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Abstract

This paper examines the evidence for nonlinear price behavior in retail goods prices
across U.S. cities. First, a simple continuous-time model is used to explore the types of
price behavior that can arise in the presence of market frictions. These frictions could be
interpreted as transport costs, but we prefer a broader interpretation in which they operate at
the level of technology and preferences. Second, we gather price data from 24 U.S. cities on
individual goods like orange juice and toothpaste. The empirical analysis reveals that price
discrepancies between U.S. cities are stationary and nonlinearly mean-reverting to price
parity.  2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The idea that market frictions are important for understanding deviations from
the law of one price (LOP) is not a new one. Obstfeld and Taylor (1997) note that,
as far back as 1916, Heckscher argued that transport costs should create some
scope for price discrepancies to arise without precipitating goods arbitrage.
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Notwithstanding its vintage, it is only recently that attention has been devoted to
developing the theoretical and empirical implications of this idea. Over the last
decade, a number of authors have developed models that tease out the precise
implications of market frictions for relative price behavior, and the results display
a surprising degree of richness (see, for example, Obstfeld and Rogoff, 2000). On
the empirical side, a growing body of work seeks to test the broad implications of
these models, including nonlinear price convergence.

In this paper we seek to extend this literature by examining the behavior of
retail goods prices across the U.S. We first set out a simple continuous-time model
that highlights the relative importance of fixed and proportional market frictions in
regulating price behavior. These frictions could be interpreted narrowly as
transport costs. However, we prefer a broader interpretation in which they operate
at the level of technology and preferences. Differences in demand and supply
conditions across locations are apt to create price disparities, but these disparities
are regulated by convergence in preferences and technology. Changes in prefer-
ences or technology are costly, however. For example, if consumers substitute
away from expensive goods, they must research the properties of the substitutes.
Technological progress on the supply side incurs up-front fixed costs of R&D.
Alternatively, if consumers migrate to regions with lower living costs, they must
pay the fixed costs of relocation (see O’Connell, 1997). We dub all such costs
‘market frictions.’ Our model incorporates both fixed and variable market frictions,
and leads to the following conclusions. First, if only variable frictions are present,
then the process for relative prices is confined between reflecting barriers that
delimit a ‘range of no action,’ within which there is little incentive to alter
technology or to look for substitutes. In these circumstances, when changes do
take place, the quantity adjustments are very small, sufficient to prevent the price
deviations from growing, but insufficient to shrink them. Second, if there are only
fixed costs to altering technology or preferences, the process for relative prices is
confined between ‘resetting’ barriers. These too delimit a band of no action.
However, when preferences or technology do change, the changes are sufficient to
completely eliminate the price deviation. Thus the process for the deviation is reset
to zero. Third, if both fixed and variable costs are present, a hybrid case emerges.
There are two bands for price deviations, an inner band within which no changes
take place, and an outer band in which some changes to technology and
preferences occur. Interestingly, all of these bands are increasing in the variability
of relative goods prices.

These types of nonlinear behavior have specific implications for empirical
analysis, and this is the second dimension along which we seek to add value. A
shortcoming of the extant empirical work is that the data used are typically
composite price indices such as the CPI. While these offer good availability and
coverage, they provide no information on the absolute size of price discrepancies
between locations, only their relative behavior over time. In addition, price indices
are subject to aggregation bias, which may mask relevant features of the data. To
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address these issues, we employ data on disaggregated commodity prices across
U.S. cities, yielding a pure measure of deviations from the law of one price. To
summarize the results: (a) price discrepancies between U.S. cities are stationary,
and indeed often behave in a manner consistent with the absolute law of one price;
and (b) there is evidence of nonlinear reversion in the price discrepancies: large
price disparities decay faster than small disparities.

At the outset, we should note that the link between the theoretical model and the
empirical analysis is intentionally loose. The model generates some stylized
predictions about continuous-time relative price behavior between two locations in
the presence of market frictions, but it is by no means a complete description of
price determination. The empirical section considers discrete-time multi-city data
in a panel setting. Accordingly, we let the model stand on its own as one
characterization of the effects of fixed and variable market frictions. The empirical
section does not seek to test the model, but rather looks for general forms of
nonlinear reversion in relative city prices.

The next section categorizes the links that can hold between retail prices in
different locations. Then Section 3 sets out our model. In Section 4, we describe
our data and empirical strategy. Finally, Section 5 tabulates the results.

2. The determinants of retail goods prices across cities

The goods represented in our dataset are described in Table 1. They run the
gamut from basic foodstuffs such as bananas, milk, eggs, steak and potatoes, to
services like drycleaning and hairstyling, to nationally-distributed recognized
brands such as Winston cigarettes and Levi’s jeans. The goods are divided coarsely
by the proximity of production to the marketplace. Category A goods are generally
not locally-produced, Category B goods may be locally-produced, and Category C
goods are always locally-produced.

For the most part, the goods represented here are staples that are regularly
purchased, rather than big-ticket items that one might purchase on an infrequent or
once-off basis (e.g. cars, white goods, electronics). It is highly unlikely that a
consumer would travel to a different location to purchase these items, or pay to

1,2have them shipped from another location. Therefore, consumer price arbitrage is
not compelling as a theory of price interdependence across cities for these goods.
In order to tease out the potential links across city prices, we must delve deeper
into the process of price determination. Engel and Rogers (1996), who examine

1As the retail internet sector has matured, consumers have displayed a willingness to engage in
‘internet arbitrage’ for some of these products — e.g. aspirin. However, the scope for this was limited
during our time sample.

2Migration from expensive to cheap locations, a form of consumer arbitrage, is discussed below.
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Table 1
aDetailed description of price data

Good Start Description

Category A: Not locally-produced

Aspirin 82:2 Bayer; 325 mg tablets, 100 count
Babyfood 75:1 Jar strained vegetables; 4.5 oz.
Bananas 75:1 1 lb
Beer 82:2 Miller Lite or Budweiser; 12 oz., 6 pack
Cheese 82:2 Kraft; Parmesan, grated, canister, 8oz.
Cigarettes 75:1 Winston, king-size, carton
Coffee 75:1 Maxwell House, Hills Brothers or Folgers; 2 lbs, 1 lb, or 13oz.
Cornflakes 79:2 Kellogg’s or Post Toasties; 18 oz.
Game 82:2 Monopoly; standard (No. 9) edition
Jeans 82:2 Levi’s; straight leg, 501s or 505s
Liquor 75:1 Seagrams 7 Crown or A&B Scotch; 750 ml
Shirt 82:2 Arrow or Van Heusen; white, long sleeve, cotton-poly blend
Orange Juice 75:1 Can, 6 oz. or 12 oz.
Peaches 75:1 Del Monte or Libby’s; [2.5 can (29 oz.), halves or slices
Shampoo 82:2 Johnson’s or Alberto VO5; bottle, 11 oz. or 15 oz.
Shortening 75:1 Crisco; all vegetable, 3 lb. can
Soda 75:1 Coca-Cola; 1 quart or 2 litre
Tennis 82:2 Wilson or Penn; can, yellow, heavy duty, 3 count
Tissue 75:1 Kleenex; 1 roll, 4 roll or box, 175 count
Toothpaste 82.2 Crest or Colgate; 6 oz. or 7 oz.
Tuna 82.2 Starkist or Chicken of the Sea; in oil, can 6.5 oz.
Underwear 82:2 Package of 3 briefs
Detergent 75:1 Giant Tide, Bold or Cheer; 42 oz. or 49 oz.
Wine 82.2 Paul Masson Chablis or Gallo Sauvignon Blanc or Gallo Chablis Blanc; 750 ml or 1.5 litre

Category B: May be locally-produced

Bacon 75:1 1 lb package
Bread 75:1 20 oz. or 24 oz.
Eggs 75:1 Grade A, 1 dozen
Minced steak 75:1 1 lb.
Lettuce 75:1 1 head
Margarine 75:1 1 lb.
Milk 75:1 Half-gallon
Potatoes 75:1 White or red, 10 lbs.
Steak 75:1 Round steak or T-bone; USDA choice, 1 lb.
Sugar 79:2 Cane or beet, 4 lbs. or 5 lbs.
Chicken 75:1 Grade A frying, 1 lb.

Category C: Locally-produced

Fr. chicken 82:2 Kentucky Fried Chicken or Church’s; breast and drumstick
McDonalds 82:2 Patty or patty with cheese, pickle, onion, mustard and ketchup
Pizza 82:2 Pizza Hut or Pizza Inn; 120–130 crust, regular cheese
App. repair 75:1 Service call for color TV or washing machine; excluding parts
Auto maint. 79:2 Balancing; 1 or 2 front wheels, computer or spin balance
Beauty 82:2 Shampoo, trim and blow-dry; women’s visit
Bowling 75:1 Evening price; per line
Dentist 75:1 Office visit; cleaning and inspection, no X-ray or fluoride treatment
Doctor 75:1 Office visit; routine exam of existing patient
Dryclean 75:1 Man’s suit; 2-piece
Hospital 75:1 Hospital room; semiprivate cost, per day
Haircut 75:1 No styling; man’s
Movie 75:1 First run; indoor evening price

a Description of American Chamber of Commerce data as published in Cost of Living Index.
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disaggregated consumer price indices across 14 U.S. and 19 Canadian cities, adopt
the following general framework which is well-suited to our purposes.

Assume that all goods contain both tradable and nontradable components. Even
goods that are normally classified as tradable, such as nonperishable commodities,
rely on nontradable services such as marketing and distribution to reach the
consumer. With Cobb–Douglas technology, price in location i, p , is determinedi

by

g (12g )i ip 5 b a w q , (1)i i i i i

where b is the markup, a is productivity in the final goods sector, w is the pricei i i

of the nontraded intermediate input, g is its share in final output, and q is thei i

price of the traded intermediate input. In this schema, q is determined largely byi

global demand and supply for the traded input. w , on the other hand, is a functioni

of local demand and supply for the intermediate input. a and g capture locali i

technology conditions. Finally, b captures the mark-up over cost. We consider thei

influence of each of these in turn.

