of the proposition is proved. What is 
happening is that more intellectually able people are getting practice in all skills so they 
are better at all skills. This ensures that all correlations are positive. 
 As shown in appendix 1, the off-diagonal elements of the covariance matrix in (4) 
can be written as 
 

.*])[][()'()5( 2
,

222
,

22
, μναναμ kiiiikkkkiki ffWcfWcfmmE ++++=  

 
where μ*=α2μ2c’c+ν2μ2c’WW’c. The fs are the cognitive demands of the demanding 
activity and they are proportional to the weights (c) that determine the amount of time a 
person spends in the activity. Assuming that Wi,i=Wj,j, if we compare the covariance of mi 
and mk with the covariance of mj and mk from (5), we can see that the latter will be larger 
than the former because fi is larger than fj and ci is larger than cj by assumption. The 
standard deviation of mi will also be larger than the standard deviation of mj, but the 
effect is less than proportional so the effect on the numerator of the correlation dominates 
and the correlation between mi and mk will be larger than that of mj and mk.  

If this inequality holds strictly when Wi,i=Wj,j then it will also be true for some 
values of Wi,i in the neighborhood of Wj,j. This fact will be important when we consider 
the correlation of factor loadings with heritabilities below. The abilities most used in the 
demanding environment, and most important for determining time spent in the 
environment, will be the most highly correlated with other cognitive abilities.  
 
Proposition 2 Given the assumptions above, 

(i) The first principal component derived from the correlation matrix of abilities 
formed according to the system described in equations (1) and (2) above will 
have a positive correlation with all skills and 

(ii) if fi  > fj then the loading of the ith skill on the first principal component will 
be greater than that of the jth skill if Wi,i=Wj,j.   

 
Proof 
 The correlation of the first principal component with a variable is proportional to 
the corresponding element of the first Eigenvector of the correlation matrix. The power 
method (Quarteroni and Saleri, 2003, p140) for computing the first Eigenvector of a 
matrix uses the fact that for any non-zero vector r0 the first Eigenvector can be 
approximated as Aθr0/ε with the approximation made arbitrarily close by choosing a 
sufficiently large value for θ. The constant ε   is chosen to normalize the vector to have 
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unit length. All elements of A must be positive as proved in proposition 1 and since the 
elements of r0 can be chosen arbitrarily an r0 can be chosen with all positive elements. In 
that case Aθr0 will be positive for all values of θ and all values of the first Eigenvector 
must be positive proving part (i) of the proposition. Thus the fact that the correlation 
matrix has only positive elements is enough to guarantee a “g” factor that loads positively 
on all skills.   

The first Eigenvector r of the correlation matrix C must satisfy the condition 
 

rCr λ=)6(  
 
where λ is the Eigenvalue associated with the first principal component. Since the 
Eigenvalues for a correlation matrix must sum to the dimension of the matrix (K), and the 
first Eigenvalue must be the largest, λ must be positive. Next note that equation 6 implies 
that 
 

∑
=
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for all i. Equation (7) implies 
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since Cii=1. From proposition 1 we know that Cik >Cjk for all i<j for k≠i,j. Thus for i<j  
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where the last equivalence follows from the symmetry of the correlation matrix (Cij=Cji). 
Thus, the loadings of the skills on the first principal component will have the same rank 
ordering as the elements of f and c if all the elements on the diagonal of the W matrix are 
equal. So the skills most used in the cognitively demanding environment will be the ones 
that will be most highly correlated with the first principal component.  
 What we learn from the proofs of propositions 1 and 2 is that data generated by a 
model such as that described by equations 1 and 2 will evince a general ability factor. 
Further, the specific abilities that load most heavily on the general ability factor will tend 
to be the ones that are most used in the cognitively demanding activity, which we have 
assumed are the same abilities most important in determining the amount of time spent in 
the activity. If we think of the cognitively demanding activity as attending college (or a 
particularly selective college), or working in a cognitively demanding (and high paying) 
occupation then factor scores for the general ability factor will be very close to the ideal 

 11



predictor of these outcomes. The ideal predictor would be an index with weights 
proportional to the c vector.  
 Now consider what would happen to the cognitive ability of a minority group that 
was discriminated against in access to the cognitively demanding activity. Suppose that 
the discrimination took the form that minorities spend a fraction δ less of their time in the 
cognitively demanding activity than those in the majority group with identical ability. 
 
