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Convergence and Per Capita Carbon Emissions 
 
 
 

ABSTRACT 
 
 
The notion of “convergence” of economic variables across countries is a useful concept and in 
the case of income per capita, a well studied area. If there is empirical evidence of convergence 
of some economic variables across countries, then our ability to predict the future (or at least 
differences between countries in the future) is enhanced. It is common in long run projections of 
climate change to base these projections on some notion of full or partial convergence whether in 
incomes per capita, technologies, energy intensities, emissions intensities of energy or per capita 
carbon emissions. But what is the empirical basis of these assumptions? This paper explores the 
historical experience of a range of variables related to climate change projections with the goal 
of examining if there is any evidence historically of convergence. The focus of the paper is on 
per capita carbon emissions from fossil fuel use because this is the basis of many projections as 
well as a variety of policy proposals. We also present evidence on GDP per capita, energy 
intensity of output and the emissions intensity of energy supply. We find strong evidence that the 
wide variety of assumptions about “convergence” commonly used in emissions projections are 
not based on empirically observed phenomena. 
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1. Introduction 

A key aspect of future projections of climate change is projections of future emissions of 

carbon dioxide. As shown by McKibbin, Pearce and Stegman (2004) the projection of 

greenhouse emissions depends importantly on future projections of economic growth, and the 

sources of that growth both within sectors and across countries. A central notion in the policy 

debate and in some projection approaches is assumptions about per capita carbon emissions. 

Some projection methodologies assume convergence of per capita emissions1. Yet given that 

fossil fuels are endowed on countries and relatively expensive to transport, it is difficult to see 

any conceptual reason why carbon dioxide emissions from fossil fuels should converge across 

countries on a per capita basis. This is an empirical question, yet in the climate change literature, 

assumptions rather than empirical evidence tends to drive much of the debate. 

The Intergovernmental Panel on Climate Change’s (IPCC) Special Report on Emissions 

Scenarios (SRES, IPCC, 2000) is one of the most comprehensive and well-known studies of 

future emissions projections.  Since its publication, the report has received considerable critical 

attention, particularly in relation to the treatment of uncertainty within the report (Schneider, 

2001) and to the assumptions regarding economic growth and convergence in some of the 

scenarios (see Castles and Henderson, 2003a and 2003b). There are wider issues regarding the 

methodology in this report apart from the existing debate. A critical issue is the basis of the 

projection methodology underlying many of the models used.  

This paper examines the appropriateness of convergence assumptions used in long term 

emission projection models. The notion of convergence in one form or another over a range of 
                                                 
1 Some policy proposals such as the “contraction and convergence” literature argue for policies that force 

convergence over time (e.g. see Bohringer, C and Welsch, H (1999), Meyer, A (2000), Pearce, F (2003), 
and WBGU Special Report (2003)). 
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variables often underlies model projections of the world economy. Most frequently, these 

assumptions about convergence relate to income per capita or productivity convergence.  The 

SRES (IPCC, 2000) includes long run projections of emissions that are based on assumptions of 

convergence, not only in income per capita but also in the energy intensity of output. These 

assumptions have implications for the distribution of emissions per capita. This report explores 

the convergence properties of a number of economic variables that relate directly to energy use 

and fossil fuel emissions. Understanding the cross country distribution of these variables and the 

dynamic behaviour of these distributions is a crucial step in evaluating the appropriateness of 

including convergence assumptions in long run projection models. 

The distribution of emissions per capita across countries and factors that affect the 

distribution over time can be further examined by considering the distributions of GDP per 

capita, the energy intensity of output and the emissions intensity of energy supplied. 

A useful starting point is the following equation known as the IPAT identity (Ehrlich and 

Holdren, 1972): 

Impact  = Population × Affluence ×  Technology 

 which can be expressed as  

Emissions = Population × GDP per capita × Emissions per GDP  (1) 

     E     =          P         ×       GDPPC        ×             I   (Emissions Intensity) 

If population growth (p), GDP per capita growth (gdppc) and growth in emissions intensity (i) 

are independent then the IPAT identity can be approximated by a linear expression in growth 

rates: 

e = p + gdppc + i        (2) 



 

 

3

and changes in income per capita growth, changes in the emissions intensity of output or changes 

in population would result in corresponding changes in emissions growth. 

With endogenous right hand side variables, however, the relationship between right hand side 

changes and emissions growth becomes unclear. 

The analysis in this report focuses primarily on emissions per capita but we also explore 

other elements of the identity such as energy intensity. The IPAT identity can be rewritten in 

terms of emissions per capita and technology can be expressed using energy variables: 

Emissions/Capita =  

 GDP /Capita × Energy Supplied2/GDP × Emissions/Energy Supplied (3) 

This equation provides a foundation for the analysis of emissions per capita and the 

distribution of emissions per capita across countries and through time.  Convergence in 

emissions per capita across countries could occur without convergence in the right hand side 

variables of Equation 3. Likewise, one or two of the right hand side variables could converge, 

but one variable could diverge to the extent that emissions per capita fail to converge.  

The study begins with a detailed examination of the distribution of emissions per capita. 

A number of statistical methods are employed to examine the issue of convergence in emissions 

per capita. The statistical analysis examines unconditional convergence. Conditional 

convergence refers to convergence that exists as long as certain characteristics across the sample 

                                                 
2 Total primary energy supplied (TPES) is calculated as the production of primary energy plus imports, minus 

exports, minus international marine bunkers, plus or minus stock changes. Production is the production of 
primary energy: hard coal, lignite/brown coal, peat, crude oil, natural gas liquids, natural gas, combustible 
renewables and wastes, nuclear, hydro, geothermal, solar and the heat from heat pumps that is extracted 
from the ambient environment. Total primary energy supply for a country differs from total final 
consumption (TFC) in that TFC measures consumption by end-use sectors. TPES includes energy 
consumed in the energy sector. The results in this section are not sensitive to the measurement of energy 
usage as either TFC or TPES. (IEA, 2004a) 
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remain the same. Unconditional convergence does not require this restriction. Overall we find 

little evidence for convergence in emissions per capita when analysed appropriately. Section 2 

considers convergence in several other key energy and emission variables: GDP per capita, the 

energy intensity of output and the emissions intensity of energy supplied. There is little 

evidence of cross country convergence in these variables. In Section 3, factors that are likely to 

lead to differences in key energy and emissions variables are considered. The factors examined 

include differences in fossil fuel endowments, differences in the composition of energy 

supplied and the overall composition of economic activity, and differences in the costs and 

prices associated with energy use. Section 4 examines the existence of beta convergence (a 

negative relationship between the growth rate of emissions per capita over a period and the initial 

level) and its relationship to the distributional analysis in Section 2. The final section considers 

the implications of these findings for long run projections of future emissions. It is extremely 

worrying that many projections are based on various notions of convergence when this has not 

been observed historically. More importantly our results suggest that policies that aim to impose 

convergence of per capita emissions are likely to be high cost especially if as we argue, 

endowments of fossil fuels largely determine emissions of carbon from burning these fuels. Why 

would it be sensible to incur additional costs to have all citizens of the world produce the same 

emissions per capita when endowments of carbon differ across countries? 



 

 

5

2. The Cross Country Distribution of Fossil Fuel Emissions Per Capita 

 

The analysis undertaken in this section is designed to provide a comprehensive and 

dynamic examination of the cross-country distribution of fossil fuel CO2 emissions.  The 

information presented in this section provides an empirical foundation for projecting emissions 

and the analysis undertaken provides general information on the distribution of fossil fuel CO2 

emissions and how this distribution has changed over time. The analysis is not restricted to a 

single characteristic of the data. Rather, it seeks to examine the full dynamic nature of the cross-

country distribution of emissions per capita.   The analysis is structured to answer the question: 

do emission per capita rates across countries converge over time? With normally distributed data, 

convergence could be defined as a reduction in the dispersion or spread of the data set.  This 

definition is often referred to as ‘σ-convergence’ in the growth literature.  With data that is not 

normally distributed, however, this definition may be inappropriate, particularly if the data set 

exhibits multiple peaks.  The standard summary statistics that attempt to measure dispersion 

implicitly assume a narrow definition of convergence and are, as such, uninformative on more 

complicated dynamic behaviour.  For this reason, convergence in emissions per capita is 

assessed by examining a variety of summary measures and through a comprehensive dynamic 

analysis of the entire cross-country distribution of fossil fuel CO2 emissions.  A range of 

stochastic kernels that describe how the cross-county distribution of emissions per capita at time 

t evolves into the distribution at time t+k are estimated to examine these dynamics.  