2.1. Traded intermediate inputs

By nature, traded intermediate inputs can be arbitraged, so the degree to which
q can vary across locations is limited. However, recalling Heckscher, transporti

costs can support deviations from the law of one price in these inputs. Assume that
the transport costs take the Samuelson ‘iceberg form’ — if a good is shipped from
one location to another, a fraction l melts en route, so that only (1 2 l) of the good
actually arrives. These costs support a ‘band of no-arbitrage’ — an interval for the
relative price q /q within which arbitrage doesn’t pay — of (1 2 l) , q /q , 1/i j i j

(1 2 l).
A number of authors have developed models of traded goods price behavior that

feature this type of no-arbitrage band, including Williams and Wright (1991);
Dumas (1992); Uppal (1993); Sercu et al. (1995) and Ohanian and Stockman
(1997). These models carry specific implications for the impact of arbitrage
activity on relative prices. For instance, if the relative price q /q reaches the upperi j

threshold generated by the transport costs, 1 /(1 2 l), the amount of trade that takes
place is sufficient to ensure that it does not rise above this level, but is not so large
as to cause it to fall below 1/(1 2 l). In the jargon of continuous time, the
thresholds (1 2 l) and 1/(1 2 l) are ‘reflecting barriers’ for the relative price
process. This means that evidence of arbitrage activity will not be reflected directly
in prices, only in quantities. While the barriers render q /q stationary, it can bei j

difficult to detect this stationarity using standard techniques. This is the basic
motivation for much of the recent empirical work on nonlinear price behavior,
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including Obstfeld and Taylor (1997); Michael et al. (1997); O’Connell (1998b);
3Taylor and Sarno (1998); Baum et al. (1998) and Taylor (2001).

How relevant are these considerations for the goods in our dataset? From Eq.
(1), the importance of traded input prices, and hence transport costs, is inversely
related to g. For the Category A and Category B goods that are not locally-
produced, the intermediate traded input is the final good at the wholesale level.
The nontraded inputs are confined to local distribution services. For these goods,
the relative price q /q is unlikely to stray outside the band permitted by transporti j

costs. Because g is relatively low for these goods, this type of nonlinearity can be
reflected in the ratio of final prices p /p . However, cutting the other way is the facti j

that many of the Category A goods are branded — indeed, it is the very
tradeability of these goods that facilitates branding. Branded goods are more likely
to be differentiated from potential substitutes, and so the local markups can be
more important than input costs in determining final price. We return to this below.

For the Category B and Category C goods that are locally-produced, arbitrage-
induced constraints on q /q are less likely to be reflected in final prices. With locali j

production, nontraded inputs and local technology play the dominant role in
determining wholesale prices. That said, if locally-produced goods can be
transported, then we might expect some arbitrage to take place at the wholesale
level. For example, it is unlikely that the wholesale price of locally-grown potatoes
in New England would exceed the wholesale price of imported Californian
potatoes in New England for an extended period of time.

Arbitrage at the wholesale level is likely to involve both fixed and variable
costs. For example, in order to supply the New England market with Californian
potatoes, storage and distribution facilities need to be available, and the installation
of such facilities is likely to incur fixed costs. The actual transportation of the
goods then incurs variable costs.

2.2. Nontraded intermediate inputs

For many goods in our database, the share of nontraded intermediate inputs is
significant. Examples include franchise restaurant meals (e.g. McDonalds), and
dental and medical treatment. By definition, nontraded inputs cannot be arbitraged,
and so w can vary substantially across locations. This allows for price dispersion
that is increasing in g.

However, the fact that a good has a substantial nontraded component does not
imply that its relative price is independent across locations. Factor mobility should
ensure that, in the long run, the ratio of nontraded prices w /w is stationary fori j

many location pairs. This might be particularly relevant in the context of our data,

3It is worth noting that the elegant models of Dumas (1992) and Uppal (1993) also render
predictions about the behavior of relative prices within the band of no arbitrage — thus they may be
easier to test empirically.
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as factors tend to be more intra-nationally mobile than they are internationally
mobile. For example, the nontraded input often takes the form of labor services. It
is an established result that one of the determinants of labor migration is the wage
ratio w /w . Consequently, labor mobility should ensure that the wage ratio isi j

stationary. However, as modeled in O’Connell (1997), there are costs associated
with migration, and as a result persistent deviations from parity can certainly
occur. These migration costs can be both fixed (e.g. actual moving costs) and
ongoing (e.g. higher rent in new location). It is the fixed costs of migration that are
most relevant in the context of the model we develop below.

Of course, relative nominal wage rates are not the only determinants of
migration. Factors such as the cost of living, the quality of living, local services,
climate and geography, inter alia, play their part. Not only can these factors drive a
permanent wedge between w and w , changes in these factors can have ai j

permanent effect on w /w , leading to nonstationarity in relative final goods pricesi j

p /p . We do not hold to the view that all relative nontraded prices are stationary,i j

much less that they all display nonlinear convergence to parity. Rather we view
these as viable competing hypotheses which we wish to test.

2.3. Local technology

As already discussed, even in those instances when the prices of intermediate
inputs w and q are equalized, final prices can differ across locations if local
production technologies are dissimilar. Clearly, this is most relevant for the

4Category B and C goods in our dataset that are locally-produced.
To what extent can we expect technological convergence to eliminate such price

gaps? Some technological differences, such as those stemming from geography or
natural resources, are permanent in nature — it is unlikely that the price of

5locally-produced milk will ever be the same in Wisconsin and Florida. However,
other technology gaps can be closed through the transference of technology, or
technological innovation in low-productivity regions. For locally-produced but
nationally-branded goods, technological convergence is often assured. Franchise
restaurant meals (e.g. McDonalds) are typically produced using nationwide or
global production technologies. Productivity innovations in one location are
rapidly disseminated to other locations. Indeed, this is an essential part of brand
maintenance. For non-branded goods, competition can often ensure rapid tech-
nological convergence.

Once again, costs must be incurred to bring about this type of price conver-

4Of course, productivity in the distribution sector is relevant for those goods that are not locally-
produced.

5The price of milk was regulated throughout our sample by a federal order program that supported
artificially high milk prices to farmers in some regions of the country, while providing low prices for
fluid milk produced in the Upper Midwest. We thank the co-editor for drawing this to our attention.



28 P.G.J. O’Connell, S.-J. Wei / Journal of International Economics 56 (2002) 21 –53

gence. If a producer decides that, to remain competitive, resources must be
devoted to R&D, fixed costs are incurred. If instead a new patented technology
becomes available to all producers, royalties on the patent represent a per-unit cost
(to the producer). These types of fixed and variable costs are apt to generate a band
of no arbitrage for final prices that is similar to the transport-cost induced band
that applies to traded intermediate goods.

2.4. Price mark-up

It is clear that, for many of the goods in our database, the mark-up set by the
producer will play a pivotal role in price determination. This is particularly true of
the Category A (non-locally produced) goods. These tend to be nationally-
distributed, nationally-priced brands. As a consequence, the supply curve for these
goods is relatively similar across locations. The branding of these goods helps to
ensure that they are differentiated from potential substitutes, which increases the
producer’s pricing power. Indeed, the producer may have monopoly pricing
power. In these circumstances, prices would be set to maximize profits by equating
b to ´ /(´ 1 1), where ´ is the elasticity of demand. To the extent that producersi i i

have price power and demand conditions vary across locations, relative final prices
p /p will depart from parity.i j

There are a number of points to make here. First, climate and principal industry
are likely to give rise to some variation in tastes across locations. For example,
aggregate tastes in a southern tourist destination like New Orleans may differ from
those in a northern university town like Madison. However, it is not clear that
tastes will vary systematically across locations for the staple goods in our dataset
like toothpaste, aspirin and breakfast cereal. Moreover, where variations do exist,
the ability of consumers to migrate from location to location can help to bring
about convergence in preferences. This might be particularly relevant for cities that
are quite close to each other, such as New York NY and Newark NJ. Of course, a
consumer would be unlikely to move to take advantage of lower prices in just one
or two goods: a significant number of the goods in her consumption bundle would

6have to have lower prices in the destination city.
Second, for many of the goods in our database, the market structure is likely to

admit some competition. The extent to which Bayer can price discriminate across
consumers is limited by the fact that other aspirin producers will want to compete
in the same markets. Competition is likely to be even more important for the goods
in Categories B and C. The basic foodstuffs in Category B tend not to be branded,
and so consumers have less allegience to specific producers. The non-branded
services in Category C are likely to be provided by competing local-producers.
And even franchise restaurant brands like McDonalds face stiff competition from

6The popularity of web-based cost-of-living calculators (e.g. homefair.com) bears witness to the
importance of the overall cost of living in migration decisions.
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other producers like Burger King. As such, the ability of producers to set the
prices of the goods we examine may be limited.

In thinking about market structure, it is important to keep in mind the costs of
entry and exit. Suppose that existing producers in a location have sufficient market
power to set price above cost. Potential competitors seeking to join the market
need to weigh the prospective profits against the costs of entry. Entry costs can be
both fixed — for example, the cost of new premises — and flexible (Dixit, 1989).
The existence of such costs can support deviations of relative prices from parity.
These are the type of market frictions which the general model developed in the
next section is designed to capture.

A third consideration is that mark-up is not always set with a view to
single-period profit maximization. Retailers often alter mark-ups to control
inventory, as with seasonal sales, or to build their customer base. Such alterations
can generate large variations in relative prices. The scale and duration of such
price variations is determined by supply rather than demand conditions. It is
difficult to ascribe the negative serial correlation that sales produce to either
producer or consumer arbitrage, and so this is one feature of price behavior that
lies outside the theoretical framework considered here. We assess the importance
of sales for our data in the empirical section below.

3. A model of arbitrage with transport costs

This discussion in Section 2 highlighted a variety of fixed and flexible market
frictions that can lead to deviations from the law of one price. There are the fixed
and variable costs of transporting traded intermediate inputs, the fixed costs of
labor migration, the fixed and variable costs of technology, and the costs
associated with entry and exit in the marketplace. Rather than seek to model each
of these in a general model, we present a simple partial equilibrium model which
allows us to explore the general implications of fixed and variable market frictions.
The model could be generalized to include production, investment and a current
account, but the qualitative nature of the predictions would be unchanged. The
model draws from the excellent general discussion of optimal control and
regulation in Dixit (1993).

3.1. The optimal pattern of trade

We examine the optimal trade strategy in a city that is endowed with two
nonstorable commodities, X and Y. The representative agent in this city has the
quasilinear utility function

1X Y X Y]U(C , C ) 5 C 2 exp(2gC ). (2)
g
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Thus the marginal utility of X is fixed at 1. The city is endowed with a
nonstochastic supply of X at each instant. This endowment is abundant, so that

7there will always be some of X consumed. The endowment of Y is stochastic at
each instant, with dynamics given by

dY 5 s dz, (3)

Ywhere dz is the increment of a standard Wiener process. Consumption C is equal
to the endowment plus net imports of the good M from other cities:

YC 5 Y 1 M. (4)

We assume that X and Y are traded in all locations, and that both are priced
globally at unity. Moreover the city’s trade balance with other cities is always

8zero. Together these assumptions imply that
XC 5 X 2 M. (5)

Our ultimate interest is in the process for P, the price of good Y in terms of X in
Ythis city. Since the marginal utility of X is one, P 5 exp(2gC ).

