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Abstract

Background: In classical mathematical epidemiology, individuals do not adapt their contact behavior during epidemics.
They do not endogenously engage, for example, in social distancing based on fear. Yet, adaptive behavior is well-
documented in true epidemics. We explore the effect of including such behavior in models of epidemic dynamics.

Methodology/Principal Findings: Using both nonlinear dynamical systems and agent-based computation, we model two
interacting contagion processes: one of disease and one of fear of the disease. Individuals can “contract” fear through
contact with individuals who are infected with the disease (the sick), infected with fear only (the scared), and infected with
both fear and disease (the sick and scared). Scared individuals—-whether sick or not-may remove themselves from circulation
with some probability, which affects the contact dynamic, and thus the disease epidemic proper. If we allow individuals to
recover from fear and return to circulation, the coupled dynamics become quite rich, and can include multiple waves of
infection. We also study flight as a behavioral response.

Conclusions/Significance: In a spatially extended setting, even relatively small levels of fear-inspired flight can have a
dramatic impact on spatio-temporal epidemic dynamics. Self-isolation and spatial flight are only two of many possible
actions that fear-infected individuals may take. Our main point is that behavioral adaptation of some sort must be
considered.
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seems likely to. People may be expected to adapt their contact
patterns, and this will feed back to alter epidemic dynamics.

Introduction

“The plague was nothing; fear of the plague was much more Homo EconomSickus

Jormidable.” Economists have begun to address this issue, introducing the
Henri Poincare notion of prevalence elastic behavior into epidemic models. For

example, as AIDS prevalence grows in a community, people may

reduce their number of sexual partners [4]. Predictably, economic

Motivation epidemiology, as this subfield is called, posits optimizing behavior on

the part of individuals. In effect, it models how canonically rational
individuals would behave given some level of disease prevalence.
They behave as homo economicus would behave given the associated
health risks and costs of protection (e.g., vaccine-seeking). A term
used for the resulting dynamics is rational epidemics. This literature
includes elegant mathematical work, and captures—in the notion
of prevalence elasticity—a clearly important phenomenon.

In classical mathematical epidemiology-the tradition of ordi-
nary differential equations with perfect mixing (mass action
kinetics) beginning with the 1927 Kermack-McKendrick model—
individuals do not adapt their contact behavior during epidemics
[1-3]. They do not endogenously engage, for example, in social
distancing (protective sequestration) based on disease prevalence.
Rather, they simply continue mixing (often uniformly) as if no
epidemic were under way. This may be a reasonable assumption

for non-lethal infections such as the common cold, but for lethal
diseases such as AIDS, it is known to fail; and for other lethal
disease threats, like pandemic influenza or bioterrror smallpox, it
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Boundedly Rational Epidemics
However, prevalence is treated as a kind of exogenous signal
(suspiciously like a perfectly competitive price) to which agents
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respond with some elasticity. They do not interact directly with
one another to gain information on prevalence or in deciding how
to behave. The approach, therefore, seems ill-suited to capture
cases where endogenous epidemics of fear inspire widespread adaptations
unrelated to prevalence. As an example, in 1996, millions of Indians
fled Surat province to escape pneumonic plague. Yet, not a single
case of pneumonic plague was actually confirmed. Prevalence of
the disease itself, in other words, was zero.

We do not purport to define the term “fear.” Readers should
feel free to interpret it as “concerned awareness,” for example.
The point is that we are modeling a behavior-inducing
transmissible signal distinct from the pathogen itself. For
expository purposes, “fear” will do. For those interested in the
substantial literature on emotional contagions generally, see [5].

The model developed here handles cases where the fear is
contagious, even when the pathogen is not (e.g., anthrax). Indeed,
it handles cases where the event in question is not a pathogen at
all, such as a chemical or radiological event, or natural disaster,
such as an earthquake or volcano.