Proposition 3 
Given the assumptions above,  

(i) the minority group will have mean ability lower than that of the majority 
group on all abilities and 

(ii) the rank order of differences, measured in majority group standard deviations, 
on the ith and jth abilities will be the same as that of the ith and jth loadings 
on the first principal component if Wi,i=Wj,j.   

 
  
Proof 
 The assumptions stated above imply that the environment for the minority group 
is given by 
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Substituting (9) into (3) and using the result derived in appendix 1 that   
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Since the majority group mean is zero the difference between the minority group and 
majority group means is given by (10) and is negative for all elements of m. Thus the first 
part of the proposition is proved. The ratio of any element of the expected difference to 
the majority group standard deviation would be 
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where the derivation of the standard deviation of jth element of m can be found in 
appendix 1. Thus the differences between the minority and majority group means on each 
subtest will have the same rank order as f which is the same as c and the same as the skill 
loadings on the first principal component.  
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 Can the model replicate the findings reported by Jensen (1999) and Colom et al. 
(2006) that the rank ordering of correlations of various subtests with certain physiological 
haract
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Thus for i not equal to j the correlation of y and the jth element of m is equal to 

c eristics is similar to the rank ordering of the subtests’ g loadings? There are no 
physiological characteristics in the model. Were we to model them carefully we would 
certainly want to allow for multiple genetic influences on each characteristic and possib
environmental influences as well. However, to demonstrate that the model being 
considered here can generate the sorts of relationships described in the literature a very 
simple model of a particular type of physiological trait will suffice. Suppose that t
same genetic factor that influences an ability i also influences a physiological trait y, so 
that y measured in standard deviations from its mean is given by 
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since the standard deviation of y has been assumed to be one. So 
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which will be true if fj > fk  and Wj,j=Wk,k and the proposition is proved. Since a superior 
enetic endowment for any cognitive trait will lead one to spend more time in the 

ait 
e 

>⇒> icCC

g
cognitively demanding environment one will get practice in all skills, and the most 
practice in the skills most important in that environment. Thus any physiological tr
associated with a superior genetic endowment for any skill will have a tendency to b
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most highly correlated with those abilities that are most highly g loaded. Of course, as 
equation 13 shows, they will be most strongly correlated with the particular ability or 
abilities with which they are directly associated, but other than that their correlation wil
follow the ranking of the importance of the ability in the cognitively demanding 
environment.  
 Should secular gains in cognitive ability be g gains? That depends on the 
mechanism cau

l 

sing them. If gains were caused by people spending more time in the 
us that 
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genetic

01

01010

eeVE
eeVEggAE

−=

cognitively demanding activity then a slight recasting of proposition 3 would tell 
the rank order of gains would have to be identical to the rank order of the factor loadings 
of the skills. Just think of -δ as the additional time the average person is spending in the 
cognitively demanding environment. In that case equation 11 shows that the ranking of 
the gains will be the same as the ranking of the factor loadings. However, if the gains are
caused at least in part by changes in the relative importance of different skills in the 
cognitively demanding environment then gains need not have any relationship to the 
factor loadings.  

In time period zero before the change f=f0 and in time period 1 f1=f+d, the cha
in the expected va
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Now if τ is the average amount of time spent in the cognitively demanding environment 
in time period 0 and the relation c=βf  then  
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where the last equality follows because m0=0.  

ubstituting (17) into (16), solving for Δm, and substituting f+d for f  and c+βd for c in S
appendix equation A3 yields 
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hus the relative magnitude of the changes in any two skills depends on both the original 
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 then the 

he 

ariance due to genetic variance. In 
is mo

T
demands and the change in demands and there is no reason for the magnitude of the 
changes across the skills to be strongly correlated with the g loadings. Of course if so
of the secular increase is due to people spending more time in more cognitively 
demanding activities and the demands of those activities do not change too much
changes could be correlated with the g loadings. But, the correlation could be weak or 
strong depending on which of the two mechanisms was more important for producing t
secular gains and the other parameters of the model.  
 The heritability of an ability is the fraction of v
th del with Wii=ω for all i that will be  
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hus with W=Iω the heritability of all subtests will be constant. Appendix 2 shows that 

 for 
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T
Wi,i<Wj,j => h2

i>h2
j. Since all the results about the relative rankings of different 

quantities above held with strict inequality when W=ωI they will continue to hold
some values where the diagonal elements of W depart from equality. Thus it is possible
for the model above to have subtest heritabilities with the same ranking as factor loading
and majority-minority differences.  