We capture fixed and variable market frictions through the transportation
technology available to the economy, which has the following features. First, in
order to facilitate imports or exports, trade capacity must be available. We assume
that trade capacity is unidirectional — capacity installed for the purposes of
exporting cannot be used for imports. The per-unit cost of new capacity is l. Once
installed, capacity must be utilized. Capacity may, however, be decommissioned at
a cost. To preserve symmetry, we assume that the per-unit decommissioning cost
is also l. Second, every time that trade capacity is adjusted, a fixed cost k must be
expended. This setup lends itself naturally to a transport cost interpretation, but it
also serves as a characterization of entry and exit costs, and the fixed costs of
R&D or migration.

In the absence of market frictions, the solution to the representative agent’s
maximization problem is straightforward. At each instant, the marginal utility from
consumption of Y must equal 1, so the agent simply sets M equal to 2 Y. In the

Ypresence of market frictions, however, C can deviate from 0. To obtain the
solution, it is convenient to work with a utility loss function rather than the level of
utility itself. The loss function is defined as

1 1 2gC] ]L(C) 5 2 1 C 1 e (6)
g g

7In this sense, the model is partial equilibrium. The endowment of Y is assumed to be insignificant in
size relative to the endowment of X.

8Implicit here is the assumption that the economy’s rate of time preference is equal to the global
interest rate. If this were not the case, then there would be no well-defined equilibrium, as marginal
utility is not diminishing in X.
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Ywhere C ; C (the Y superscript is dropped hereafter to economize on notation).
L(C) captures the relative gain in utility from consuming at 0 instead of consuming

9at C. It is a convex function that attains a minimum 0 at C 5 0. The reason for
working with this loss function is that it is invariant to the scale of the endowment
Y(t). Clearly, total utility depends on this endowment, but given quasilinear
preferences and the abundance of X the marginal import decision is independent of
this endowment, and so nothing is lost by seeking to minimize L(C) rather than to
maximize U( ? ).

Holding M constant, the process for C ; Y 1 M is simply

dC 5 s dz. (7)

Define the value function
`

2f tV(C) 5 min E Ee L(C) dt, (8)hM j C

0

where f is the discount rate. The problem is to solve for V(C), taking into account
the costs associated with trade. The Hamilton–Bellman–Jacobi equation for this

ˆproblem is E[dV(C)] /dt 1 L(C) 5 fV(C). Applying Ito’s lemma, this can be
written as

1 2]s V (C) 2 fV(C) 1 L(C) 5 0. (9)CC2

This differential equation has the well-known solution (see, for example, Dixit,
1993)

2gCe 1 12aC aC ]]]]] ] ]V(C) 5 A e 1 B e 1 1 C 2 , (10)S D1 f g2 2]S Dg f 2 s g2
]

where a 5 2f /s, and A and B are constants to be determined. The last two termsœ
on the right-hand side comprise the present value of the loss function if net
imports are fixed — they are the discounted sum of expected losses L(C). The first
two terms represent the change in value that accrues from the ability to control M:

2aCthe value of the option to import is A e , while the value of the option to export
aCis B e . These quantities are negative as they add to utility and hence subtract

from the loss function.
It can be shown (see Dixit, 1993, and the references cited therein) that the

] ] ]
optimal trade policy is characterized by four threshold levels of C, C .C .C .1 2 3] ] ] ]
C , that have the following features. First, if C rises to C , (C 2C ) of net export4 1 1 2] ]
capacity is installed at cost k 1 (C 2C )l, and used to export an additional1 2

9Consuming at 0 yields 2 1/g plus Y export revenue, while consuming at C yields 2 exp(2gC) /g
plus 2 M export revenue. The difference between these is L(C).
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] ] ] ] ]10(C 2C ) of Y to other cities. Second, if C falls to C , (C 2C ) of net import1 2 4 3 4] ]
capacity is installed, and used to import an additional amount (C 2C ) from other3 4

cities. In other words, if C strays too far from its optimum of 0, the representative
agent ‘resets’ it at a value that is closer to the optimum by raising or lowering net
imports. To solve for these threshold values, we employ the usual value-matching
and smooth-pasting conditions to tie down the constants A and B.

3.2. The behavior of relative prices

For a benchmark case, let the coefficient of absolute risk aversion g equal 1, the
instantaneous variance of the endowment s equal 0.01, and the rate of discount f

equal 0.05. With these fixed, we can examine the behavior of P under varying
assumptions.

3.2.1. Costless trade
If there are no market frictions (k 5 l 5 0), all four trading thresholds collapse to

zero. Trade takes place instantaneously whenever the endowment of C differs from
0. P is therefore fixed at unity.

3.2.2. Infinite costs of trade
]

If the market frictions are prohibitive, k → ` and/or l → `. In this case, C ,1] ] ]
C → `, C , C → 2 `, and no trade takes place. The relative price P will equal2 3 4

ˆU (C) ; exp(2gc) at all instants. By Ito’s lemma,C

1 2 2]dP 5 s g P dt 2 sgP dz. (11)2

This implies that p ; ln(P) follows a driftless arithmetic Brownian motion with
2 2instantaneous variance s g :

dp 5 sg dz. (12)

3.2.3. Proportional costs of trade
] ]

If all market frictions are proportional (i.e. k 5 0), then C coincides with C ,1 2] ]
and C coincides with C . In our benchmark case, the solutions for these3 4] ]
thresholds are C 5 0.283, and C 5 2 0.256. The resulting process for consump-1 4

tion shares many of the features of the solution in the Dumas (1992) model. In
] ]

particular, C and C become reflecting barriers for the consumption process. If1 4

trade takes place, it will involve infinitesimal quantities at these barriers. The
process for U and hence P will inherit these properties. Thus P will follow theC

process (11) until such time as C reaches one of the barriers, when sufficient trade
will take place to hold P at its barrier level, without driving it back towards parity.
In our benchmark case, the reflecting barriers for P are exp(20.283g ) 5 0.753 and
exp(0.256g ) 5 1.292.

10If the city is already importing, then some of its import capacity will be decommissioned.
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3.2.4. Fixed costs of trade
]

If the market frictions are fixed (i.e. l 5 0), then the middle two thresholds C2]
and C coincide. With the benchmark parameters, the threshold solutions are3] ] ] ]
C 5 0.688, C 5C 5 0.019, and C 5 2 0.600. The resulting consumption1 2 3 4

process differs markedly from the case of proportional trade costs. In particular,
] ]

whenever C hits either C or C , a discrete amount of trade will take place that is1 4
11sufficient to bring consumption back to 0.019. The intuition is that, once the

fixed cost has been expended, it would be suboptimal to reset consumption to a
point that is away from the value-maximizing point close to 0.

The processes for U and hence P inherit these resetting features. Thus P willC

follow the process (11) until such time as C reaches one of the barriers, at which
time P is reset to exp(20.019g ) 5 0.981. The resetting barriers for P are 0.549
and 1.990.

3.2.5. Fixed and variable costs of trade
Lastly, we consider the behavior of P in the presence of both fixed and

]
proportional market frictions. In the benchmark case, when P hits exp(2gC ) 51]
0.461, arbitrage moves it to exp(2gC ) 5 0.890. Correspondingly, when P hits2] ]
exp(2gC ) 5 2.168, arbitrage resets it to exp(2gC ) 5 1.070. The interesting4 3

aspect of this solution is that it generates two ‘bands’ for the deviations from the
LOP. Whenever Y hits the outer barriers, it is reset by trade to the inner barriers.
This resetting behavior differs from the infinitesimal arbitrage that characterizes
models predicated solely on proportional transport costs.

3.3. Implications for testing the LOP

The model developed above has two important implications for empirical
analysis of inter-city prices. First, in the presence of market frictions, the
stationarity of relative prices may be difficult to detect using conventional tests.
Second, by taking advantage of the special structure of price behavior that arises
with market frictions, the power to detect stationarity can be increased.

3.3.1. Detecting stationarity in the presence of market frictions
Let the true process for the relative price of a good in two locations, q, be

b 1 e if q , 2 at t21

q 1 e if uq u , aq 5 (13)t21 t t21t 5b 1 e if q . at t21

11Notice that the value-maximizing point is not actually 0. This is because of the asymmetry
ˆintroduced by the Ito or Jensen’s inequality term in the value function.
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where 0 , b , a. This process resembles the one that emerges from our model in
12the presence of both fixed and variable frictions. The process is globally

stationary, but because innovations to the process are i.i.d. for a portion of the time
(i.e. whenever uq u , a), this stationarity can be difficult to detect using standardt21

techniques. For example, if a 5 4, b 5 3 and e | i.i.d.N(0, 1), the power of the
Dickey–Fuller test to reject the random walk null with 50 observations on this

13process is 22 percent at the 5 percent significance level. This can be compared to
the power of the Dickey–Fuller test when the true process is AR(1) with the same
total variance V(q ) as the process (13). When a 5 4, b 5 3 and e | i.i.d.N(0, 1),t

14V(q ) 5 3.42. This is matched by an AR(1) process with a disturbance variance oft
151 and a root of 0.84. The power of the Dickey–Fuller test to reject the random

walk null under this AR(1) alternative is 37 percent at the 5 percent significance
level, 15 percent higher than for process (13).

The fact that standard tests for stationarity have low power under the
alternatives generated by market frictions may account for the perennial difficulty

16of rejecting the unit root null in relative price data.

3.3.2. Increased power to detect stationarity
There is, of course, a positive side to the particular structure that market

frictions imply for relative price behavior. It is likely that the power of stationarity
tests can be increased by modifying them to take account of the fact that reversion
in prices only takes place at certain times. Models of market frictions predict that
small price discrepancies will not be arbitraged, but that large ones will. This
suggests conditioning reversion on the size of the deviation from the LOP. To
illustrate, suppose that only the observations on Dq for which uq u exceeds somet t21

threshold s are included in the Dickey–Fuller regression. In other words, small
deviations from the LOP are excluded from the regression. If the true process for q
is (13), then these observations contain little or no information on reversion in q;
they just add noise to the estimation. It follows that a more precise estimate of
reversion is available from the test, which ought to increase power. This in fact
turns out to be the case. If, for example, we choose to look only at the upper

12The analogy is not exact. In the continuous time version, p can never stray outside the edge of the
outer band a.