A second problem with the literature is that, even models that do
include prevalence-dependent behavior assume behavioral chang-
es that are depressive in their effect on the epidemic - protective self-
isolation (sequestration) being the most common. However,
research on mass behavior during crises (and even epidemics
specifically) records another behavioral response that is common -
Slight. Unlike protective sequestration, flight has the potential to
increase long-range mixing across spatial regions, exacerbating
epidemics. In the model introduced here, we expand the
behavioral response repertoire of agents infected with fear to
include both flight and protective self-isolation.

In summary, most infectious disease modeling ignores adaptive
behavior. Models have begun to include prevalence elastic
behavior [6]. It typically damps the epidemic. In Part I, we
introduce a differential equation model where fear can spread
independent of prevalence. Then spatial flight is added to the
behavioral repertoire. This extension is implemented as an Agent-
Based Model (ABM) in Part II. The full model shows how even a
small amount of flight can amplify epidemic severity. To begin, we
present the no-flight version.

Analysis

Part I: The Basic No Flight Model

For expository purpose, we imagine two confagion processes: one
of disease proper, and one of fear about the disease. (Bear in mind
that the model in fact does not require that the event sparking the
fear epidemic be a disease, contagious or otherwise. It could be a
radiological, or seismic event, for example.) Individuals contract
disease only through contact with the disease-infected (the sick).
However, individuals can contract fear through contact with the
disease-infected (the sick), the fear-infected (the scared, or worried
well), or those infected with both fear and disease (the sick and
scared). Scared individuals—whether sick or not—may withdraw
from circulation, and return to circulation having recovered from
fear, all of which affects the course of the disease epidemic proper.

Agents can occupy one and only one of seven states at any time.
The model’s (seven dimensional) state space is shown below:

S: Susceptible to pathogen and fear
Iz Infected with fear only

Iy Infected with pathogen only

Ipe  Infected with pathogen and fear

Rz Removed from circulation due to fear
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Coupled Contagion

Rpz Removed from circulation due to fear and
infected with pathogen

R: Recovered from pathogen and immune to fear

Let f denote the per-contact disease transmission rate, and let o
denote the per-contact fear transmission rate. If we now imagine a
susceptible individual (i.e., neither sick nor scared) having contact
with one who is both sick and scared, then the transmission rates of
fear, infection, and various combinations are given in Table 1. For
instance, the probability that the first individual (neither sick nor
scared) contracts neither bug nor fear is (1—a)(1—p), and so
forth.

Finally we specify below the parameters controlling the rate at
which individuals self-isolate due to fear and recover from fear and
return to circulation:

A Rate of removal to self-isolation of those infected
with fear only

Ap. Rate of removal from infection with pathogen

Apr: Rate of removal to self-isolation of those infected
with fear and pathogen

H: Rate of recovery from fear and return to circulation

With all of this in place, the model can be implemented as a
classical well-mixed ordinary differential equation (ODE) system.
The appropriate generalization of the standard Kermack-McKen-
drick set-up is formalized in the equations of Figure 1A.

As a prelude to the analytic discussion, let us trace through some
simple state transitions. For instance, individuals susceptible to the
bug and fear, S, flow into the Infected (with pathogen only) pool I
at rate f(1—a)SIp and into the pool infected with fear only I at
rate (1—pf)aSIp. Similarly, those who self-isolated out of fear
only, denoted Ry (removed through Fear) return to the S pool at
rate HRp, where a constant H would yield exponential decay of
individual fear, ceteris paribus. A time-dependant H s considered below.
This most elementary form of the model assumes constant
population as all the right-hand sides sum to zero, and clearly
subsumes the classic SI and SIR models. In parallel with this
mathematical model, we also built an equivalent ABM, to be used
as the basis for the with-flight extensions discussed below. All the
following points pertaining to the differential equations also apply
to the parallel ABM.