The main data set in this section is denoted Sample A.  It includes 97 countries over the 

period 1950 to 1999.  In addition, some results for a set of countries for which data is available 
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over a longer time frame (Sample B) are provided. Unfortunately the number of countries in 

Sample B is significantly reduced.  Sample B includes 26 countries over the period 1900 to 1999.  

Further details of these samples are contained in the Appendix. 

2.1. Summary Measures 

This section examines a variety of summary statistics used to measure the spread or variability of 

a data set (NIST/SEMATECH, 2003).  Six measures are considered: the variance (VAR), the 

standard deviation (STDEV), the coefficient of variation (CV), the average absolute deviation 

(AAD), the median absolute deviation (MAD), and the interquartile range (IQR). The Appendix 

provides details on the calculation of each of these measures. All of the statistics, except for the 

IQR, attempt to measure variability, both around the centre and in the tails of a distribution.  

They differ in the weight placed on observations in the tails (NIST/SEMATECH, 2003).  The 

appropriate statistic will depend upon the question of interest and the distribution of the data 

under consideration.  With a normally distributed data set, the variance or the standard deviation 

provide the best representation of the spread of the data set, both around the centre and in the 

tails.  With data that is not normally distributed, however, an alternative method, such as the 

median absolute deviation or the average absolute deviation, may be more appropriate. 

In Figures 1 and 2, contain estimates of each of the measures for Sample A over the period 1950 

to 1999. Emissions per capita are measured as metric tons of carbon per capita. 
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Figure 1: Summary Measures of Spread 
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In Figure 1, the mean, the variance, the standard deviation and the coefficient of variation are 

plotted. 

Both the mean and the standard deviation of the data set increase over the sample period. 

Between 1950 and 1999, the mean increased by more than the standard deviation (which 

increases only slightly) and, as a result, the coefficient of variation falls over the period. Both the 

average absolute deviation and the median absolute deviation of Sample A increase over the 

period 1950 to 1999.  The IQR, which only looks at the spread in the centre of the distribution, is 

also increasing over the time period (Figure 2).   

In summary, all of the measures, except for the coefficient of variation, increase over the 

period 1950 to 1999.  This suggests that the spread or variability of the data series, emissions per 

capita, increased over the period from 1950 to 1999. This interpretation is not consistent with a 

series that exhibits unconditional convergence. 

 

2.2. Distributional Analysis 

This section examines the cross-country distribution of fossil fuel CO2 emissions.  

General information on the distributional dynamics of fossil fuel CO2 emissions per capita is 

presented.  The particular question of convergence in emissions per capita rates is considered. 

Convergence is a difficult concept to define. In the context of a distributional analysis, 

convergence could be defined as a sequence of distributions collapsing over time to a degenerate 

point limit (Quah, 1997). Progress in this area would then depend upon the series under 

consideration. For example, the statistical analysis of the previous section looked at the 

distribution of emissions per capita.  Using this series in a distributional analysis would 
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implicitly define convergence in terms of the differences in levels between countries’ emission 

per capita rates.  An alternative approach might look at the distribution of countries’ emission per 

capita rates relative to the world average.  This allows the analysis to abstract from the general 

increase in emission per capita rates over time.  The definition of convergence now concentrates 

on proportional deviations from the mean.  When the mean is changing over time, convergence 

to a particular emissions per capita rate is not distinguished from the convergence of countries to 

a per capita emissions rate that changes over time.  Lastly, the logarithm of emissions per capita 

rates could be considered so that the definition of convergence depends on the percentage 

deviation between countries.  Analyses that seek to study convergence must clearly define the 

definition of convergence used and how it relates to the series under consideration.  The study 

presented here analyses relative emissions per capita, where emissions are measured as both the 

levels deviation from the mean and the proportional deviation from the mean.  These series are 

the most appropriate for an analysis of emissions and the most relevant to the current research 

debate.  

This section utilises cross country density estimation techniques developed by Quah 

(1995, 1997) to study income convergence. Kernel-smoothed estimates of the cross-country 

density of fossil fuel CO2 emissions over time are plotted.  Plotting the cross-country density 

over time provides information on how the shape of the distribution is evolving.  Details of the 

estimation techniques are contained in the Appendix. Readers unfamiliar with non parametric 

density estimation may prefer to consider the density graphs as continuous histograms where the 

area under the curves has been normalised to unity. The vertical axis, denoted f, is therefore a 

normalised measure of frequency. The intra-distributional dynamics of this distribution over time 

are then examined. The stochastic kernel detailed in Quah (1995) is used to estimate these 
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dynamics. The calculation of the stochastic kernel estimates is similar to the calculation of a non 

parametric conditional density function.  

In Figures 3, 4 and 5 kernel-smoothed cross-country densities for fossil fuel CO2 

emissions per capita are presented.  In Figure 3, cross-country density estimates for various years 

between 1950 and 1999 – the time period over which the most comprehensive data set is 

available (Sample A) are plotted.  In Figure 4, the smaller sample of countries (Sample B) for 

which data is available from 1900 onwards is examined.   

A general interpretation of the density functions based on Sample A is one of divergence. 

Although the 1950 density function exhibits more than one peak, the majority of countries are 

clearly grouped around 0.1 metric tons of carbon per capita.  In 1999, there is no apparent peak.  

The majority of countries lie in the relatively wide range from 0.1 to 2.5 metric tons of carbon 

per capita.  Both the mean and the variance of this data set would be expected to have increased 

over this time period (this is confirmed by the summary statistics of the previous section).  A 

visual interpretation of the distributions suggests that between 1950 and 1999, the distribution of 

emissions per capita changed significantly, with an increase in the mean and the variance and a 

flattening of the entire distribution.   

In Figure 4, the nonparametric densities for Sample B are plotted. From 1900 to 1990, 

there is a flattening of the distribution which appears consistent with divergence in emissions per 

capita rates.  Over the decade from 1990 to 1999, the density appears to narrow slightly in the 

middle.  Given that the number of countries in Sample B is relatively small, and that, as with 

income distribution analyses, there may be some selection bias due to data availability, these 

results are not inconsistent with the conclusions based on Sample A.  This does, however, 

highlight the need for a more detailed examination of the intra-distribution dynamics. 
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Figure 5, plots the density estimates for relative emissions per capita rates based on 

Sample A.  The data under consideration is the emissions per capita rate for each country at time 

t, divided by the cross country average emissions per capita rate at time t.  A 2 on the x-axis 

therefore represents 2 times the cross-country average.  The results are similar to those presented 

in Figure 3.  The interesting differences are less flattening in the distribution over time and a 

substantial change in the range of the distribution over time.  This result may help explain why 

the coefficient of variation for the original data set (graphed in the previous section), which is the 

standard deviation for this relative data set, decreases over time.  
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Figure 4: The Cross-Sectional Distribution of Emissions per Capita 
Sample B 

Figure 5: The Cross-Sectional Distribution of Relative Emissions per Capita 
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When analysing the convergence properties of a data set, it is important to account for 

movements in the average rate of emissions per capita.  The relative series considered above is 

one method of doing so.  However, as is clear from a comparison of Figures 3 and 5, such a 

transformation may affect the conclusions drawn.  In analysing the dynamics of emissions per 

capita, the concept of convergence in both levels and in proportions to the mean is considered.  

Two data transformations are used in what follows.  Firstly, a relative emissions per capita 

series, defined as above.  This series measures proportional deviations from the cross-country 

mean.  Secondly, from the original (levels) series, the cross-country mean at time t from each 

observation at time t is subtracted.  This series, denoted levels relative emissions per capita, 

measures level deviations from the mean.   In Figures 6 and 8 the stochastic kernels for each of 

these series is plotted and Figures 7 and 9 contain the corresponding contour graphs.  In both 

cases, the time period over which transitions is measured is 10 years. 