13This power calculation is carried out by Monte Carlo simulation, using 1000 observations on the
distribution of the test statistic under the alternative (13). The Dickey–Fuller regression run here
includes an intercept.

14V( p ) is estimated from 1000 simulations of the process (13).t
15 2 2The total variance of an AR(1) process p 5 fp 1 e is s /(1 2 f ).t t21 t e
16Taylor (2001) analyzes this point in depth. ‘Standard’ tests for relative price stationarity have been

carried out by Wei and Parsley (1995); Engel et al. (1996); Frankel and Rose (1996); Papell (1997);
Taylor (1996); Papell and Theodoridis (1997a) and O’Connell (1998a). See Froot and Rogoff (1995)
and Rogoff (1996) for surveys of the literature on PPP.
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quartile of LOP deviations, the power to reject nonstationarity under the
17alternative (13) is 31 percent.

Recent empirical work has sought to modify standard tests of the LOP and
purchasing power parity (PPP) to take account of actual or potential market
frictions. Using the same data as is used in this paper, Parsley and Wei (1996)
carry out a basic test for nonlinear reversion by adding a higher-order term to the
standard Dickey–Fuller regression. Their point estimates suggest that convergence
is faster for large initial price differences. However, as shown in O’Connell
(1998b), the power of such tests is weak under the unit-root null, and on this basis,
newly-developed threshold models are to be preferred. Obstfeld and Taylor (1997)
fit such models to detrended real exchange rates for the U.S. sampled from 1973 to
1995. They report evidence that large deviations from the linear trend of the real
exchange rate revert to parity quite quickly, while small deviations do not. Taylor
and Sarno (1998) fit smooth transition autoregressive (STAR) models to British,
German, French and Japanese real exchange rates measured over the 1973–1996
period, and detect significant evidence of nonlinear mean reversion. Michael et al.
(1997), employing a substantially similar technique, also detect nonlinear mean
reversion using interwar CPI data, and for a 200-year data set of UK and French
real CPI exchange rates against the dollar. Similar results are reported by Baum et
al. (1998).

A potential problem with all of this work (bar Parsley and Wei, 1996) is that it
is based on price indices. This may lead to some aggregation bias. For example, if
there are different market frictions associated with each good in the price index,
then the limits of the band of no arbitrage for the index will not be clearly defined.
In an effort to circumvent this problem, we use detailed price data on individual
goods in our empirical analysis, to which we now turn.

4. Empirical analysis

4.1. Data

Our data set is substantially the same as that used in Parsley and Wei (1996).
The data is collected from the American Chamber of Commerce Researchers
Association publication, Cost of Living Index (hereafter, Index). Each quarterly
issue of Index contains comparative average price data for a sample of urban areas,
and a cost of living index computed from these data by the Association. In this
study we use only the raw price data.

The actual data surveys are conducted by local Chamber of Commerce staff, and
responses are voluntary. Explicit instructions and data forms are provided for each

17This power calculation is estimated from 5000 simulations of the test statistic under the null, and
1000 simulations under the alternative.
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data collector by the association. Some prices are obtained by phone and usually
the respondents do not know it is for a survey. Once collected, the data is sent to
one of nine different regional coordinators for checking. Finally, the data is sent to
Houston where it is transferred to computer and subjected to both computer and
visual checks for outliers. Publication occurs approximately five and one half
months after the original data are collected.

The sample of cities included in each issue of Index varies. At the beginning of
our sample period there were 166 cities and 44 items priced. The number of cities
steadily increased to 297 by the fourth quarter of 1992. However, each report
contains a distinct sample of cities. We choose a sample of 24 cities which
appeared in roughly ninety percent of the quarterly surveys. The cities selected can
be seen in the first Column of Table 3. Notice major cities like New York,
Chicago, Los Angeles, San Francisco, Washington and Boston are excluded from
the analysis. There is probably some merit in this as demand and supply conditions
are likely to vary with city size.

As already described in Section 2, we choose to examine 48 goods and services.
These are selected with three criteria in mind. First, for each commodity we want
wide coverage in terms of availability across cities and over time. Second, we
want variation in the degree of tradeability of the commodities included in the data
set. Finally, we want homogeneity in the definitions of the commodities over time.
The definitions of some commodities did change during the sample period,
typically as a result of a change in manufacturer packaging. These changes had
only small effects on relative prices.

Inspecting the data, we find little evidence of transitory changes in mark-up. The
exception is the price series for a hamburger sandwich at McDonalds. In a number
of cities, notably Indianapolis, the price of these sandwiches is episodically cut to
99 cents. This can represent a price cut of up to 50 per cent, but the change lasts
no more than one quarter. These changes aside, the data appear to be ‘well-
behaved,’ in the sense that there are few outliers and the data generating processes
appear stable. To quantify this, we measure the fraction of prices that are 15 per
cent or more less than the preceding and following quarter’s prices. For the goods
in Category A, the fraction is 0.5 per cent, for Category B, 1 per cent, and for

18Category C, 0.25 per cent.

4.2. Construction of relative prices

Mindful of the problem of low power that afflicts many empirical analyses of
the LOP, we conduct our analysis in a panel setting. We construct two different
sets of relative price panels. The first set groups commodities by type. Thus for

18We thank the referee and co-editor for their comments on this point. The co-editor suggested the
quantitative definition of a ‘sale’ used here, which is ‘‘any time a nominal price falls from one quarter
to the next by 15%, and returns to within 3% of its former value in the subsequent quarter.’’
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each of the 48 commodities in the data set, we construct a panel that contains all
the price series that are available for that commodity across the country. The
second set of panels groups commodities by location. In this case, the panels
contain all the price series that are available for a given city. Within these two
types of panels, we further subdivide by the Categories A, B and C identified in
Table 1.

The absolute prices that are included in each panel must be converted to relative
prices in order to test the LOP. This requires choosing a numeraire for each panel.
For some of the tests run, the choice of numeraire will prove immaterial, but for
others it will make an important difference. Accordingly we choose the numeraire
with a eye to its economic meaning. For the panels which group commodities by
type, we choose the average price across all cities as the numeraire. So for
example, each series in the panel of aspirin prices is calculated as

M1
]q 5 p 2 Op , (14)Aspirin, jt Aspirin, jt Aspirin, jtM j51

where p is the price of aspirin in city j at time t, and M is the total numberAspirin, jt

of cities for which aspirin price series are available. One of the q series isAspirin, j

redundant, and we arbitrarily choose this to be the series for Louisville, Kentucky
in all of the panels. For the panels which groups commodities by location, we
choose prices in New Orleans as the numeraires. This is because the data for New
Orleans are relatively complete. So, for example, each series in the Houston panel
is constructed as

q 5 p 2 p . (15)i,Houston,t i,Houston,t i,New Orleans,t

Here i indexes each of the commodities. Note that because we will use GLS to
estimate our parameters, these numeraire choices are relatively innocuous. GLS
naturally reduces the sensitivity of estimates to the numeraire; indeed, in the case
of unit-root testing, GLS often renders the estimates invariant to the numeraire. In
all panels, we delete series that have fewer than 43 quarterly observations. This
yields balanced panels, which simplifies the empirical analysis substantially. After
deleting these series, 20 cities remain in the location panels.

4.3. Empirical tests

Three types of tests are carried out on each panel of price data. First, each is
tested for stationarity by means of a GLS panel unit root test. Second, a threshold
autoregression (TAR) model is fitted to the panels. This model allows for a discrete
change in the strength of reversion once relative prices reach a certain departure
from parity. Finally, an exponential smooth threshold autoregression (ESTAR)
model is estimated for each panel. Favored in recent work on nonlinear price



38 P.G.J. O’Connell, S.-J. Wei / Journal of International Economics 56 (2002) 21 –53

reversion, this model allows for a smooth increase in the rate of reversion as
departures from price parity grow.

In order to properly size our tests, it is essential to control for both contempora-
neous and serial correlation in the data. O’Connell (1998a) shows that the failure
to control for contemporaneous correlation in testing for reversion in relative
prices can lead to very serious size distortions, while Papell (1997) demonstrates
the importance of accounting for serial correlation. To gauge the serial correlation
present in our data, we follow Taylor and Sarno (1998) in examining the sample

19partial autocorrelation functions of the relative price series. For the Category A
goods, none of the partial autocorrelations for lags four and higher are significant,
while for the Category B and C goods, there is some evidence that the fourth lag is
important. Taking into account that there may be seasonal effects at the quarterly

20frequency, we choose to allow for serial correlation of order four in our analysis.
The data-generating process (DGP) for all three models can be characterized as

follows

4 4

*D(q 2 m ) 5Of (q 2 m ) 1 F(q 2 m )Of (q 2 m )ijt ij k ij,t2k ij ij,t2d ij k ij,t2k ij
k51 k51

1 e , t 5 1, . . . , T, (16)ijt

where e | N(0, S), and the type of panel (good or location) is selected by holdingt

either i or j constant. The f parameters are assumed to be the same across all
relative prices in a panel. Not only does this greatly increase statistical power, it
seems like a natural constraint to impose, given that the factors that influence the

21member series are likely to be similar. Moreover, this restriction guarantees that
the unit root test is ‘numeraire invariant.’ That is to say, the same estimates of the
f coefficients will be obtained no matter which price series is chosen as the
numeraire in Eq. (14) (see O’Connell, 1998a).

The key element of the DGP is the transition function F(q 2 m ), whichij,t2d ij

dictates how the behavior of relative prices changes as price disparities grow. The
‘delay parameter’ d determines the interval over which the transition takes place.
Under the random walk model, F(q 2 m ) ; 0, and the DGP takes the form ofij,t2d ij

a modified panel Dickey–Fuller specification, with lagged levels rather than
lagged changes of the dependent variable included in the regression. In this case,

19Standard information criteria tend to penalize high-order lags too much. On the other hand,
likelihood ratio tests based on estimation of the multivariate data-generating process under the null can
attribute too much significance to high-order lags when the null is false. The partial autocorrelation
function appears to offer a reasonable balance as a data-dependent lag selection procedure.