Fear and Disease Uncoupled

Setting o (fear) equal to zero (and barring removals) yields the
standard S-curves (i.e., a declining susceptible S-curve and a rising
disease infection S-curve. In turn, if we reverse things, setting
disease transmission (f) to zero, and fear transmission () to a
positive value, we generate a pure fear epidemic with no
underlying disease. The Salem witch hunt would be one example,
though there are innumerable further ones.

Table 1. Transmission Probabilities.

Get scared Not get scared
Get sick of (I—a)p
Not get sick a(l—p) (I—a)(1=p)

doi:10.1371/journal.pone.0003955.t001
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Figure 1. (A&B): Classical SIR differential equations formulation and flowchart.

doi:10.1371/journal.pone.0003955.g001

Fear and Disease Coupled

These results seem reasonably predictable, and are symmetrical
to one another: at f>0 and a=0, we get S-curves of disease.
Reverse these settings (f=0,2>0) and we get the strictly
analogous pair of S-curves for fear. Surely one would expect that
if we set a=pf, the disease and fear epidemic S-curves should
coincide. Is this what happens? Not always, as shown in Figure 2,
with o= f§>0.

Ceteris paribus, the fear epidemic is faster then the bug epidemic.
Why? The reason is that there are more pathways by which to
contract fear than there are to contract bug. One can contract
disease from contact with either of fwo pools: I or Ipr. But one can
contract Fear by contact with any one of #hee pools: 1g, 155, or Ix
Obviously, once there is any fear, the latter three is a bigger set
with which contact is more likely. This is a numerical example
showing the possibility of an important asymmetry. But it is simply
an existence result. What is the general relationship?

Reproductive Rates of Fear and Disease

One measure of epidemic speed is the basic reproductive
number: Ry. This is defined as the expected number of secondary
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cases from a typical infectious individual during the entire period
of their infectiousness in a completely susceptible population. The
basic reproductive number of either the pathogen or fear can be
found by calculating the spectral radius of the next generation
operator. Diekmann et al. describes this procedure for estimating
Ry about the disease-free equilibrium [7]. The basic reproductive
number of the pathogen as a function of the transmission
coeflicient and rates of recovery or withdrawal from contact from
the above system of equations is:

B(2p+ Apr —0lpF)
2p(Ap+7pF)

(1)

Ro(pathogen) =

Two types of individuals are infectious with the pathogen, Ip
and Ipr The average residence time in each of these states is 1/2p
and 1/(Ap+ Ar), respectively. Individuals in these states will infect
others at a rate of f§ per unit time. Ro(pathogen) can be interpreted
as a weighted sum of the product of f and the residence times in
the two infectious states weighted by the fraction of those that
become infected by the pathogen who transit to Ip(1—o) and

IPF(CZ).
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Figure 2. Here we provide the coupled case with a=f=0.0008. One would expect that if we set o = f3, the disease and fear epidemic S-curves
should coincide, but this is not the case. Fear (the green curve) precedes disease (the red curve).

doi:10.1371/journal.pone.0003955.9g002

The basic reproductive number of fear is given by:

Ry (fear) =max (i L) )

AF’ Ap+ApF

The first term above, a/Ag, is the product of the transmission
coeflicient of fear, o, and the duration of the infectious period of
fear, 1/Ap. This is the classical form of the basic reproductive
number for a pathogen in an SIR model with a closed population.
The second term of equation 2 is greater than the first term only
when the ratio of the infectious period of fear (1/AF) to the
infectious period of those with pathogen and fear, 1/4p+ Apr, is
less than the transmission coeflicient of the pathogen, f. In this
case, the basic reproductive number of the pathogen exceeds the
basic reproductive number of fear.