Interpreting these graphs is relatively simple.  As discussed above, their interpretation is 

similar to a conditional density function.  From any point on the axis marked Period t, extending 

parallel to the axis marked Period t+10, the stochastic kernel is a probability density function 

(Quah, 1997).  It describes transitions over 10 years from a given emissions per capita rate in 

period t.  A ridge along the 45° line extending from the bottom left hand corner indicates a high 

degree of persistence – countries with a given (relative) emissions per capita rate in period t are 

likely to remain at that rate in period t+10.  A ridge extending from any point in the axis marked 

Period t+10 parallel to the axis marked Period t indicates convergence in emission per capita 

rates – starting at any rate in period t countries are likely to end up at the same (relative) rate in 

period t+10.   
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Consider Figures 6 and 7.  Axis markings indicate relative emissions per capita – a 2 

therefore, refers to 2 times the cross country average emissions per capita rate.  The stochastic 

kernel graphed in Figures 6 and 7 indicates significant persistence at low relative emissions per 

capita rates.  There is a clear ridge that extends close to the 45° line until emission levels of 

around 5 times the average per capita rate. At higher rates the ridge swings around indicating 

some convergence at higher relative rates of emissions per capita. There are, however, only a few 

observations available at these higher rates (see Figure 5) and caution is needed when 

interpreting this last result. (See Pagan and Ullah (1999), pp58-60, for some discussion of the 

large sample requirements when estimating multivariate densities.)   

Figures 8 and 9 indicate a slightly different story.  Axis markings in these figures indicate 

level deviations from the mean – a 2 therefore, refers to an emissions per capita rate 2 metric 

tons above the average emissions per capita rate.  The main ridge extends all the way along the 

45° line that indicates persistence.  In relative levels terms, there is no evidence of convergence. 

To check the robustness of these results to alternative time horizons the analysis is repeated for 

transitions over 20 years.  The results (not presented here, but available on request) are consistent 

with the discussion presented above. 

The general conclusion from this analysis is that there is little evidence of convergence in 

emissions per capita rates.  Although in terms of proportional deviations from the mean there is 

some evidence of convergence at high relative rates of emissions per capita, this result does not 

hold when deviations from the mean in levels is considered.  Any convergence at these higher 

rates is therefore very weak and dependent on the series transformation. 
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Figure 6: Relative Emissions per Capita Dynamics 
 

 

 

 

 

 

 

 

 

 

 

Figure 7: Relative Emissions per Capita Dynamics 
Contour Plot 
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Figure 9: Levels Relative Emissions per Capita Dynamics 
Contour Plot 

 

 

 

 

 

 

Figure 8: Levels Relative Emissions per Capita Dynamics 
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3. The Distribution of GDP Per Capita, the Energy Intensity of Output and 

the Emissions Intensity of Energy Supplied 

 

 This section explores the right hand side of the IPAT identity to see what components of 

GDP per capita, energy intensity of output or the emissions intensity of energy supplied, are 

responsible for the non-convergence of emissions per capita. 

 The data in this section is sourced from the International Energy Agency (IEA, 2004a, 

2004b). The GDP variables are all measured using 1995 purchasing power parities (PPPs) and 

denoted in US$. The data sets are measured relative to (as a proportion of) the cross-sectional 

mean. This allows changes in the shape of a distribution to be examined independently of general 

increases (or decreases) in the cross country mean of the series over time, as described in the 

previous section. 

A shortcoming of the analysis is the limited availability of data prior to 1971. Non-OECD 

data is not available prior to this data. The distributional analysis of the previous section 

suggested that the shape of the cross country distribution of emissions per capita experienced the 

most change between 1950 and 1970. An analysis of the OECD region is therefore included, 

where possible, from 1960. Analysing a sub set of countries is equivalent to considering a 

conditional convergence hypothesis.  

Further details of the data are contained in the Appendix. 
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3.1. GDP Per Capita 

The neoclassical growth models of Ramsey (1928) and Solow (1956) suggest that there is 

an inverse relationship between the growth rate of income or output per capita and the initial 

starting level (Sala-i-Martin, 1996a). Sala-i-Martin and Barro (1992) argue that if countries are 

similar with respect to preferences and technology then poor countries tend to grow faster than 

rich countries and “there is a force that promotes convergence in levels of per capita product and 

income” (p224). 

The model implies conditional convergence in that for a given steady state, the growth 

rate is higher the lower the initial level of output per effective labour unit. The neoclassical 

growth model does not predict unconditional convergence. Poor countries are predicted to grow 

faster than rich countries only if they share the same steady state characteristics. 

Empirical research on convergence has received considerable attention in the economic 

literature. Most of this research is concerned with the distribution of income per capita (living 

standards) and, to a smaller extent, the distribution of output per worker or per hour worked 

(productivity). 

Four broad approaches to convergence analysis can be identified in the literature: beta (β) 

convergence, sigma (σ) convergence, time series (co-integration) analysis, and distributional 

analysis. Sala-i-Martin (2002) and Quah (1995a) provide summaries of these alternative 

approaches to convergence analysis.  

In general, there is little evidence for unconditional convergence of income per capita or 

productivity levels when a large cross section of countries is considered (see Sala-i- Martin 

(1996b) for β and σ convergence analyses, Quah (1995b) for a distributional analysis, and 
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Bernard and Durlauf (1995) for a time series analysis). The evidence for alternative forms of 

conditional convergence is stronger (see Quah (1995b, 1997) and Sala-i-Martin (1996a, 1996b)), 

although there is considerable debate about the appropriate interpretation of these results.  

Figure 10 contains density estimates for relative GDP per capita levels from 1971 to 

2000. GDP per capita levels are measured relative to (as a proportion of) the cross country mean 

so that a 2 on the x-axis represents two times the cross country average level of GDP per capita. 

The y-axis is a normalised frequency (f) as described in Section 2. 

There is little evidence that GDP per capita levels are converging across countries. The 

density estimates reveal the “twin peak’ (bimodal) behaviour characteristic of large sample GDP 

per capita distributions (see Quah, 1997). 

Figure 11 contains density estimates for GDP per capita in the OECD region only. There 

is some evidence of convergence. The range of this relative distribution, which extends from 

around 0.25 of the OECD average to 2 times the OECD average, does not change much from 

1960 to 2000. The shape of the distribution, however, becomes more peaked, suggesting that the 

majority of countries in the OECD are converging in terms of GDP per capita. 

 

3.2. The Energy Intensity of Output 

Figure 12 contains density estimates for the cross-country distribution of energy supplied 

per unit of GDP, where energy intensity is measured relative to (as a proportion of) the cross 

country mean of each series. There appears to be little change in the shape of the cross country 

distribution of the energy intensity of output. 
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Figure 12: The Cross Country Distribution of Energy Supplied Per GDP 
Density Estimates 
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Figure 13 contains density estimates for the relative cross-country distribution of energy supplied 

per unit of GDP in the OECD region. In the OECD sample, there is some evidence of 

convergence in the energy intensity of output. The range of the distribution narrows and becomes 

more peaked around the OECD average. 

 

3.3. The Emissions Intensity of Energy Supplied 

Figure 14 contains density estimates for relative fossil fuel emissions per unit of energy 

supplied. From 1971 to 1990 the shape of the distribution of the emissions intensity of energy 

supplied shows little evidence of change. It exhibits a bimodal shape although very different to 

the GDP per capita distribution in Figure 10. The distribution in 2000, however, does not exhibit 

such a distinct bimodal shape although the distribution is still negatively skewed. There appears, 

therefore, to be some mobility in the distribution, but this is cannot be interpreted as evidence of 

convergence. 

Figure 15 contains density estimates for relative fossil fuel emissions per unit of energy 

supplied for the OECD region. In contrast to the global sample, the OECD sample has more 

normal distribution. However there does not appear to be any evidence of convergence. 
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3.4. Summary 

This section examined the key components of emissions per capita, as outlined by the IPAT 

framework. Given the analysis in Section 2 that suggested there was little evidence of 

convergence in emission per capita rates, this section examined the evidence for convergence in 

three key variables: GDP per capita, the energy intensity of output and the emissions intensity of 

energy supplied, to assess whether trends in the cross country distribution of emissions per capita 

were a reflection of the general absence of convergence in key macroeconomic variables or if 

they were a reflection of divergence in a particular variable. 

Because of data limitations the analysis was not as comprehensive as the detailed analysis 

of emissions per capita in Section 2, but the examination provides a good overview of the 

distribution of each variable over time. 