But why would the rankings
ically, since the variance of the systematic component of environment Bm is 

larger for the abilities with the largest values of f  if  we normalize e by scaling the 
elements of f  and W proportionally to standardize the es  the Ws will take on a rank
that is the inverse of the order of f. But, this doesn’t really answer the question as there is 
no strong reason to prefer standardized valued for environmental effects in the equation 
for ability than environment measured in any other metric. However, there are 
substantive reasons why we might expect the variance of the exogenous effects
the reverse order of magnitude of the endogenous effects. If variables that are less  
characteristic of the cognitive activity are more likely to be used in non-cognitive 
activities then they will be more subject to shocks from outside the system describe
equations 1 and 2. In that case the standard deviation of those shocks (the Wi,i s) will be 
larger. For example, memory is an ability that is less correlated with g than many other 
cognitive skills, but is ubiquitous in human activities -- probably more so than verbal 
skills or quantitative skills. On the other hand, more esoteric and more highly g loaded
skills, such as the ability to imagine and manipulate mental models of three dimensional
objects, are probably less commonly called upon in activities that don’t have a large 
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cognitive component. If this is true to any degree then there will be a tendency for g 
loadings and subtest heritabilities to be positively correlated.  

Can all of the results demonstrated above be obtained in a model such as that just 
described? The following numeric example shows the answer is yes. To capture the 
intuition as to how the variance of exogenous environmental effects could be larger for 
the cognitive abilities that are least representative of the cognitive task equation 2 will be 
slightly modified to  
 

[ ]iWzmCFe += ')'2( . 
 
The covariance matrix of the abilities thus becomes 
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The model is implemented with twenty abilities – five cognitive abilities and fifteen non-
cognitive abilities. There are seventeen activities that people divide their time between: 
one cognitive activity that puts demands only on the five cognitive abilities, fifteen non-
cognitive activities each of which puts demands on its own unique non-cognitive activity 
and one of the cognitive activities, and a final non-cognitive activity that buts no 
demands on any of the activities being modeled (and is thus the residual category for time 
allocation). Five of the non-cognitive activities put demands on the cognitive ability with 
the lowest demands in the cognitive activity. Four put demands on the cognitive ability 
with second lowest demands in the cognitive activity. Three put demands on the 
cognitive ability with the third lowest demands in the activity, and so on. The only other 
deviation from the assumptions made in the previous model is to allow the Wi,i for the 
cognitive activity to be one third the size of that for the non-cognitive activities. The 
same effect could have been approximated by tripling the number of non-cognitive 
activities.  
 The model is analyzed using the computer program presented in Appendix 3. That 
program first computes the results presented in table 1 below using equation (4’) and 
extensions of the formula developed in equations (9) through (20).   
 

Table 1 
Results for Model with Normalization of m and e* 

Cognitive 
Abilities 

Effect of 
Demanding 

Environment 
(f) 

Loading on 
First 

Principal 
Component 

h2 Majority-
Minority 
Gap in 

Majority 
SDs 

Change in 
Effect of 

Demanding 
Environment 

(d) 

Secular 
Gains 

1 1.0 .82 .77 1.07 .20 .56 
2 0.9 .79 .72 1.01 .24 .63 
3 0.8 .76 .67 0.94 .10 .53 
4 0.7 .73 .63 0.87 .24 .67 
5 0.6 .69 .59 0.79 .20 .66 
* Results computed with parameter values of α=.7, β=1, ν=.15, δ=3, τ=1, Wcognitive =1, 
Wnon-cognitive =3. See appendix 3 for the program used to do computations. 
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With these parameter values the first principal component explains 58% of the 
standardized variance in the five abilities. The results show that the rank ordering of the 
effect of the demanding environment, the first factor loadings, the heritabilities and the 
majority-minority score gap are all the same. At the same time, the secular gains on the 
different tests are determined far more by the change in the effect of the demanding 
environment than the base effect of such environments.  
 