20Partial autocorrelation results are available from the authors on request.
21The variances and partial autocorrelations of the underlying relative price series display relative

homogeneity. Moreover, as shown in the tables of results to follow, the mean departures from absolute
price parity are relatively small. Accordingly, the symmetry restriction does not seem unjustified.
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4the null hypothesis is that the root of the process is unity, or o f 5 1, and thek51 k

alternative is that the root is less than one. For both the TAR and ESTAR models,
F(q 2 m ) is a symmetric convex function, centered on m . For the TARij,t2d ij ij

specification,

0 if uq 2 m u , cij,t2d ijF(q 2 m ) 5 (17)Hij,t2d ij 1 otherwise

c is the distance from equilibrium at which the transition function ‘switches on,’
causing the rate of reversion to undergo a discrete change. In the ESTAR
formulation,

2F(q 2 m ) 5 1 2 exp[2u(q 2 m ) ]. (18)ij,t2d ij ij,t2d ij

In this case, the transition function changes smoothly from 0 when q is at theij,t2d

equilibrium m to 1 as (q 2 m ) → `. The parameter u determines the speed atij ij,t2d ij

which the transition takes place.
The inclusion of the mean m merits separate discussion. One of the distinctij

advantages of our data is that it affords measures of absolute rather than relative
price differences. As such, we might consider testing for stationarity without the
inclusion of an intercept. A problem that arises, however, is that the small-sample
distribution of f is affected by the initial value of the relative price, q . We couldij0

control for this by simulation, initializing the bootstrap samples at the observed
initial prices. However, this would render our tests conditional on the particular
initial values of our data. Accordingly, we allow for an intercept in each relative
price series. The test for stationarity is still based on f. Conditional on this, it will
be informative to examine whether the m terms differ from zero.ij

The f coefficients are estimated in all cases by maximum likelihood. A
ˆconsistent estimate of the covariance matrix S is obtained from ordinary least

squares residuals, and initial estimates of f, f* and the transition function F are
then calculated by minimizing the sum of squares

N N

ˆ 9SSE 5OOs e e , (19)rs rt st
r51s51

21ˆˆwhere s is the r,sth element of S . Iterating these steps to convergencers

produces the maximum likelihood estimates. The transition parameter c in the TAR
model renders the likelihood function nondifferentiable, and so conditional on a
set of candidate estimates for the other parameters, it is estimated by grid-search.
The delay parameter d is also estimated by a simple grid search over h1, 2j.

For the unit root test, in the absence of contemporaneous correlation, the
sampling distribution for the root of the process would be well-approximated by
that tabulated in Levin and Lin (1992). However, with nonzero correlations clearly
present in the data, critical values must be obtained by simulation. Toward this
end, a simulation DGP is constructed by modifying the fitted VAR(4) process.
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Table 2
aEstimated models for goods not locally-produced (Category A) grouped by commodity type

Good Random walk model TAR model ESTAR model
]

T N um u F c F F * DAIC u F F * DAIC

Aspirin 43 24 0.067 0.611 0.12 0.735 20.024 221.4 61.35 0.69 0.05 219.3

11 (0.016) (0.067) (0.039) (45.02) (0.04) (0.05)

Babyfood 72 23 0.067 0.791 0.11 0.766 0.088 221.0 76.95 0.96 20.20 232.3

12 (0.035) (0.040) (0.038) (39.56) (0.04) (0.05)

Bananas 72 23 0.070 0.410 0.1 0.502 20.156 26.6 52.51 0.51 20.14 23.3

14 (0.000) (0.068) (0.060) (71.01) (0.06) (0.07)

Beer 43 24 0.071 0.694 0.06 0.581 20.022 230.3 76.35 0.66 20.02 29.0

17 (0.274) (0.079) (0.036) (95.46) (0.04) (0.04)

Cheese 43 22 0.063 0.740 0.09 0.562 0.068 264.0 64.88 0.59 20.01 233.3

13 (0.275) (0.053) (0.040) (76.95) (0.04) (0.08)

Cigarettes 72 23 0.051 0.796 0.12 0.848 20.440 23.1 99.00 0.82 0.09 29.9

19 (0.000) (0.020) (0.289) (96.16) (0.02) (0.05)

Coffee 72 22 0.048 0.687 0.12 0.652 20.007 222.8 78.46 0.69 20.05 213.7

8 (0.004) (0.044) (0.037) (62.71) (0.04) (0.05)

Cornflakes 55 21 0.055 0.521 0.12 0.632 20.158 216.5 85.55 0.61 0.02 218.9

17 (0.000) (0.054) (0.102) (64.15) (0.05) (0.09)

Game 43 24 0.087 0.463 0.06 0.809 20.298 235.9 41.23 0.64 20.07 29.3

20 (0.007) (0.080) (0.054) (42.71) (0.04) (0.05)

Jeans 43 24 0.064 0.461 0.07 0.624 20.238 235.7 49.61 0.62 20.16 214.4

18 (0.008) (0.084) (0.068) (53.68) (0.06) (0.09)

Liquor 72 22 0.062 0.773 0.07 0.805 0.028 29.2 61.40 0.79 0.06 25.6

14 (0.010) (0.028) (0.025) (81.86) (0.02) (0.04)

Shirt 43 24 0.070 0.357 0.05 0.574 20.141 245.1 43.11 0.61 20.02 225.3

17 (0.000) (0.109) (0.077) (40.07) (0.05) (0.07)

Orange Juice 72 20 0.049 0.498 0.07 0.743 20.068 27.3 73.48 0.80 20.14 210.2

14 (0.000) (0.059) (0.053) (61.80) (0.06) (0.06)

Peaches 72 23 0.060 0.583 0.06 0.773 20.021 230.7 73.61 0.71 0.04 226.1

13 (0.000) (0.047) (0.043) (41.51) (0.04) (0.05)
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Shampoo 43 24 0.067 0.446 0.06 0.593 20.255 234.4 73.99 0.47 20.06 216.8

14 (0.001) (0.114) (0.088) (63.15) (0.06) (0.07)

Shortening 72 23 0.056 0.723 0.12 0.758 20.083 29.7 79.34 0.81 20.12 211.4

12 (0.013) (0.036) (0.034) (66.11) (0.04) (0.04)

Soda 72 22 0.072 0.705 0.09 0.544 20.014 212.5 49.83 0.64 20.06 29.1

7 (0.023) (0.070) (0.052) (44.78) (0.05) (0.05)

Tennis 43 24 0.152 0.580 0.1 0.898 20.021 219.9 39.06 0.71 20.09 210.4

19 (0.010) (0.033) (0.039) (34.58) (0.04) (0.04)

Tissue 72 22 0.050 0.563 0.06 0.608 0.021 216.5 70.71 0.67 20.09 212.1

12 (0.000) (0.064) (0.061) (52.46) (0.04) (0.04)

Toothpaste 43 24 0.073 0.523 0.12 0.443 0.194 259.5 75.96 0.54 0.14 216.1

19 (0.006) (0.054) (0.029) (63.51) (0.05) (0.05)

Tuna 43 23 0.075 0.610 0.05 0.911 20.438 218.2 42.51 0.57 20.20 29.0

14 (0.098) (0.152) (0.148) (54.62) (0.06) (0.11)

Underwear 43 24 0.115 0.649 0.05 0.418 0.045 218.9 41.92 0.64 20.08 24.4

16 (0.100) (0.153) (0.128) (70.42) (0.06) (0.06)

Detergent 72 21 0.094 0.732 0.12 0.644 0.079 23.0 45.84 0.69 20.03 23.4

16 (0.021) (0.041) (0.038) (68.42) (0.04) (0.06)

Wine 43 24 0.122 0.131 0.11 0.625 20.186 229.1 48.25 0.55 20.12 219.2

23 (0.000) (0.065) (0.046) (32.48) (0.05) (0.06)
]a Estimated parameters for the random walk, TAR and ESTAR models. um u is the mean absolute value of the estimated equilibrium for each relative price series in the panel, under the liner model. As the data measure

] ]
absolute price differences, our prior is that um u 5 0. The integer number below each estimate of um u reports the number of estimated m values that are statistically different from zero in the panel. For each model, F is

4 4shorthand for o f , and similarly F * ; o f *. c is the estimated transition parameter for the TAR model, and u is the estimated transition parameter for the ESTAR model. All estimates are obtained by maximumk51 k k51 k

likelihood. For the random walk model, P-values for the random walk null are shown below F, while for the other models the parenthetical numbers are standard errors. As the models are not nested, the Akaike

Information Criterion (AIC) is used to compare their overall goodness of fit. The columns labeled DAIC show, for the TAR and ESTAR models, the change in the AIC relative to the linear AR(4) model. Negative values in

these columns indicate improved goodness-of-fit relative to the linear case.
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4 ˆ ˆ ˆSpecifically, (1 2 o f ) /2 is added to both f and f , thereby forcing the rootk51 k 1 2

of the process to unity. The resultant data-generating process is used to generate
5000 panels of relative prices under the null, and the sampling distribution of

4o f is then obtained by running FGLS on each simulated panel. For the TARk51 k

and ESTAR models, conditional on stationarity, standard inference procedures are
aysmptotically valid. In order to contrast the overall fits of each model, we use the
Akaike Information Criterion (AIC).

5. Empirical results

The empirical results are presented in six tables. Tables 2 and 3 look at the
Category A goods, Tables 4 and 5 at Category B, and Tables 6 and 7 at Category

4C. In order to economize on notation, we use the shorthand F 5 o f andk51 k
4 *F * 5 o f .k51 k

5.1. Results for goods not locally-produced (Category A)

The results for the linear model (Columns 4) leave one with the overall
impression that the goods in this category are stationary. For 20 of the 24 goods in
Table 2, the random walk null is rejected at at better than the 5 per cent level, and
it is rejected at the 10 per cent level for a further two goods. The estimated roots
are quite low, averaging 0.60, suggesting that under linear reversion, deviations
from parity decay very rapidly indeed, with half-lives under 2 quarters. This can
be contrasted with the commonplace assumption that international deviations from
parity have half-lives on the order of 4–5 years. The non-rejections are for beer
and cheese. It is noteworthy that all four of the panels that produce nonrejections
at the 5 per cent level have only 43 time series observations, and hence offer lower
statistical power. The beer and cheese panels are also interesting in that they
display the third and fourth lowest absolute price variation (the lowest variation is
in cigarette prices, followed by liquor prices). One consistent interpretation of the
nonrejections is that price disparities for these goods have simply not been large
enough to cause convergence of the relative price series.

Accepting the alternative hypothesis of stationarity, the question arises as to
whether convergence is to zero, as the theory of absolute price parity would
predict. Approximately 40 per cent of the estimated equilibrium prices for all
series (Column 3) are statistically indistinguishable from zero. The mean absolute
deviation of the equilibria from zero is typically between 5 and 10 per cent, though
it rises to 15 per cent for tennis balls. This suggests that price discrepancies of
modest size exist across the cities in our sample; prices, while stationary, do not
converge absolutely.