Overall, there is little evidence of convergence in any of the variables when a large cross 

section of countries was considered. When the analysis is restricted to the OECD region, there is 

some evidence that the GDP per capita and energy supplied per unit of GDP variables were 

converging but there was no evidence that the emissions intensity of energy supplied was 

converging across OECD economies.  If GDP per capita and energy supplied per unit of GDP 

converged, differences in emissions per capita may still persist because of differences in the fuel 

mix of energy supplied. The next section looks at factors that may help to explain differences in 

the energy intensity of output and the emissions intensity of energy supplied. 
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4. Determinants of Key Energy and Emissions Variables Across Countries and 

Over Time 

The analysis in Section 2 suggested that there is little tendency for convergence in the 

levels of emissions per capita across countries. Section 3 disaggregated emissions per capita into 

three key variables: GDP per capita, energy supplied per unit of GDP and emissions per unit of 

energy supplied. There appeared to be little evidence of cross country convergence in any of 

these key variables when a large cross section of countries was considered. This section 

examines factors that are likely to determine the quantity and composition of energy supplied 

and fossil fuel emissions across countries and changes in the cross country distribution of 

emissions per capita over time. The factors considered include the structure of economic 

activity, differences in fossil fuel endowments, differences in the structure of energy supplied, 

and differences in the costs and prices associated with energy use.  Each of these factors is 

considered in turn.  

 

4.1. The Structure of Economic Activity 

To provide an overview of the link between economic activity, energy supplied and fossil 

fuel emissions, Figure 16 plots per capita variables for GDP, energy supplied and emissions for 

major world regions in 2001. Figure 16 highlights the positive relationship between income, 

energy supplied and emissions. However, the relationship between these variables, when 

examined in the time dimension and in a more detailed cross section is more complex than 

suggested by Figure 16.  
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The relationship between emissions and GDP critically depends on the emissions 

intensity of GDP which in turn is determined by the energy intensity of GDP and the emissions 

intensity of energy supplied. The emissions intensity of output therefore depends on the relative 

prices of energy and non-energy inputs, and emitting and non-emitting energy sources as well as 

on the ability to substitute between these inputs (and their relative shares in production).  

Relative input and energy prices will change as a result of changes in the drivers of growth, 

which may be concentrated in particular sectors of the economy. 

Figure 17 plots GDP, energy consumption and emissions for the United States and Japan 

as index numbers from 1965. Energy numbers for China are available from 1971 onwards and 

Figure 18 plots GDP, energy consumption and emissions for China as index numbers from 1971.  

Figure 16: Key Variables in 2001 

Source: International Energy Agency, 2004b, 2003 
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Figures 17 and 18 demonstrate that there is no simple relationship between GDP and emissions.  

In the United States and Japan emissions and GDP appear to follow a common trend until 1972 

when the OPEC oil price shocks dramatically changed the price of energy.  In China there is no 

clear relationship between GDP and emissions. Emissions intensity (emissions per unit of GDP) 

increases until 1978/1979, when China began implementing extensive economic reform.  This 

reform was accompanied by rapid economic expansion and GDP growth.  At the same time, 

reforms in the energy sector helped to reduce energy intensity and emissions intensity.  

Changes in the relationship between GDP, energy use and emissions, such as those 

depicted in Figures 17 and 18, can result from changes within sectors as well as from 

compositional changes in the relative size of sectors with different energy intensities.  

Technological change can also contribute to such outcomes. 

Figures 19 and 20 illustrate this point by demonstrating the impact of a simple 

productivity shock in the G-Cubed dynamic stochastic general equilibrium model. The G-Cubed 

model, which includes detailed country coverage, sectoral disaggregation and rich links between 

countries through goods and asset markets, is outlined in McKibbin and Wilcoxen (1998). Tables 

1 and 2 outline the country and sectoral coverage of the version used in this analysis (Version 

58E). 

Figures 19 and 20 demonstrate the pattern of GDP growth and carbon emissions when 

assumptions about productivity growth at the sectoral level are changed.  Each pair of bars 

represents the change in real GDP and carbon emissions in the United States when productivity 

growth of 1% per year for 50 years occurs in that sector.  
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Table 1: G-Cubed Version E Regions 

Unites States of America USA 

Japan JPN 

Australia AUS 

Europe EUR 

Rest of the OECD ROECD 

China CHN 

Eastern Europe and the former Soviet Union EEB 

Oil Exporting Developing Countries OPC 

Other Developing Countries LDC 

 

Table 2: G-Cubed Sectors 

 Energy:  

1  Electric Utilities 

2  Gas Utilities 

3  Petroleum Refining 

4  Coal Mining 

5  Crude Oil and Gas Extraction 

 Non Energy:  

6  Mining 

7  Agriculture, Fishing and Hunting 

8  Forestry/ Wood Products 

9  Durable Manufacturing 

10  Non-Durable Manufacturing 

11  Transportation 

12  Services 

Y  Capital Good Producing Sector 
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Each of the figures (19 and 20) contains 13 groups of two bars. Along the horizontal axis each of 

the 13 groups corresponds to the sector in which the increase in productivity occurs.   

The percentage deviation in both emissions and economy wide GDP as a result of the 

productivity growth in sector i is shown on the vertical axis.  In Figure 19, the vertical axis 

shows the impact of productivity growth on United States emissions and GDP by 2020 (18 

years). In the services sector (Sector 12), the impact of productivity growth on GDP is larger 

than the increase in emissions.  In the energy sectors (Sectors 1 to 5), higher productivity growth 

has little impact on GDP, but leads to significant increases in economy wide emissions.  

Productivity growth in these sectors reduces the relative price of output from these sectors 

(various forms of energy), which leads other sectors and final demand to substitute into energy 

and therefore raise emissions.  

Figure 20 shows the impact of the United States sectoral productivity shocks on United 

States emissions and GDP in 2050. Interestingly, the relative importance of productivity growth 

to GDP and emissions varies between 2020 and 2050. In Sector Y, for example, further 

productivity growth results in further increases in GDP but the impact on emissions is almost 

unchanged. In Sector 12, the impact on emissions becomes larger than the impact on GDP. 
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(See definitions in Table 2) 

Figure 19: Percentage Change in US Emissions and Real GDP by 2020 
For a 1 percent rise in US sector i productivity growth 

(See definitions in Table 2) 

Figure 20: Percentage Change in US Emissions and Real GDP by 2050 
For a 1 percent rise in US sector i productivity growth 
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Understanding the relationship between GDP and emissions requires breaking down the sources 

of GDP growth and the sources of changes in emissions. McKibbin, Pearce and Stegman (2004) 

use a simple example to demonstrate that it is possible for emissions and GDP to move in 

opposite directions and that the more important clean technology is as a driver of growth, the 

more likely it is that there will be a parameter set that will cause GDP and emissions to move in 

opposite directions. 

The responses in Figures 19 and 20 also suggest that different sectors of the economy 

may be characterised by different emissions intensities. Differences in aggregate energy 

intensities across countries may result from differences in sectoral energy intensities and from 

differences in the structure of economic activity. The industry sector, which includes 

manufacturing, mining and construction, consumed around 30 percent of total world final energy 

consumption in 2002. The transport sector consumed over 25 percent. Other sectors accounted 

for the remainder. These other sectors include agriculture, services and the residential sector. In 

the OECD region, the agricultural sector accounted for 1.8 percent of OECD total final energy 

consumption in 2002. The industry sector accounted for 30 percent. A country with a large 

agricultural sector might be expected to consume less energy than a country with a high 

manufacturing sector.  If the industrial structure of output is converging across countries then 

energy intensities may also eventually converge across countries. On the other hand, if sectoral 

energy intensities are different then convergence in the structure of economic activity will not be 

associated with aggregate energy intensity convergence. Likewise, convergence of sectoral 

energy intensities may not be associated with aggregate energy intensity convergence if 

economic structure differs across countries. 
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Figures 21, 22 and 23 contain summary measures of spread for the cross country 

distribution of output shares. The figures consider the shares of industry, services and agriculture 

in GDP. There does not appear to be any tendency for these shares to converge across countries 

when simple measures of spread (sigma convergence) are considered.  