Conclusion 
 Advocates of the view that cognitive ability can be shaped by environment have 
pointed to secular gains as strong evidence that large environmentally induced changes 
are possible. Skeptics have argued that since secular gains are not g gains they are not 
likely to be substantive. But that begs the question; what is g? 

Here a model of cognitive ability has been presented in which the correlations of 
different abilities that give rise to a g factor result not from underlying biological causes, 
but from the mechanism by which abilities are reinforced with practice. People who are 
good at any cognitive skill are more likely to spend more time in activities that put 
demands on all their cognitive abilities. These demands give them additional practice 
which improves their skills. The skills that are used most in more demanding activities, 
and are therefore important in determining the amount of time spent in such activities, are 
the ones that are most highly correlated with other skills, and load most heavily on the g 
factor. When discrimination reduces one group’s access to more cognitively demanding 
activities this will reduce their opportunities for practice and they will have lower ability. 
The deficits will be largest on the skills most used in the activities to which they have 
reduced access. In the models presented above, this produced losses that were greatest on 
the most g loaded abilities. In some versions of the model these were also the abilities 
that were most highly heritable.  

Is there any reason to prefer the model presented in this paper to the biological g 
model described in the opening of the last section? The biological g model has a very 
difficult time explaining both the magnitude and pattern of secular gains. In the biological 
g model environment plays a relatively small roll in the determination of cognitive 
abilities because heritabilities are relatively high. Secular gains of a standard deviation or 
more would require exogenous improvements in the environment of considerably more 
than a full standard deviation. This seems implausible. But if somehow the genome was 
improving (due say to decreased inbreeding) then secular gains should have been g gains. 
Again, this doesn’t seem to be the case.  

It was this paradox – large IQ gains vs. high estimates of heritability – that lead 
Flynn and I to develop the model presented in our 2001 paper. The reciprocal relationship 
between phenotype ability and environment multiplies the effects of both exogenous 
environmental and genetic endowment. Environmental shocks that differentiate people in 
similar populations tend to be short lived and therefore don’t gain the full benefit of the 
multiplier unlike genetic effects or environmental changes between generations or 
between relatively segregated social groups.  

Flynn (forthcoming) has argued that the pattern of cognitive gains on different 
tests at different times can be explained by the changing technology and culture. In the 
early 20th century, the scientific world view, with its emphasis on using logic to deal with 
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non-concrete problems on classifying the world spread from a few intellectuals to the 
general population. Also, the rise of mass production required a literate and numerate 
workforce while increasing numbers of technical workers required more sophisticated 
skills. All skills rose together. In the second half of the 20th century the switch away from 
an industrial economy to an information economy gave rise to increasing demands for 
flexibility in adapting to new working environments. This produced a big rise in the 
demand for on-the-spot problem solving skills. At the same time calculators and 
computers were reducing the need for people to be good at routine calculation. Thus the 
ability to solve novel problems increased enormously while more mundane skills, such as 
vocabulary and arithmetic, stalled. This story fits neatly with the models presented here. 
They can do a better job than the physiological g models of explaining both the 
magnitude and the pattern of cognitive gains. 

The implication is that secular gains are substantive and adult cognitive ability 
malleable. In fact, if the gains weren’t substantive it would be hard for them to be so big. 
Large gains are possible because of the feedback between environment and phenotype 
ability. Gains in ability cause people to get themselves into better environments that 
produce higher ability. If the gains weren’t substantive then there would be no reason for 
them to cause further improvements in environment and there would be no continuing 
feedback.  