Conditional on stationarity, the random walk test specification can be interpreted
as a linear mean-reversion model. How well does this model perform? Are there
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Table 3
aEstimated models for goods not locally-produced (Category A) grouped by location

Good Random walk model TAR model ESTAR model
]

T N um u F c F F * DAIC u F F * DAIC

Mobile, AL 72 9 0.117 0.565 0.08 0.921 20.417 230.6 43.55 0.83 20.39 224.1
9 (0.000) (0.086) (0.104) (23.95) (0.09) (0.13)

Blythe, CA 72 8 0.085 0.714 0.11 0.811 20.164 27.1 30.90 1.21 20.72 231.3
4 (0.001) (0.086) (0.101) (13.73) (0.11) (0.15)

Indio, CA 72 8 0.085 0.740 0.05 0.739 0.064 28.7 26.93 1.27 20.45 214.8
2 (0.006) (0.221) (0.224) (13.58) (0.12) (0.13)

Denver, CO 72 9 0.094 0.696 0.09 0.765 20.022 27.4 47.43 0.84 20.07 217.1
4 (0.000) (0.093) (0.100) (30.04) (0.09) (0.12)

Indianap., IN 72 9 0.063 0.633 0.1 0.948 20.265 218.3 34.35 1.17 20.67 234.4
4 (0.000) (0.083) (0.108) (14.55) (0.09) (0.14)

C. Rapids, IA 72 8 0.047 0.566 0.07 0.934 20.369 219.6 55.54 0.82 20.28 216.3
3 (0.000) (0.108) (0.125) (37.18) (0.10) (0.15)

Lex., KY 72 9 0.093 0.701 0.11 0.820 20.057 211.8 29.43 0.92 20.27 223.2
4 (0.000) (0.069) (0.089) (17.76) (0.08) (0.13)

Louisville, KY 72 9 0.067 0.641 0.06 0.903 20.302 28.2 32.40 0.67 0.02 27.6
3 (0.000) (0.117) (0.129) (29.13) (0.08) (0.15)

St. Louis, MO 72 9 0.050 0.651 0.12 0.862 20.198 29.7 44.29 1.16 20.58 222.1
3 (0.000) (0.069) (0.096) (19.45) (0.10) (0.13)

Hastings, NE 72 9 0.084 0.667 0.12 0.803 20.066 212.8 33.42 0.99 20.54 224.5
6 (0.000) (0.057) (0.094) (20.25) (0.09) (0.14)

Omaha, NE 72 8 0.069 0.550 0.1 0.653 20.153 28.0 52.43 0.72 20.27 211.9
4 (0.000) (0.087) (0.112) (38.38) (0.10) (0.15)

Rap. City, SD 72 9 0.149 0.606 0.08 0.921 20.343 210.9 38.09 0.88 20.34 210.5
7 (0.000) (0.106) (0.112) (26.30) (0.10) (0.12)

Vermill., SD 72 9 0.094 0.555 0.06 1.015 20.472 29.6 47.76 0.97 20.58 216.3
7 (0.000) (0.119) (0.134) (29.43) (0.11) (0.15)

Ch’nooga, TN 72 9 0.132 0.700 0.11 0.922 20.340 212.0 28.65 1.10 20.71 234.0
6 (0.000) (0.071) (0.087) (12.97) (0.09) (0.13)

El Paso, TX 72 8 0.075 0.707 0.08 0.983 20.240 211.4 36.56 1.16 20.57 226.3
3 (0.001) (0.096) (0.103) (17.53) (0.09) (0.10)

Houston, TX 72 9 0.055 0.664 0.06 0.969 20.351 26.7 37.66 0.81 20.14 210.5
2 (0.000) (0.104) (0.119) (30.90) (0.08) (0.10)

Lubbox, TX 72 8 0.076 0.733 0.07 1.006 20.262 213.9 45.08 0.90 20.18 219.8
2 (0.001) (0.102) (0.110) (26.99) (0.09) (0.13)

S. L. City, UT 72 9 0.075 0.608 0.05 0.843 20.190 212.2 29.40 1.03 20.46 238.4
3 (0.000) (0.160) (0.163) (12.67) (0.08) (0.12)

Appleton, WI 72 9 0.087 0.736 0.09 0.844 20.034 29.7 34.71 1.19 20.56 232.1
5 (0.000) (0.086) (0.097) (15.41) (0.09) (0.11)

Casper, WY 72 9 0.139 0.564 0.06 0.397 0.287 24.6 26.80 1.20 20.76 223.6
7 (0.000) (0.119) (0.126) (10.02) (0.08) (0.12)

]a Estimated parameters for the random walk, TAR and ESTAR models. um u is the mean absolute value
of the estimated equilibrium for each relative price series in the panel, under the liner model. As the]
data measure absolute price differences, our prior is that um u 5 0. The integer number below each]
estimate of um u reports the number of estimated m values that are statistically different from zero in the

4 4 *panel. For each model, F is shorthand for o f , and similarly F * ; o f . c is the estimatedk51 k k51 k

transition parameter for the TAR model, and u is the estimated transition parameter for the ESTAR
model. All estimates are obtained by maximum likelihood. For the random walk model, P-values for
the random walk null are shown below F, while for the other models the parenthetical numbers are
standard errors. As the models are not nested, the Akaike Information Criterion (AIC) is used to
compare their overall goodness of fit. The columns labeled DAIC show, for the TAR and ESTAR
models, the change in the AIC relative to the linear AR(4) model. Negative values in these columns
indicate improved goodness-of-fit relative to the linear case.
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Table 4
aEstimated models for goods that may be locally-produced (Category B) grouped by commodity

Good Random walk model TAR model ESTAR model
]

T N um u F c F F * DAIC u F F * DAIC

Bacon 67 24 0.054 0.412 0.06 0.666 20.267 216.7 59.11 0.59 20.26 224.8

16 (0.000) (0.093) (0.083) (30.12) (0.07) (0.07)

Bread 72 22 0.078 0.469 0.1 0.506 0.117 28.1 28.28 0.57 0.13 25.6

13 (0.000) (0.069) (0.062) (33.69) (0.05) (0.06)

Eggs 72 23 0.107 0.781 0.05 0.829 20.077 215.1 59.32 0.75 0.16 245.0

10 (0.076) (0.091) (0.073) (22.30) (0.05) (0.05)

Minced steak 72 23 0.061 0.596 0.06 0.629 0.008 220.5 43.97 0.59 0.14 29.2

12 (0.000) (0.078) (0.074) (39.29) (0.05) (0.07)

Lettuce 72 23 0.099 0.321 0.07 0.338 20.020 21.8 33.19 0.36 20.02 1.2

17 (0.000) (0.102) (0.092) (62.03) (0.05) (0.06)

Margarine 72 23 0.081 0.592 0.08 0.570 0.008 216.8 47.42 0.81 20.25 234.0

14 (0.000) (0.070) (0.056) (21.01) (0.06) (0.06)

Milk 72 23 0.071 0.745 0.1 0.719 0.127 215.4 50.41 0.70 0.22 227.6

18 (0.015) (0.037) (0.033) (35.39) (0.03) (0.09)

Potatoes 72 23 0.099 0.392 0.1 0.247 0.181 219.3 39.48 0.33 0.14 29.6

13 (0.000) (0.083) (0.072) (37.57) (0.07) (0.08)

Steak 72 22 0.058 0.625 0.09 0.592 20.027 214.1 40.95 0.63 0.00 212.3

10 (0.000) (0.063) (0.049) (36.01) (0.04) (0.06)

Sugar 55 20 0.062 0.540 0.1 0.596 20.163 28.3 60.91 0.60 20.05 23.9

16 (0.000) (0.059) (0.063) (61.68) (0.05) (0.08)

Chicken 72 23 0.070 0.490 0.08 0.641 20.092 213.2 58.02 0.61 20.05 25.9

16 (0.000) (0.082) (0.073) (57.75) (0.06) (0.08)
]a Estimated parameters for the random walk, TAR and ESTAR models. um u is the mean absolute value

of the estimated equilibrium for each relative price series in the panel, under the liner model. As the
]

data measure absolute price differences, our prior is that um u 5 0. The integer number below each
]

estimate of um u reports the number of estimated m values that are statistically different from zero in the
4 4 *panel. For each model, F is shorthand for o f , and similarly F * ; o f . c is the estimatedk51 k k51 k

transition parameter for the TAR model, and u is the estimated transition parameter for the ESTAR
model. All estimates are obtained by maximum likelihood. For the random walk model, p2values for
the random walk null are shown below F, while for the other models the parenthetical numbers are
standard errors. As the models are not nested, the Akaike Information Criterion (AIC) is used to
compare their overall goodness of fit. The columns labeled DAIC show, for the TAR and ESTAR
models, the change in the AIC relative to the linear AR(4) model. Negative values in these columns
indicate improved goodness-of-fit relative to the linear case.

nonlinearities in the data that it fails to capture? The TAR and ESTAR fits shed
light on these questions. It turns out that the nonlinear models dominate the linear
model in every instance. Both models involve the estimation of an additional five
parameters for each panel, but as a consequence the likelihood function, or
equivalently the determinant of the inverse of the residual covariance matrix,
increases, and the net result is that AIC falls. Columns 8 and 12 show the decline
in the AIC for each model relative to the linear fit.