 

 

 

 

 

 

 

 

 

 

Figure 21: Summary Measures of Spread 
Share of Industry in GDP (%) 
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Figure 22: Summary Measures of Spread 
Share of Services in GDP (%) 

Figure 23: Summary Measures of Spread 
Share of Agriculture in GDP (%) 
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To investigate this idea further, Figures 24, 25 and 26 plot these output shares against GDP per 

capita. There does appear to be a relationship between the share of agriculture in GDP and GDP 

per capita and between the share of services in GDP and GDP per capita. There is no clear 

relationship for the industry sector. If GDP per capita levels converged across countries then 

agricultural and services shares may also converge. Figures 17 and 18 show little evidence of 

convergence in output shares, consistent with the majority of studies in income convergence that 

suggest there is no strong evidence for income per capita (unconditional) convergence across 

countries when a broad cross section of countries is considered. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: GDP Per Capita and Industry Share in GDP (%), 1998 
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Source: WDI 2002, SourceOECD (2004), Maddison (2004)
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Figure 26: GDP Per Capita and Agricultural Share in GDP (%), 1998 
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Figure 25: GDP Per Capita and Services Share in GDP (%), 1998 
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Figure 28: Emissions Per Capita and Services Share in GDP (%), 1998 
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Figure 27: Emissions Per Capita and Agricultural Share in GDP (%), 1998 
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Figures 27, 28 and 29 plot output shares against emissions per capita. These graphs show 

a similar pattern to the GDP per capita scatter plots reflecting the positive relationship between 

GDP per capita and emissions per capita. 

Figures 30, 31 and 32 plot output shares against the energy intensity of output (energy 

supplied per GDP). Figures 33, 34 and 35 plot output shares against the emissions intensity of 

energy supplied (emissions per energy supplied). These scatter plots do not show any clear 

relationship. This does not mean that differences in economic structure are not important in 

determining energy intensity differences across countries. It does highlight that there is no simple 

bi-variate relationship between these variables. 
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Figure 29: Emissions Per Capita and Industry Share in GDP (%), 1998 
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Figure 30: Energy Supplied Per GDP and Agricultural Share in GDP (%), 1998 

Source: WDI 2002, SourceOECD (2004), IEA (2004a, 2004b) 
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Figure 31: Energy Supplied Per GDP and Services Share in GDP (%), 1998 
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Source: WDI 2002, SourceOECD (2004), IEA (2004a, 2004b) 

Figure 32: Energy Supplied Per GDP and Industry Share in GDP (%), 1998 

Figure 33: Emissions Per Energy Supplied and Agricultural Share in GDP (%), 1998 

Source: WDI 2002, SourceOECD (2004), IEA (2003) 
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Figure 34: Emissions Per Energy Supplied and Services Share in GDP (%), 1998 

Source: WDI 2002, SourceOECD (2004), IEA (2003) 

Figure 35: Emissions Per Energy Supplied and Industry Share in GDP (%), 1998 

Source: WDI 2002, SourceOECD (2004), IEA (2003) 
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This analysis of emissions and economic activity suggests that economic activity is an important 

determinant of emissions per capita. There appears to be strong relationships between the level 

of economic activity and emissions per capita and between the structure of economic activity and 

emissions per capita.  There is no simple bi-variate relationship between GDP per capita and the 

energy intensity of output and between output shares and the energy intensity of output. It is 

likely that energy intensity is related to the structure of an economy but it is also likely to depend 

on other factors such as relative prices, technology and institutional arrangements. 

 

4.2. Differences in Fossil Fuel Endowments 

Table 3 lists a number of energy and emissions rankings in 2001 according to the 

International Energy Agency (2003).  Table 4 lists those countries with the highest fossil fuel 

reserves as listed by the Energy Information Administration (2004).  The International Energy 

Agency lists Qatar as the country with highest levels of energy supplied and emissions per 

capita. Qatar’s natural gas reserves rank third after Russia’s and Iran’s.  The IEA lists Iraq as the 

country with highest levels of energy supplied and emissions per GDP.  Iraq’s proven oil 

reserves rank third after Saudi Arabia’s and Canada’s and the EIA suggests that Iraq may hold 

much more undiscovered oil in unexplored areas of the country.  Iraq’s natural gas reserves are 

ranked as the tenth largest. 
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Table 3: International Energy Agency Rankings in 2001 (IEA, 2003) 
_____________________________________________________________________ 
 
Total Primary Energy Supplied Per Capita   CO2 Emissions Per Capita 
 
1. Qatar      1. Qatar 
2. Iceland      2. Kuwait 
3. United Arab Emirates    3. United Arab Emirates 
4. Bahrain     4. Bahrain 
5. Luxembourg     5. United States 
6. Kuwait      6. Luxembourg 
7. Canada     7. Australia 
8. United States     8.  Canada 
9. Singapore     9.  Gibraltar 
10. Netherlands Antilles    10.  Netherlands Antilles 
 
  
 
Total Primary Energy Supplied Per GDP   CO2 Emissions Per GDP 
 
1. Iraq      1. Iraq 
2. Nigeria     2. DPR of Korea 
3. Qatar      3. Uzbekistan 
4. Uzbekistan     4. Qatar 
5. Zambia     5. Kuwait 
6. United Rep. of Tanzania   6. Turkmenistan 
7. Trinidad and Tobago    7. Russia 
8. DPR of Korea     8.  Bahrain 
9. Turkmenistan     9.  Ukraine 
10. Ukraine     10.  Libya 
 
_____________________________________________________________________ 

 

Iceland is listed as the second highest supplier of energy per capita.  Although Iceland is 

not listed in Table 2, its energy supply is related to its natural endowments.  According to the 

IEA (2004a), 55 percent of Iceland’s total primary energy supplied in 2002 was generated from 

geothermal resources and the combination of geothermal and hydroelectric energy accounted for 

over 72 percent of total energy supplied. 
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Table 4: Fossil Fuel Reserves (EIA, 2004) 
World Rankings and Percent of Total 
____________________________________________________________________ 

 Crude Oil Reserves   Natural Gas Reserves 

1.  Saudi Arabia (22%)   1. Russia (31%) 
2. Canada (15%)    2. Iran (15%) 
3. Iraq (9%)    3. Qatar (9%) 
4. United Arab Emirates  (8%)  4. Saudi Arabia (4%) 
5. Kuwait  (8%)    5. United Arab Emirates (4%)  
6. Iran (7%)    6. United States (3%) 
7. Venezuela (6%)   7. Algeria (3%) 
8. Russia (5%)    8. Venezuela (3%) 
9. Libya (2%)    9. Nigeria (2%) 
10. Nigeria (2%)    10. Iraq (2%) 

 

    Recoverable Coal 

    1. United States (25%) 
    2. Russia (16%) 
    3. China (12%) 
    4. India (9%) 
    5. Australia (8%) 
    6. Germany (7%) 
    7. South Africa (5%) 
    8. Ukraine (3%0 
    9. Kazakhstan (3%) 
    10. Poland (2%) 
_____________________________________________________________________ 

Clearly natural endowments are an important determinant of country emission and energy 

variables. The rankings in Tables 3 and 4 however, suggest that natural endowments are not the 

sole determinant of these variables. There are countries listed in Table 3 that do not appear in 

Table 4 and vice versa. 



 

 

45

4.3. The Structure of Energy Use 

Fossil fuel combustion is the primary source of greenhouse gas emissions.  The fuel mix of 

energy supplied is therefore likely to be a determinant of a country’s CO2 emissions. Of course, 

CO2 emissions will also depend on the quantity of total energy supplied, but for two countries 

with similar energy supplies, differences in fossil fuel emissions are likely to be related to 

differences in the contribution of alternative energy sources. This in turn is likely to depend on 

natural endowments. This relationship was highlighted by the example of Iceland in the previous 

section. Although Iceland’s energy supplied per capita is the world’s third highest, fossil fuel 

emissions per capita in Iceland do not rank in the world top ten or even in the world top twenty 

because over 70 percent of Iceland’s energy supply is sourced from renewable energy supplies. 

This situation is possible because of geothermal sources in Iceland. 