In the case where o= ff and Ap =2p=7Apr =4 we find that fear
spreads faster than disease, as Ro(fear) =o/A>R¢(pathogen) =
/22 (@ and A are both non-negative). When all three rate
constants and the transmission coefficients differ from one another,
the basic reproductive number of fear exceeds the basic
reproductive number of the pathogen precisely when:

> Prr(Ap+ApF)
(AF+4pF)(Ap+ Apr) — BArApF

3)

In the absence of fear or pathogen, these models collapse to SIR
or SIRS models in pathogen or fear. So, in the absence of
transmissible fear, =0, the Rq(pathogen) equation 1 reduces to
the classical Ry of /Zp. In the absence of pathogen, the model
collapses to an SIRS model of fear due to the recovery of
individuals to the susceptible state and Ry(fear) is o/ Ap. In spatially
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extended settings where fear may inspire long-range migration, the
possibility of fear propagating faster than bug will prove highly
consequential.

Plausible Behavioral Mechanism for Multiple Waves of
Infection in 1918

Finally, multiple waves of infection of the sort that occurred in
1918 are easily generated in this model. For example, it suffices to
let H=min [1,(t/a)b , with a=150 and b=8. In the idealized
run of figure 3, susceptible individuals (blue-curve) self-isolate
(yellow curve) through fear as the infection of disease proper grows
(red curve). Emboldened by the falling disease incidence, these
susceptibles return (prematurely) to circulation (the blue hump).
But, this offers fuel to the remaining embers of infection (at time
100), and a second wave ensues. This reflects the counterintuitive
and crucial insight of the original Kermack-McKendrick model,
that the epidemic threshold is not the infective level, but rather the
susceptible one. Authorities in 1918 did not have the benefit of this
insight, and in a number of cities lifted quarantines prematurely,
with the same effect: multiple waves.

Part Il: Spatial Propagation in the Agent-Based
Computational Model with Flight

As noted earlier, most research in epidemiology does not take
into consideration the possibility of behavioral adaptations that are
prevalence-dependent (see above). Those models that do include
prevalence-dependent behavior almost exclusively assume behav-
ioral changes that are depressive in their effect on the epidemic,
protective self-isolation (sequestration) being the most common.

However, research on mass behavior during crises, and even
epidemics spectfically, records another common behavioral
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Figure 3. In the idealized run of figure 3, susceptible individuals (blue-curve) self-isolate (black curve) through fear as the infection
of disease proper grows (red curve). Emboldened by the falling disease incidence, these susceptibles return (prematurely) to circulation (the
blue hump). But, this offers fuel to the remaining embers of infection (at time 100), and a second wave ensues.

doi:10.1371/journal.pone.0003955.9003

response—flight. Historical cases of flight from epidemics are
numerous, dating back at least as far as Medieval Europe, where
the morality of fleeing from the Plague was a central and divisive
topic among early modern Jesuits [8]. In the 19" century, large
scale flight was a common behavioral response to urban epidemics
of cholera and yellow fever. For example, more than 25,000
residents (almost half the population) fled Memphis when yellow
fever struck in summer 1878, and as the fever spread through the
South the highest incidence was in cities directly along railroad
lines leading out of Memphis [9]. Within days of cholera’s
appearance in Cairo in 1831, the Nile “swarmed with craft of
every description filled with refugees from the stricken city” as a
mass exodus began [10]. Cholera arrived in North America for the
first time in 1832, carried by Irish immigrants fleeing the epidemic
in Ireland. As it spread rapidly through the Midwest and
Northeast of the United States, flight was common: ‘“the
appearance of cholera in even the smallest hamlet was the signal
for... headlong flight, spreading the disease throughout the
surrounding countryside [11]. Flight was also a response to 20
century epidemics such as polio, influenza, and plague. In some
cases, fear alone was sufficient to cause flight (even in the absence
of any confirmed disease) and “sociogenic” illness—for example in
Surat India in 2006, and Melbourne Australia in 2005 [12].