Turning first to the TAR model, the estimated thresholds (c) are in the range of 5
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Table 5
aEstimated models for goods that may be locally-produced (Category B) grouped by location

Good Random walk model TAR model ESTAR model
]

T N um u F c F F * DAIC u F F * DAIC

Mobile, AL 72 7 0.073 0.238 0.05 0.813 20.610 23.5 48.52 0.52 20.49 22.8
6 (0.000) (0.352) (0.360) (55.31) (0.19) (0.24)

Blythe, CA 72 7 0.179 0.743 0.12 0.821 20.073 1.1 29.47 1.24 20.40 220.9
3 (0.003) (0.084) (0.100) (14.90) (0.12) (0.13)

Indio, CA 72 7 0.178 0.745 0.05 0.130 0.657 24.9 26.92 1.17 20.42 210.8
3 (0.006) (0.271) (0.276) (16.61) (0.12) (0.13)

Denver, CO 72 7 0.056 0.536 0.11 1.058 20.451 217.7 28.28 1.12 20.85 227.7
2 (0.000) (0.097) (0.117) (15.69) (0.15) (0.20)

Indianap., IN 72 7 0.058 0.421 0.11 0.680 20.184 28.8 40.27 0.78 20.38 214.6
3 (0.000) (0.125) (0.150) (25.00) (0.17) (0.22)

C. Rapids, IA 72 7 0.068 0.549 0.11 0.834 20.205 210.6 44.70 1.01 20.56 220.9
4 (0.000) (0.107) (0.123) (23.09) (0.16) (0.19)

Lex., KY 72 7 0.102 0.588 0.1 0.827 20.304 22.9 41.21 0.93 20.51 215.9
4 (0.000) (0.120) (0.136) (29.23) (0.14) (0.18)

Louisville, KY 72 7 0.093 0.491 0.05 0.748 20.238 21.0 26.35 0.82 20.50 25.7
4 (0.000) (0.281) (0.295) (22.12) (0.14) (0.19)

St. Louis, MO 72 7 0.063 0.655 0.12 0.725 20.065 22.6 37.95 0.82 20.08 219.5
1 (0.000) (0.107) (0.124) (20.17) (0.12) (0.16)

Hastings, NE 72 7 0.088 0.409 0.06 0.648 20.181 25.8 29.54 0.88 20.89 218.3
5 (0.000) (0.216) (0.229) (17.85) (0.14) (0.28)

Omaha, NE 72 7 0.101 0.482 0.11 0.786 20.312 24.6 30.20 1.03 20.91 222.7
6 (0.000) (0.103) (0.141) (15.87) (0.15) (0.23)

Rap. City, SD 72 7 0.090 0.346 0.09 0.808 20.523 210.1 23.22 0.80 20.74 212.6
4 (0.000) (0.159) (0.177) (17.04) (0.16) (0.20)

Vermill., SD 72 7 0.065 0.579 0.05 0.132 0.520 26.1 44.14 0.90 20.50 24.2
3 (0.000) (0.331) (0.335) (44.81) (0.18) (0.20)

Ch’nooga. TN 72 7 0.049 0.503 0.1 0.546 0.024 21.8 29.21 0.44 0.17 21.6
2 (0.000) (0.154) (0.168) (38.28) (0.14) (0.20)

El Paso, TX 72 7 0.114 0.574 0.07 0.460 0.155 20.6 25.45 0.58 0.08 20.3
5 (0.000) (0.180) (0.181) (35.89) (0.10) (0.14)

Houston, TX 72 7 0.057 0.563 0.06 0.701 20.104 26.6 43.21 0.81 20.24 218.0
1 (0.000) (0.229) (0.233) (29.04) (0.13) (0.17)

Lubbox, TX 72 7 0.075 0.449 0.12 0.640 20.055 211.4 32.44 0.73 20.20 210.2
4 (0.000) (0.123) (0.144) (22.18) (0.15) (0.21)

S. L. City, UT 72 7 0.141 0.642 0.07 0.563 0.103 20.4 22.81 0.66 0.05 21.5
4 (0.000) (0.216) (0.222) (28.05) (0.11) (0.17)

Appleton, WI 72 7 0.077 0.545 0.11 0.852 20.346 28.2 46.35 0.96 20.49 217.1
5 (0.000) (0.097) (0.128) (30.42) (0.14) (0.18)

Casper, WY 72 7 0.088 0.467 0.11 0.826 20.287 217.7 37.11 1.10 21.01 230.6
4 (0.000) (0.109) (0.124) (17.15) (0.17) (0.20)

]a Estimated parameters for the random walk, TAR and ESTAR models. um u is the mean absolute value
of the estimated equilibrium for each relative price series in the panel, under the liner model. As the]
data measure absolute price differences, our prior is that um u 5 0. The integer number below each]
estimate of um u reports the number of estimated m values that are statistically different from zero in the

4 4 *panel. For each model, F is shorthand for o f , and similarly F * ; o f . c is the estimatedk51 k k51 k

transition parameter for the TAR model, and u is the estimated transition parameter for the ESTAR
model. All estimates are obtained by maximum likelihood. For the random walk model, P-values for
the random walk null are shown below F, while for the other models the parenthetical numbers are
standard errors. As the models are not nested, the Akaike Information Criterion (AIC) is used to
compare their overall goodness of fit. The columns labeled DAIC show, for the TAR and ESTAR
models, the change in the AIC relative to the linear AR(4) model. Negative values in these columns
indicate improved goodness-of-fit relative to the linear case.
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Table 6
aEstimated models for goods that are locally-produced (Category C) grouped by commodity

Good Random walk model TAR model ESTAR model
]

T N um u F c F F * DAIC u F F * DAIC

Fr. Chicken 43 24 0.055 0.525 0.06 0.768 20.227 219.9 40.71 0.71 20.14 215.4

14 (0.036) (0.084) (0.063) (36.29) (0.04) (0.06)

McDonalds 43 24 0.031 0.503 0.07 0.353 0.045 272.9 155.35 0.50 20.07 223.0

18 (0.002) (0.068) (0.089) (117.28) (0.05) (0.07)

Pizza 43 24 0.108 0.709 0.08 0.597 20.086 253.6 104.44 0.72 20.04 227.9

20 (0.104) (0.070) (0.019) (96.73) (0.03) (0.02)

App. Repair 72 23 0.096 0.721 0.07 0.890 20.078 25.3 44.16 0.82 0.00 213.8

14 (0.001) (0.046) (0.045) (40.36) (0.03) (0.03)

Auto maint. 55 22 0.117 0.739 0.1 0.656 0.068 232.4 53.12 0.66 0.05 231.8

13 (0.130) (0.046) (0.028) (36.61) (0.03) (0.04)

Beauty 43 24 0.148 0.564 0.11 0.835 20.135 227.8 41.89 0.80 20.06 225.2

22 (0.011) (0.032) (0.049) (43.32) (0.03) (0.04)

Bowling 72 22 0.127 0.730 0.1 0.893 20.012 228.3 56.50 0.82 0.10 240.0

16 (0.196) (0.027) (0.023) (30.13) (0.03) (0.03)

Dentist 72 23 0.114 0.715 0.11 0.807 20.074 27.5 27.82 0.85 20.15 218.1

18 (0.000) (0.037) (0.040) (18.72) (0.04) (0.04)

Doctor 72 23 0.129 0.789 0.05 0.823 0.011 27.9 35.46 0.91 20.12 216.1

17 (0.013) (0.065) (0.063) (24.22) (0.03) (0.04)

Dryclean 72 23 0.130 0.762 0.12 0.833 20.071 224.2 35.88 0.84 20.07 231.2

19 (0.001) (0.025) (0.019) (23.50) (0.02) (0.02)

Hospital 72 23 0.162 0.890 0.07 0.870 0.061 241.8 24.30 1.04 20.17 276.2

15 (0.766) (0.024) (0.021) (11.89) (0.02) (0.03)

Haircut 72 23 0.132 0.706 0.11 0.761 0.031 212.1 31.50 0.78 0.01 26.2

20 (0.004) (0.029) (0.018) (29.44) (0.02) (0.03)

Movie 72 23 0.096 0.605 0.09 0.872 20.047 210.7 51.27 0.84 20.03 25.5

19 (0.000) (0.026) (0.025) (79.98) (0.03) (0.03)
]a Estimated parameters for the random walk, TAR and ESTAR models. um u is the mean absolute value

of the estimated equilibrium for each relative price series in the panel, under the liner model. As the
]

data measure absolute price differences, our prior is that um u 5 0. The integer number below each
]

estimate of um u reports the number of estimated m values that are statistically different from zero in the
4 4 *panel. For each model, F is shorthand for o f , and similarly F * ; o f . c is the estimatedk51 k k51 k

transition parameter for the TAR model, and u is the estimated transition parameter for the ESTAR
model. All estimates are obtained by maximum likelihood. For the random walk model, P-values for
the random walk null are shown below F, while for the other models the parenthetical numbers are
standard errors. As the models are not nested, the Akaike Information Criterion (AIC) is used to
compare their overall goodness of fit. The columns labeled DAIC show, for the TAR and ESTAR
models, the change in the AIC relative to the linear AR(4) model. Negative values in these columns
indicate improved goodness-of-fit relative to the linear case.

to 12 per cent. Inside these thresholds, the root of the DGP is F, while outside the
root is F 1 F *. So the sign of F * indicates whether reversion is stronger or
weaker outside the band. Seventeen of the 24 estimates of F * are negative,
indicating stronger reversion for large price gaps. Nine of these are statistically
less than zero at conventional significance levels, while 3 are statistically positive.
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Table 7
aEstimated models for goods that are locally-produced (Category C) grouped by location

Good Random walk model TAR model ESTAR model
]

T N um u F c F F * DAIC u F F * DAIC

Mobile, AL 72 8 0.103 0.808 0.06 1.043 20.156 28.3 30.66 1.22 20.53 238.2
4 (0.022) (0.121) (0.122) (12.19) (0.09) (0.09)

Blythe, CA 72 7 0.239 0.702 0.08 1.037 20.339 24.3 15.97 1.25 20.68 219.4
7 (0.000) (0.130) (0.140) (8.90) (0.09) (0.15)

Indio, CA 72 7 0.267 0.731 0.1 0.740 0.056 23.2 22.70 0.79 20.01 212.6
6 (0.000) (0.090) (0.100) (18.73) (0.08) (0.13)

Denver, CO 72 8 0.134 0.773 0.05 0.711 0.037 25.5 25.04 1.27 20.87 236.7
4 (0.006) (0.175) (0.178) (10.18) (0.09) (0.14)

Indianap., IN 72 8 0.072 0.810 0.12 0.751 0.143 216.3 47.96 1.01 20.06 243.8
3 (0.005) (0.063) (0.074) (18.67) (0.07) (0.09)

C. Rapids, IA 72 7 0.053 0.859 0.05 0.774 0.120 24.8 43.71 1.00 20.07 227.6
0 (0.037) (0.213) (0.215) (24.88) (0.10) (0.10)

Lex., KY 72 8 0.082 0.866 0.12 0.734 0.194 27.8 46.49 1.23 20.32 227.3
2 (0.139) (0.061) (0.066) (20.22) (0.12) (0.12)

Louisville, KY 72 8 0.070 0.833 0.11 0.863 20.094 26.3 37.89 1.05 20.29 217.2
1 (0.034) (0.060) (0.073) (22.59) (0.08) (0.10)

St. Louis, MO 72 8 0.064 0.835 0.12 0.858 20.005 20.7 35.85 1.08 20.36 211.4
2 (0.009) (0.057) (0.061) (22.91) (0.09) (0.09)

Hastings, NE 72 8 0.124 0.803 0.11 0.894 20.201 216.1 40.80 1.05 20.51 233.2
5 (0.005) (0.056) (0.070) (18.52) (0.08) (0.10)