If there is evidence that the structure of energy supplied is converging across countries, 

this may provide some support for the inclusion of emissions per capita convergence 

assumptions. Even if the structure of energy supplied across countries converges, differences in 

emissions per capita across countries are likely to persist due to differences in the quantity of 

energy supplied and other country specific factors, but empirical evidence of energy structure 

convergence may justify some modified convergence assumptions that could be useful in the 

face of the extensive uncertainty that surrounds emissions projection models.  Figures 36 and 37 

show the contribution of Coal, Oil, Gas and Other fuel sources to total primary energy supplied 

for the world’s major regions in 1971 and 2002. There does not appear to be a strong tendency 

towards convergence in these shares. 
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Figure 36: Fuel Shares in Total Primary Energy Supplied - 1971 

Figure 37: Fuel Shares in Total Primary Energy Supplied - 2002 

Source: IEA 2004a, 2004b 
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Figure 38: Percentage of Coal in Total Primary Energy Supplied and  
CO2 Emissions Per Total Primary Energy Supplied - 2001 

Figure 39: Percentage of Oil in Total Primary Energy Supplied and  
CO2 Emissions Per Total Primary Energy Supplied - 2001 
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Figures 38 and 39 respectively plot the contribution of coal and oil to total primary 

energy supplied against the ratio of CO2 emissions to total primary energy supplied. Both figures 

suggest that there is a positive relationship between these variables. Figure 40 plots the combined 

contribution of coal and oil to total primary energy supplied against the ratio of CO2 emissions to 

total primary energy supplied. This figure shows a strong positive relationship. The emissions 

intensity of energy supplied is therefore related to the contribution of alternative fuel sources. 

This in turn is related to natural endowments. The quantity of energy supplied is related to 

economic activity. Differences in the level of economic activity as well as differences in the 

structure of economic activity lead to differences in energy supplied and therefore differences in 

emissions.  

Figure 40: Percentage of Coal and Oil in Total Energy Supplied and  
CO2 Emissions Per Total Energy Supplied - 2001 
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4.4. Energy Prices and Emissions Per Capita 

Energy prices, changes in prices over time and differences in prices across countries are 

likely to impact emissions per capita in a number of ways. There is evidence that the oil price 

shocks of 1973 and 1981 led to a reduction in the energy intensity of output (IEA, 2004c). The 

impact of these price shocks was highlighted by Figure 17. The effect of higher oil prices on 

emissions, however, also depends on how the relative prices of alternative fuel sources respond 

and on the ability of countries to adjust the fuel composition of energy supplied. Furthermore, 

changes in oil prices are likely to affect economic growth which in turn impacts energy use and 

emissions. 

Oil prices are not the only relevant price factors. Differences in the fuel composition of 

energy supplied, differences in government energy policy and differences in trade practices and 

transport costs are likely to affect the price of energy and therefore its use. The impact of all of 

these factors on emissions per capita is difficult to measure and the individual (sometimes 

offsetting) effects are difficult to isolate. Changes in price differentials will induce differences in 

the composition of energy usage and the energy intensity of output. These differences affect the 

distribution of emissions per capita, as described above. In general, a lower relative energy price 

would encourage higher energy use and therefore emissions. The impact of energy use on 

emissions, however, critically depends on the composition of energy supplied. If a large share of 

energy is generated from relatively cheap renewable sources then low prices may be associated 

with low emissions. Figure 41 plots the energy intensity of output and emissions per capita 

against electricity prices in the small number of OECD countries for which a consistent series is 

available.  
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There is a weak negative relationship between electricity prices and energy supplied per 

unit of GDP and between electricity prices and emissions per capita. A larger cross section 

would be more informative on the relationship between these variables. 

Figure 41: Electricity Prices, Energy Supplied and Emissions, 2000  

Source: IEA 2004a, 2004d, CDIAC 2004 
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4.5. Summary 

This section has highlighted key variables that determine emissions per capita. There is a 

strong relationship between economic development and emissions per capita. Higher levels of 

income per capita lead to increased energy consumption which in turn is generally associated 

with higher emissions. Cross country differences in GDP per capita are also associated with 

differences in economic structure, such as the share of agriculture in economic output, which 

affects the energy intensity of output. Natural endowments play an important role in determining 

the structure (fuel mix) of energy supplied which is a key determinant of the emissions intensity 

of energy supplied. 

 

5. Beta (β) Convergence in Emissions Per Capita 

 

The analysis in this paper has been designed to provide a statistical examination of the 

distribution of emissions per capita and the tendency, if any, towards convergence. The 

examination of emissions per capita was extended to examine key macroeconomic and energy 

variables that determine emissions across countries and over time. The analysis is not based on a 

theoretical model of per capita emissions convergence and the results are not dependent on 

assumptions of model specification.  

It would, in fact, be difficult to derive a theoretical model in which emissions per capita 

converge. If greenhouse gas emissions resulted primarily from individual activities such as the 

use of automobiles and private electricity consumption then a theoretical model of emissions per 

capita convergence could be based on economic development. As outlined in the previous 
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section, however, the distribution of emissions is related to the structure of a country’s economy 

and its natural endowments, development level and comparative advantage in the production of 

various goods. 

This section provides a basic cross sectional analysis of the existence of beta convergence 

in emissions per capita. The section is included for completeness and for the benefit of readers 

who are familiar with the growth literature on convergence. The section begins by providing a 

general description of beta convergence and the relationship between beta convergence and the 

distributional analysis in Section 1. The implication of these results for model projections is then 

considered. 

As outlined in Section 1, there are four broad approaches to convergence analysis in the 

economics growth literature: beta convergence, sigma convergence, time series (cointegration) 

analysis, and distributional analysis. The existence of beta convergence in income per capita has 

been given considerable attention in the literature and the results of empirical examinations have 

generated extensive debate. 

Beta convergence in the growth literature refers to the existence of a negative relationship 

between the growth rate of income per capita (or the variable of interest) and the initial level. 

That is, a situation where poor countries tend to grow faster than richer countries. 

Beta convergence in income per capita is generally examined by estimating the cross 

sectional equation:  

 ln(yi,T/ yi,0) = a  +  b ln(yi,0)  + c Xi +  ei     (4)  

 where yi,0 is the income per capita level in the initial period and yi,T is the income per 

capita level in the final period. 
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  A negative b coefficient implies beta convergence. The variables Xi are used as proxies 

for a country’s steady state level of income per capita. The inclusion of these variables implies a 

conditional convergence analysis. The implication of beta convergence is that poor countries will 

eventually ‘catch-up’ to the income levels of richer countries.  Papers by Sala-i-Martin (see, for 

example, 1996a, 1996b, 2002) and Sala-i-Martin and Barro (1991, 1992) have been particularly 

influential. 

Sigma convergence refers to a reduction in the spread or dispersion of a data set over 

time.  Beta convergence is a necessary condition for sigma convergence, but it is not a sufficient 

one (Quah (1995a) and Sala-i-Martin (1996b) provide a formal algebraic derivation of this 

result).  Sala-i-Martin (1996a) uses three simple diagrams to demonstrate this point. Consider 

Figure 42. Panel 1 shows a situation in which there is beta convergence and sigma convergence 

in the variable of interest, Y. The country with the lower initial level, B, experiences higher 

growth than A. 

Panel 2 shows a situation in which there is a lack of beta convergence and this is 

associated with a lack of sigma convergence. In Panel 3 there is beta convergence. A higher 

growth rate is associated with a lower initial level, but there is no sigma convergence. In this 

example, the dispersion is the same in the two time periods. 

It is possible, therefore, for beta convergence to exist without sigma convergence. This 

has led some researchers to question the value of analyses that attempt to measure the existence 

of beta convergence and to argue the relative merits of the beta and sigma approaches to 

convergence analysis (see, for example, Quah (1995a)). 

Sala-i-Martin, however, argues that “the two concepts examine interesting phenomena 

which are conceptually different … both concepts should be studied and applied empirically” (pp 
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1328-1329, 1996b). Quah (1995a) however argues that cross sectional regression approaches to 

convergence analyse “only average behaviour” (p 15) and are uninformative on a distribution’s 

dynamics because they “only capture ‘representative’ economy dynamics” (p 16).  Quah argues 

that “to address questions of catch-up and convergence, one needs to model explicitly the 

dynamics of the entire cross-country distribution” (1995b, p1). He proposes the dynamic 

distributional approach to convergence analysis undertaken in Section 1 which provides 

information on both dispersion and mobility.  Quah’s approach has been influential because it 

has applications in a wide range of research areas (see Overman and Puga (2002) for an 

application to regional unemployment). 
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Figure 42: The relationship between sigma and beta convergence 
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In Section 1 convergence in emissions per capita was analysed using two approaches to 

convergence: σ-convergence and distributional analysis. As described above, the existence of σ-

convergence is a relatively strong result that implies there is also beta convergence.  The absence 

of σ-convergence, as identified in Section 1 with respect to emissions per capita, does not imply 

that beta convergence is not a feature of the data. With respect to income per capita, beta 

convergence may be of interest, even in the absence of sigma convergence, because income per 

capita convergence is often discussed in reference to equality.  Furthermore, estimation of the 

beta convergence regression equation allows parameters of interest in neoclassical growth theory 

to be investigated. The beta regression is used to test hypotheses of interest in growth economics.  