In the models presented here all the correlation of abilities is explained by the 
feedback mechanism. This was done to clearly illustrate the alternative mechanism. 
However, it is possible that there are underlying biological capabilities that differ 
between people and affect more than one mental skill. If so, then the g pattern we observe 
in the correlation of abilities would reflect both the underlying physiological sources of 
correlation as well as the reinforcement mechanism. The relative contribution of the two 
would depend both on the importance of the physiological process as well as the 
importance of the environmental feedback effects. Elsewhere Flynn and I (Dickens and 
Flynn 2001, p362) have argued that the best evidence suggests that at least 40% of the 
effects of genetic endowment on IQ come through environmental feedback. That would 
suggest an important roll for the mechanisms described in this paper for explaining the g 
phenomena.  
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Appendix 1 
Proof of Proposition 1 

 
 Equivalent to equation (3) from the text, the solution to the system of 
simultaneous equations in given in (1) and (2) can be obtained by repeated substitution. 
Substituting (2) into (1) and dropping the subscript for individual yields 
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We can then substitute this equation into itself repeatedly to arrive at 
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Substituting fc’ for B  and recalling that V=νI we can write 
 

( ) '.
'1
')'(')'()(3

1

1

11
fcI

fc
fcIfvcvfcIfcIVBIA

i

i

i

ii

i

i μ
ν
νν +=
−

+=∑+=∑∑ +=+
∞

=

−
∞

=

∞

=

 

 
where μ=ν/(1-νc’f). This follows since the sequence (fc’)i= fc’…fc’ =fc’(c’f)i-1 reduces to 

the matrix fc’ times the scalar constant c’f to some power and since 
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x<1. The constant νc’f must be less than 1 by the assumption that the system of equations 
has a finite solution. If the condition did not hold the m s would all be infinitely positive 
or negative. Substituting  (A3) into (A2) and comparing the result to (3) in the text we see 

that '
'1
')( 1 fcI

fc
fcIBVI μ
ν
ν +=
−

+=− −  when B=fc’. 

 Combining (A2) and (A3) the covariance matrix for the m s can be written 
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where μ* is the scalar constant α2μ2c’c+ν2μ2c’WW’c. The second equality follows from 
the first because E(gg’)= E(zz’)=I, by the assumptions that g and  z are standardized and 
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independent, and E(gz’)=E(zg’)=0 by the assumption that the g s and z s are 
uncorrelated.  Thus the i,j th element (i≠j) of the covariance matrix of the m s can be 
written 
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22
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Since the first term in the last equality in (A4) contains only diagonal elements it 
disappears for these off diagonal elements (i≠j). The other terms in (A4) are matrices 
with all positive elements. Since the correlation of any two m s is their covariance divided 
by their standard deviations all correlations must be positive and the first part of the 
proposition is proved.  
 Next note that the variance of the ith element of m is 
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Now define Ci,k  = E(mm’)i,k/(E(mm’)i,i E(mm’)j,j).5 as the correlation of mij and mik  then 
for all k not equal to i or j  
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The third inequality follows from the second after both sides are multiplied by the 
standard deviation of mk divided by fk, the numerator and denominator of the left-hand-
side are divided by fi , the numerator and denominator of the right-hand-side are divided 
by fj, and terms are collected. Inspecting this third inequality it can be seen that if Wi,i= 
Wj,j the two sides are identical except for the fi  and fj  terms in the denominators. Since 
fi>fj  if  j>i by assumption, and since all terms in (A7) are positive, Ci,k>Cj,k for all k not 
equal to i or j if j>i and Wi,i= Wj,j. Since this is a strict inequality it will still hold for some 
values Wi,i in the neighborhood of Wj,j. Thus the second part of proposition 1 is proved. 

 

 24



Appendix 2 
Analysis of Heritability When the Diagonal Elements of Wi,i are  Not All Equal 

 
Using equation 6 from appendix 1 and equation 20 from the text  
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where φi =(1+f2

i [2βμ+μ2c’c]). Thus  
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where the second version of the inequality is obtained by substituting (A8) into the first 
inequality, multiplying both sides of the inequality by the denominators of each side and 
then subtracting the term α2φiφj from both sides. 