Omaha, NE 72 8 0.094 0.675 0.11 0.880 20.195 26.4 45.38 0.98 20.33 212.8
5 (0.000) (0.067) (0.084) (31.10) (0.09) (0.12)

Rap. City, SD 72 8 0.091 0.828 0.07 1.045 20.253 212.0 41.21 1.22 20.43 219.9
2 (0.036) (0.128) (0.131) (18.96) (0.11) (0.12)

Vermill., SD 72 8 0.141 0.808 0.08 0.838 20.018 211.7 19.90 0.87 20.09 24.6
6 (0.010) (0.099) (0.100) (25.63) (0.07) (0.10)

Ch’nooga. TN 72 7 0.115 0.789 0.09 0.885 20.082 28.3 40.36 1.06 20.25 231.2
3 (0.003) (0.083) (0.089) (21.51) (0.08) (0.09)

El Paso, TX 72 7 0.095 0.843 0.12 0.961 20.107 27.8 48.32 0.76 0.19 210.1
1 (0.031) (0.050) (0.059) (35.17) (0.09) (0.09)

Houston, TX 72 8 0.162 0.829 0.05 0.754 0.076 211.2 23.98 1.16 20.44 215.8
7 (0.009) (0.141) (0.144) (15.81) (0.07) (0.09)

Lubbox, TX 72 7 0.090 0.765 0.12 0.837 20.059 24.5 27.41 0.98 20.12 220.8
2 (0.000) (0.067) (0.085) (16.14) (0.08) (0.09)

S. L. City, UT 72 8 0.103 0.777 0.05 0.817 20.066 20.3 40.95 0.91 20.22 22.5
3 (0.002) (0.146) (0.148) (44.00) (0.09) (0.09)

Appleton, WI 72 8 0.145 0.857 0.12 1.006 20.250 212.5 35.27 1.08 20.36 213.4
4 (0.050) (0.053) (0.062) (20.38) (0.08) (0.09)

Casper, WY 72 8 0.109 0.694 0.08 1.014 20.324 22.2 41.44 1.10 20.39 27.7
5 (0.000) (0.117) (0.127) (25.21) (0.10) (0.10)

]a Estimated parameters for the random walk, TAR and ESTAR models. um u is the mean absolute value
of the estimated equilibrium for each relative price series in the panel, under the liner model. As the]
data measure absolute price differences, our prior is that um u 5 0. The integer number below each]
estimate of um u reports the number of estimated m values that are statistically different from zero in the

4 4 *panel. For each model, F is shorthand for o f , and similarly F * ; o f . c is the estimatedk51 k k51 k

transition parameter for the TAR model, and u is the estimated transition parameter for the ESTAR
model. All estimates are obtained by maximum likelihood. For the random walk model, P-values for
the random walk null are shown below F, while for the other models the parenthetical numbers are
standard errors. As the models are not nested, the Akaike Information Criterion (AIC) is used to
compare their overall goodness of fit. The columns labeled DAIC show, for the TAR and ESTAR
models, the change in the AIC relative to the linear AR(4) model. Negative values in these columns
indicate improved goodness-of-fit relative to the linear case.
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The positive estimates are obtained for the babyfood, detergent and toothpaste
panels. These three goods are unremarkable in terms of their price volatility —
each has a standard deviation of absolute price levels in the 8–9 per cent range —
so the finding of weaker reversion outside the threshold is something of a puzzle.

As for the ESTAR model, a similar story emerges, though with some twists. The
transition parameter u is in every case positive. To give the estimates meaning,
Fig. 1 plots the estimated transition functions F( ? ) for the TAR (dotted line) and
ESTAR (solid line) models for Category A goods. The results for the two models
are broadly consistent. As the standard errors in Column 9 make clear, the u

coefficients are estimated imprecisely, indicating that the model has difficulty
identifying the exact form of the nonlinearity. Eighteen of the 24 estimates of F *
are negative, suggesting once again that reversion is stronger for larger price gaps.
Nine of these are statistically less than zero at conventional size, while 2 are
statistically positive.

Comparing the two models, there are some discrepancies. Babyfood prices
appear to be highly nonlinear under the ESTAR formulation, but not under the
TAR model, and the converse is true for cigarettes. These differences stem from

Fig. 1. TAR (? ? ?) and ESTAR (—) transition functions for goods not locally produced (Category A).
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the difference in the form of the transition function F( ? ). Choosing the preferred
specification for each panel, 10 of the goods have statistically negative estimates of
F *, while only 2 (toothpaste and cigarettes) have statistically positive estimates of
F *.

Table 3 reports results in the same format for Category A goods grouped by
location. Grouped this way, the data reveal stronger evidence of nonlinear
reversion. All panels appear to be stationary, and the nonlinear models outperform
the linear specification on the basis of the AIC. For 11 of the cities, the TAR
estimate of F * is negative and statistically significant; only for one city (Casper,
WY) is the estimate positive and statistically significant. Sixteen of the ESTAR
estimates of F * are negative and significant, while none are positive.

Overall, then, the prices of Category A goods appear to converge to equilibria
that are at or close to parity, and this convergence is nonlinear, with larger
deviations from equilibrium producing more rapid convergence.

5.2. Results for goods that may be locally-produced (Category B)

The goods in this category appear to be stationary. Column 4 of Table 4
indicates that all the price processes are statistically distinguishable from the
random walk at 8 per cent size or better. Once again, the roots are relatively low,
averaging 0.54. As with the Category A goods, approximately 40 per cent of the
estimated equilibrium prices are also statistically indistinguishable from zero.
Moreover, the average absolute deviation of the equilibria from zero is within 10
per cent. Only for egg prices is there evidence of somewhat slower price
convergence and relatively higher equilibrium price disparities. Inspecting the data
it is clear that it is the price of eggs in California that gives rise to this differential
behavior — the price of a dozen eggs in Blythe, Indio and Palm Springs doubled
from roughly $1 to $2 from 1989 to 1992 while the price of eggs elsewhere in the
country remained stable.

The goods in this category are staples like bread and milk. Accordingly, it is
perhaps not too surprising that, given their commodity-like nature, their prices
seem to conform well to the LOP. As for nonlinear convergence, however, the
evidence in this category is much less compelling. For the TAR model, 2 of the
estimates of F * are statistically less than zero, and 3 are statistically greater than
zero. For the ESTAR model, 2 estimates are negative and 4 are statistically
positive. As a general rule, these goods display much higher price volatility than
the goods in Category A: the average standard deviation of price levels in each
panel is 11.5 per cent, while for changes the volatility is 12.3 per cent. These
numbers can be contrasted with 8.7 per cent and 8.4 per cent for the Category A
goods.

Table 5 reveals that, when grouped by location, these goods continue to exhibit
stationarity — in all cases, the P-values in Column 4 indicate strong rejection of
the unit root null. There is somewhat more evidence that the reversion is nonlinear.
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Eight of the estimated roots for the TAR model are statistically less than 0, and 14
of the roots from the ESTAR model are statistically less than 0.

5.3. Results for goods locally-produced (Category C)

As might be expected, there is less evidence against the random walk null in this
category, which includes many services such as dry cleaning and dentistry.
Column 4 of Table 6 reveals that, for 4 of the 13 goods, the random walk null
cannot be rejected. The non-rejections are for automobile maintenance, bowling,
and hospital services. For hospital services the failure to reject is particularly
acute. In addition, only 20 per cent of the estimated equilibria for the stationary
series are statistically indistinguishable from zero, and the average absolute
deviation of the estimated equilibria from zero for the stationary panels is in
excess of 10 per cent.

Having said this, for the goods that do appear to be stationary in this panel,
prices seem to be relatively well-behaved. The estimated roots under the linear
model average 0.65. Of the 9 goods that are stationary, 6 exhibit evidence of
nonlinear price convergence according to the TAR model, and 4 do so according to

22the ESTAR model. Neither of the nonlinear models is dominant: for appliance
repair, dentistry, doctor services and dry cleaning the AIC selects the ESTAR
model, while for the remaining stationary series the TAR model is preferred. The
average volatilities of price changes and price levels are lower than for Category
B, at 9.0 and 6.9 per cent respectively.

When grouped by location (Table 7), the prices appear to be stationary across
locations, though the P-values are higher than was the case for the other groupings
and the random walk null cannot be rejected for Lexington, KY. There appears to
be substantial evidence of nonlinear convergence to equilibrium. Selecting the
preferred model for each city (excluding Lexington), 13 of the estimated F *
parameters are statistically less than 0.

6. Conclusion

In this paper we have sought to develop the literature on nonlinear commodity
price behavior along two dimensions. First, we set out a simple continuous-time
framework to help understand how general market frictions might affect relative
price behavior. Second, we employ a detailed data set on U.S. goods prices to
examine the pattern of reversion exhibited by deviations from the LOP. The data,

22Despite the episodic repricing of McDonald’s sandwiches to 99 cents, this good does not exhibit
evidence of nonlinear price convergence. This provides some comfort that our results are not driven by
once-off ‘sale’ adjustments to mark-up.
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measured in 24 cities over the period 1975:1–1992:4 afford a ‘purer’ measure of
deviations from price parity than is possible with aggregate price indices. The
empirical results can be distilled to the following main findings.

1. There is every indication that relative prices across U.S. cities are stationary,
with some exceptions in the services area, notably health care. The estimated
roots of the data generating processes indicate that reversion to equilibrium is
quite rapid, and is significantly more rapid than has been found for relative
international prices.

2. For approximately 40 per cent of non-locally produced, branded goods in
Category A and the basic staples in Category B, reversion is to zero, which is to
say the LOP holds absolutely. For the remainder, sustained price gaps on the
order of 5 to 10 per cent can and do persist.

3. The volatility of price levels and price changes is almost 50 per cent higher for
the staples in Category B than it is for either Category A or Category C goods.

4. Grouping the prices by commodity type, there is persuasive evidence that large
price disparities mean revert more rapidly than small price disparities for the
goods in Category A. For Category B goods, the evidence of nonlinear
reversion is much weaker. In Category C, there are important differences in
price behavior across the goods. Four of the 13 members of this category
exhibit nonstationarity price behavior. For the remaining goods, there appears
to be moderate to strong evidence of nonlinear reversion to the mean.

5. Grouping the prices by location in general leads to much stronger results. The
prices in almost all locations appear to mean-revert, and for some three-fourths
of the panels, the strength of reversion rises with the distance from parity.

These results can be seen as complementary to the body of recent work that has
found evidence of nonlinear reversion in relative international prices.
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