The analysis in this paper is interested in convergence as an assumption included in 

projection models and in most cases σ-convergence will be the concept of interest. An analysis 

of beta convergence is included here to highlight the alternative approaches to convergence 

analysis and the implications of using alternative convergence definitions.  

The analysis in this section is based on a cross section of 91 countries (detailed in the 

Appendix). In Section 1, it was argued that the level of emissions per capita or the level relative 

to the mean were the most appropriate series for analysing convergence in emissions per capita. 

In this section the standard beta regression from the growth literature is estimated: 

 ln(epci,2000/ epci,1950)  =  a  + b1ln(epc)i,1950   + ei    (5)   

 where epci,2000 is country i’s emission per capita rate in 2000 and epci,1950 is 

 country i’s emission per capita rate in 1950. 
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The model is specified linearly in logs for ease of estimation and interpretation. The logarithmic 

transformation is also used to reduce the amount of skewness in the data. The b1 coefficient is 

used to examine the existence of unconditional beta convergence. 

Figure 43 plots the dependent variable in Equation (5), the growth rate of emissions per 

capita over the period 1950 to 2000, against the log level of emissions per capita in 1950, along 

with the estimated fitted values from regression Equation (5) for the full sample of 91 countries 

as well as for a restricted OECD sample. 

The coefficient estimates for Equation (5) are contained in Table 5.  
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Table 5: Cross-Sectional Regression Estimates 

 Full Sample OECD Sample 

A 0.89 (0.16)* 0.86 (0.07)* 

B -0.32 (0.06)* -0.83 (0.06)* 

R2 0.23 0.89 

Obs 91 26 

Standard errors are in brackets. * indicates significance at the 5% level. 

 

Estimation of Equation 5 demonstrates the correlation between the growth rate in emissions per 

capita and the initial level.3 The information in Figure 43 and Table 5 suggests that on average 

countries with low emission per capita rates in 1950 experienced higher growth rates over the 

period 1950 to 2000 than countries with relatively high emission per capita levels in 1950. 

The important question to consider is then: how does this result compare with the 

distributional analysis presented in Section 1 and what are the implications for projection 

models?  

The existence of beta convergence suggests that there is some intra-distributional 

mobility in emissions per capita. Keeping in mind that the regression results are an indication of 

average behaviour, this result is entirely consistent with Figure 7. The contour plots in Figure 7 

suggest that whilst there is persistence at emissions per capita levels below around 6 times the 

cross country mean, countries with emissions per capita above this level do tend to converge. 

These countries are generally OECD countries that are more likely to share similar 

                                                 
3 Recently, beta convergence has been analysed using panel data techniques. Estimation techniques such as fixed 

effects allow unobservable factors to be controlled for. In this report, the regression analysis is included to 
demonstrate the correlation between the level of emissions and the growth rate in emissions and the simple 
cross-sectional regression analysis is sufficient to demonstrate this point. A panel data analysis of emissions 
per capita is likely to be subject to serial correlation and other complicated dynamics that require an in 
depth analysis beyond the scope of this report. 
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characteristics.4 Figure 43 and Table 5 highlight the strong tendency towards beta convergence in 

OECD countries. For OECD countries, therefore, there is evidence of beta convergence and 

weak evidence of distributional or sigma convergence. 

For the majority of countries, however, Figure 7 suggests that there is persistence rather than 

convergence. When OECD countries are excluded from the scatter plot in Figure 43 (consider 

only the grey points), the evidence in favour of beta convergence appears very weak (the 

statistical significance of beta convergence in non-OECD countries is small and not robust to 

alternative sample definitions). In addition, many of the countries have very low levels of 

emissions per capita in 1950 (see Figure 3) and small (levels) increases in emissions per capita 

are measured as large growth rates. Figure 43 therefore suggests (very) weak beta convergence 

for non-OECD countries even though the distributional analysis in Section 1 demonstrated that 

the dispersion of the data set is not decreasing and that mobility in this area of the distribution is 

small. These results are not inconsistent. They demonstrate a point highlighted in Section 1. 

Convergence analyses are affected by the definition of convergence assumed by the researcher. 

Sigma convergence is a much stronger condition than beta convergence. Both sigma and beta 

convergence analyses can be affected by data characteristics and transformations. They are also 

affected by the sample definition. The evidence in favour of convergence in emission per capita 

rates for OECD countries suggests that emissions per capita may exhibit a tendency towards 

conditional convergence. There is little evidence of unconditional convergence. With respect to 

projection models, this result could be interpreted in a number of ways.  

                                                 
4 The sample (Sample A) used to generate the plots in Figure 7 does not include OPEC countries and countries with 

relatively high emission per capita rates are generally OECD countries. The sample used to estimate 
Equation 5 does include OPEC countries. This difference is deliberate. In the analysis of Section One, the 
inclusion of OPEC countries obscures the dominant features of the overall data set and the interpretation of 
graphs. This is not the case in the regression analysis of this section. These sample differences do not affect 
the overall results in this report or the conclusions drawn from them. 
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Firstly, there is no evidence of unconditional convergence in emissions per capita and 

projection models that assume absolute convergence in emissions per capita are not reflective of 

the empirical evidence. The existence of convergence within the OECD region (conditional 

convergence) suggests that convergence assumptions may be useful in limited circumstances. If 

the projection exercise is restricted to a sample of countries characterised by similar economies 

then emission per capita convergence assumptions may be useful. Researchers should be aware, 

however, that emission per capita levels are unlikely to converge in an absolute sense, even 

within the OECD region. Differences in natural endowments are likely to lead to persistent 

differences in the emissions intensity of energy use, even if income per capita and other key 

energy variables (as identified in Section 3) converge. As described in Section 2, whilst GDP per 

capita and energy supplied per unit of GDP in the OECD region show some tendency towards 

convergence, the emissions intensity of energy supplied does not. Section 4 described how this 

variable is related to fossil fuel endowments. 

 

6. Conclusions 

 

This report examines the empirical evidence for convergence in a range of economic 

variables but with a focus on carbon emissions per capita. This is important both as a basis for 

undertaking projections of future emissions and because there are policy proposals currently 

being debated which wish to impose this onto the global economy. The approach to convergence 

analysis in this paper is statistical and focuses on the key characteristics of the distribution of 

emissions per capita. There is little evidence that cross country emission per capita rates are 
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converging. To examine this result in more detail, the IPAT identity was used to disaggregate 

emissions and examine trends in key macroeconomic variables. When a large cross section of 

countries is considered, there is little evidence of convergence in GDP per capita, the energy 

intensity of output or the emissions intensity of energy supplied. If the analysis is restricted to the 

OECD region, there is some evidence of convergence in GDP per capita and the energy intensity 

of output. These trends lead to a weak tendency for emissions per capita in the OECD to 

converge. There is, however, no evidence that the emissions intensity of energy supplied is 

converging and cross country differences in emissions per capita are likely to persist due to 

differences in natural endowments. 

Projection models that assume absolute convergence in emissions per capita are not 

reflective of the empirical evidence. Projection models that include assumptions about emission 

per capita convergence, or energy intensity convergence, must define convergence conditionally, 

either through sample selection or additional assumptions on key macroeconomic variables. 

Conditional convergence is a controversial concept. It is not clear how this data feature should be 

interpreted. In the growth literature, conditional beta convergence predicts that if countries are 

similar with respect to preferences and technology then there is a tendency towards convergence 

in levels of per capita product and income. The usefulness of this result when generating long 

run projections depends on how likely it is that countries will also converge in terms of 

preferences and technology (steady state characteristics) as well as endowments.  