From equation 20 in the text we know that h2
i=h2

j when Wi,i=Wj,j so if the 
derivative of the left hand side of the inequality in (A9) with respect to Wj,j is greater than 
that of the right hand side we will know that Wj,j>Wi,i => h2

i>h2
j . Taking derivatives of 

both sides of (A9) with respect to W2
j,j  yields 

 
[ ]( )

[ ] [ ][ ] [ ]
[ ]

[ ] [ ][ ] .21'221

'2
'221'221

21)10(

22222222222222

2222222222

2222222222222222

2222222222

jijijjj

jjiji

jjijijjj

jijjjji

cffccfcff

ccfcfcf
ccfcffccfcff

cfcffA

μνβμμβμνμνβμν

μβμμνμν
μβμμνβμμβμνμνβμν

μνφμνβμνφ

>+++++
⇓

++>

+++++++
⇓

>++

 
The last inequality holds since the term  ccf i '222 μν  on the left hand side of the 
inequality is greater than 2222

ji cfμν  on the right. Thus Wj,j>Wi,i => h2
i>h2

j .  
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Appendix B 
Program to Solve Model with Different Wi,i s 

 
 This program is written in GAUSS. A GAUSS interpreter is built into the console 
version of OX which is available free to academic users at 
http://www.doornik.com/download.html .  
 
alpha=.7;      @ Direct Effect of Genetic Endowment on Ability @ 
nu=.15;        @ Direct Effect of Environment on Genetic Ability @ 
beta=1;        @ Ratio of Coefficients of ability to Activity Demands @ 
omega=3;       @ SD of Non-cognitive Environmental Innovations @ 
omega1=1;      @ SD of Cognitive Environmental Innovations @ 
delta=3;       @ Black disadvantage in access to cognitive activity @ 
d={.2,.24,.1,.24,.2};@ Change in demands of cognitive activity @ 
d=d*1.2; 
tau=1;         @ Average time spent in each activity @ 
psi=1;         @ Correlation of genetic endowment with physical trait @ 
 
@ Pad d with zeros for non-cognitive activities @ 
d=(d|zeros(15,1))~zeros(20,15); 
@ Coefficients for Genetic Endowment in Ability Equation @ 
A=Eye(20)*alpha;  
@ Coefficients for Environment in Ability Equation @ 
v=eye(20)*nu;      
 
/* Set up Matrix of Activity Demands  */ 
@ Cognitive activity puts demands of .6 .7 .8 .9 and 1 on 5 cognitive abiliities @ 
@ and no demands on non-cognitive abilities. Non cognitive activites put demands @ 
@ of 1 on their unique ability. Zeros are place holders for demands of non- @ 
@ cognitive activities on cognitive abilities   @ 
F=(seqa(.6,.1,5)|zeros(15,1))~(zeros(5,15)|1*eye(15));   
 
@ Add demands of non-cognitive activities on cognitive abilities. @ 
@ Five activities put demands of .5 on first ability, four on second @ 
@ three on third, two on fourth and one on fifth. Those abilities  @ 
@ that are least "characteristic" of the cognitive activity are the  @ 
@ ones most likely to be used in a non-cognitive activity.   @ 
k=2; 
for i (1,5,1); 
 for j (1,i,1); 
  F[j,k]=.5; 
  k=k+1; 
 endfor; 
endfor; 
 
@ create C, W and B matricies @ 
C=beta*F; 
W=omega*eye(16); 
W[1,1]=omega1; 
B=F*C'; 
 
"multiplier"; 
mult=inv(eye(20)-V*B); 
mult[1:5,1:5]; 
"Covariance"; 
covmat=mult*(A*A'+V*F*W*W'F'V')*mult'; 
covmat; 
"Correlation Matrix"; 
cormat=(covmat./sqrt(diag(covmat)))./sqrt(diag(covmat)'); 
cormat; 
"Fraction of Variance Explained by First PC"; 
{va,ve}=eigrs2(cormat[1:5,1:5]); 
va[5]/5; 
"First Factor Loading"; 
ve[.,5]'sqrt(va[5]); 
"Heritability"; 
num=mult*A*A'mult'; 
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(diag(num)./diag(covmat))'; 
"Black disadvantage in SDs "; 
delta/sqrt(C[1:5,1]'covmat[1:5,1:5]*C[1:5,1]); 
"White-Black Difference"; 
disad=delta|zeros(15,1); 
(mult*V*F*disad)'; 
"Change in cognitive abilities"; 
C1=F+d; 
(inv(eye(20)-V*(F+d)*C1')*V*d*ones(16,1)*tau)'; 
 
 

 27


	DRAFT FOR COMMENTS
	William T. Dickens

	The Formal Model
	Proposition 3
	Proof
	Table 1
	 References