Conditional convergence analyses are useful in demonstrating factors that lead to 

persistent differences in the variable of interest. The distinction between conditional and 

unconditional convergence would not exist if these control factors also converged. Empirical 

evidence that unconditional convergence is not a feature of the data but conditional convergence 
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is suggests that these control factors are, in fact, not converging across countries. This result may 

be due to data limitations, given convergence is likely to be a slow process that occurs over many 

decades. If a strong argument for the eventual convergence of control factors can be made, then 

there may be some support for the use of conditional convergence assumptions in long run 

projections. The empirical evidence in this report, however, suggests that there is no tendency 

towards convergence in emissions per capita when a large cross section of countries is 

considered. If the analysis is restricted to the OECD, there is some tendency towards 

convergence, but absolute convergence is unlikely to result because of differences in fossil fuel 

endowments. Even within the OECD region, therefore, although convergence assumptions may 

help to generate trends in emissions over long time periods, absolute convergence is not 

consistent with the empirical data. Given the lack of empirical support for historical convergence 

in emissions per capita, the results of projection models that assume convergence in emissions 

per capita (or in energy intensities) likely reflect wishful thinking rather than empirical 

observations and should be interpreted with caution.  
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Appendix 

Summary Statistics 

Section 1 considers six summary measures of dispersion: the variance (VAR), the standard 

deviation (STDEV), the coefficient of variation (CV), the average absolute deviation (AAD), the 

median absolute deviation (MAD), and the interquartile range (IQR). 

The variance of a data set is defined as 
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where Y is the mean of the data set and Yi is the data under consideration. 

The variance uses the squared difference from the mean, giving greater weight to values that are 

further from the mean.  The variance, therefore, can be strongly affected by the behaviour in the 

tails of a distribution. 

The standard deviation of a data set is defined as  
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When comparing the standard deviation of two data sets or over two points in time, researchers 

often normalise the standard deviation by dividing by the mean of the data. This statistic is called 

the coefficient of variation and is defined as 

MEAN
STDEVCV =  

The coefficient of variation can be used to compare variation in data sets with different means 

and to compare changes in the spread of a data set over time.   

The average absolute deviation is defined as 
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where Y  is the absolute value of Y. 

The AAD does not square the distance from the mean and therefore it is less affected than the 

variance by extreme observations. 

The median absolute deviation is defined as 

( )YYmedianMAD i
~−=  

where Y~ is the median of the data.  The MAD is even less affected by extreme observations in 

the tails of the distribution of the data. 

The interquartile range (IQR) is the value of the 75th percentile minus the value of the 25th 

percentile. The IQR attempts to measure variability in the centre of the distribution and does not, 

therefore, consider tail behaviour. 

Density Estimates 

The kernel-smoothed estimates of the cross-country density of fossil fuel CO2 emissions were 

obtained using the Kernel Estimator described in Pagan and Ullah (1999, p 9).   

The estimator is defined as 
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where   xi  is the data under consideration 

the kernel K(·) is the standard normal;  

the window width, h =  0.9*min(σ, (R/1.34))n-1/5, where R is the interquartile 

range; and 

  n is the sample size.   
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The stochastic kernel detailed in Quah (1995) is used to estimate the intra-distribution dynamics.  

The calculation of the stochastic kernel estimates is similar to the calculation of a non parametric 

conditional density function: 

 

( )tkt xxf +
ˆ     = 

 

  

 where  xt,i  is the data under consideration at time period t 

          xt+k,i  is the data under consideration at time period t+k 

the kernel K1(·) is the Epanechnikov;  

h =  3*n-1/6 

 

Rather than use a kernel estimate as the denominator (as described above), the denominator is 

derived by numerically integrating under the joint density function (the numerator).  This ensures 

that the integral from any point xt across xt+k is unity.   

Readers unfamiliar with these calculations can think of the stochastic kernel estimates as a 

continuous representation of a transition probability matrix.   
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Samples 
Table A1: Sample A and Sample B 

           

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            

* indicates that this country is also included in Sample B.  

OPEC countries are excluded from the analysis in this section.  These countries have highly variable emissions 

series and, as such, have a disproportionately large effect on aggregate statistics, such as those used in this analysis. 

This data is sourced from CDIAC (2004). See Marland et. al. (2003). 

Afghanistan 
Albania 
Angola 
Argentina* 
Australia* 
Austria* 
Barbados 
Belgium* 
Belize 
Bolivia 
Brazil 
Bulgaria 
Cameroon 
Canada* 
Chile* 
China* 
Colombia 
Costa Rica 
Cuba 
Cyprus 
Denmark* 
Dominica 
Dominican Republic 
Ecuador 
Egypt 
El Salvador 
Ethiopia 
Fiji 
Finland* 
France* 
Gambia 
Germany* 
Ghana 
 

Greece* 
Grenada 
Guatemala 
Guadeloupe 
Guinea-Bissau 
Guyana 
Haiti 
Honduras 
Hong Kong 
Hungary 
Iceland 
India* 
Ireland 
Israel 
Italy* 
Jamaica 
Japan* 
Jordan 
Kenya 
Lebanon 
Macau 
Madagascar 
Malta 
Mauritius 
Mexico* 
Mongolia 
Morocco 
Mozambique 
Myanmar 
Nepal 
Netherlands* 
New Zealand* 
Nicaragua 
 

Nigeria 
Norway 
North Korea 
Papua New Guinea 
Paraguay 
Peru* 
Philippines 
Poland 
Portugal* 
Romania 
Samoa 
Sierra Leone 
Solomon Islands 
South Africa 
South Korea 
Spain 
Sri Lanka 
Sudan 
Suriname 
Sweden* 
Switzerland* 
Taiwan* 
Thailand 
Togo 
Trinidad and Tobago 
Tunisia 
Turkey* 
Uganda 
United Kingdom* 
United States* 
Uruguay 
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Section 3 Data Sample 

_________________________________________________________ 

Albania 
Angola 
Argentina 
Australia 
Austria 
Bahrain 
Bangladesh 
Belgium 
Benin 
Bolivia 
Brazil 
Brunei 
Bulgaria 
Cameroon 
Canada 
Chile 
China 
Colombia 
Congo 
Costa 
Cote 
Cuba 
Cyprus 
Czech 
Denmark 
Dominican 
Ecuador 
Egypt 
El Salvador 
Ethiopia 
Finland 
France 
Gabon 
Germany 
Ghana 

Gibraltar 
Greece 
Guatemala 
Haiti 
Honduras 
Hong 
Hungary 
Iceland 
India 
Ireland 
Israel 
Italy 
Jamaica 
Japan 
Jordan 
Kenya 
Korea 
Lebanon 
Luxembourg 
Malaysia 
Malta 
Mexico 
Morocco 
Mozambique 
Myanmar 
Nepal 
Netherlands 
Nicaragua 
North Korea 
Norway 
Oman 
Pakistan 
Panama 
Paraguay 

Peru 
Philippines 
Poland 
Portugal 
Romania 
Senegal 
Singapore 
Slovak 
South Africa 
Spain 
Sri Lanka 
Sudan 
Sweden 
Switzerland 
Syria 
Taipei 
Tanzania 
Thailand 
Togo 
Trinidad 
Tunisia 
Turkey 
United Kingdom 
United States 
Uruguay 
USSR 
Vietnam 
Yemen 
Yugoslavia 
Zambia 
Zealand 
Zimbabwe 
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Section 4 Data Sample 

_________________________________________________________________ 

Albania 
Algeria 
Angola 
Argentina 
Australia 
Austria 
Bahrain 
Belgium 
Bolivia 
Brazil 
Bulgaria 
Canada 
Cape Verde 
Chile 
China 
Colombia 
Costa Rica 
Cuba 
Denmark 
Djibouti 
Dominican Republic 
Ecuador 
Egypt 
El Salvador 
Equatorial Guinea 
Finland 
France 
Gambia 
Germany 
Ghana 

Greece 
Guatemala 
Haiti 
Honduras 
Hong Kong 
Hungary 
India 
Indonesia 
Iraq 
Ireland 
Israel 
Italy 
Jamaica 
Japan 
Jordan 
Kenya 
Lebanon 
Liberia 
Libya 
Madagascar 
Mauritius 
Mexico 
Mongolia 
Morocco 
Mozambique 
Netherlands 
New Zealand 
Nicaragua 
Nigeria 
North Korea 

Norway 
Panama 
Paraguay 
Peru 
Philippines 
Poland 
Portugal 
Puerto Rico 
Qatar 
Reunion 
Romania 
Sierra Leone 
South Africa 
South Korea 
Spain 
Sri Lanka 
Sudan 
Sweden 
Switzerland 
Syria 
Taiwan 
Thailand 
Trinidad and Tobago 
Tunisia 
Turkey 
Uganda 
United Kingdom 
United States 
Uruguay 
Venezuela 
Zaire 
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