The potential for flight as a behavioral response to disease
prevalence has important consequences for epidemic modeling.
Unlike protective sequestration, flight has the potential to wncrease
mixing in the short term, and across spatial regions (even if it
ultimately removes individuals from circulation /locally). In the
model developed below, we expand the behavioral response
repertoire of agents infected with fear to include both flight and
protective self-isolation. For now, a specific behavioral response is
a characteristic of each individual—some agents always flee when

@ PLoS ONE | www.plosone.org

afraid, others hide. We explore the impact of differing levels of
flight on the epidemic dynamics.

Of course, one could in principle formulate this as a high
dimensional meta-population ODE model with many patches and
coupling coefficients. (Formulation as a reaction diffusion system
on a spatial continuum might also be possible.) However, with the
inclusion of both self-isolation and flight, the result would be a
fairly opaque ODE system. As noted earlier, we built an ABM that
mimics the 7D differential equation system discussed above. Now
we extend it to include space and flight, in addition to all the
features of the earlier ODE model. The extended agent-based
version will prove very transparent, and quickly yields the main
result: even a small level of flight can dramatically affect contagion dynamics.

Set-up

The agent model with self-isolation and flight takes place on a
2D lattice (i.e., a large checkerboard) where time is discretized into
many brief periods. During each time period agents typically move
a short distance in a random walk and then contact a random local
agent (if any are near). That contact spreads both the bug and the
fear according to o and . However, an agent who has contracted
fear may or may not adapt its movement and contact behaviors.

The model has three types of agents, representing three different
characteristic responses to fear. The first type, “fleers,” respond to
fear by selecting a new location some distance from their current
position on the lattice and moving there as fast as possible. For the
runs reported here, this is the site 15 sites south of the agent’s
current location. We are measuring corner-to-corner spread. This
distance is 1202, so 15 sites is roughly 9% of the diagonal
distance. This is far too small for any single fleer to be driving the
main spread results, and should allay any such concern. Upon
reaching the goal location this agent will recover from fear and his
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Figure 4. We consider a simple form of the model in which fear propagates, but no one adapts their behavior in response. All agents
are “ignorers.” Parameterized in this way, the model produces quintessential SIR curves.

doi:10.1371/journal.pone.0003955.g004

movement rule reverts to a random walk (with radius of one site).
The second type, ‘“hiders,” respond to fear by removing
themselves from circulation for a specified number of iterations
(during which they neither move nor contact other agents). The
third type, “ignorers,” never change their movement or contact
behavior.

Parameters of the model include the size of the lattice, the total
population of agents, the distribution of agent types, movement
and contact radii, the transmission rates of fear and bug, the
duration of sickness, the distance fled, and the duration
sequestered. The parameters used for all of the simulation
experiments discussed in this section are: 1800 agents on a
120 %120 lattice, alpha=0.11, beta=0.1, lambda =0.015, illness
duration = 100 periods, and fear duration =800 periods. A model
run ends when no more agents are infected.

Results and Discussion

The results from this agent model highlight the importance of
flight as a topic for research—even a small amount of flight can
have a dramatic impact on epidemic dynamics.

First, to establish a baseline, we consider a simple form of the
model in which fear propagates, but no one adapts their behavior
in response. All agents are “ignorers”. Parameterized in this way,
the model produces quintessential SIR curves, such as those shown
in figure 4.

In a 30-run analysis, the average epidemic duration with all
agents set to “ignorers” is 742.1 periods (SE 9.5), and average total
incidence is 99.9%. (See the leftmost bars of Figures 5a and b,
respectively)

In the next version of the model we replace the population of
“ignorers” with a population of “hiders.” Replacing the population
with “hiders” drastically reduces incidence to an average of 27.8%
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and stops the epidemic earlier (in an average of 647 rounds). A
population who systematically hides from an incoming epidemic will
suffer many fewer cases of disease. See the middle bars of Figure 5a
and b below.

Next, we introduce flight, but only a small amount—90% of
agents still respond to fear by hiding (removing themselves from
circulation); the remaining 10% flee. How does this small
proportion of flight affect incidence and duration of the epidemic?

As Figure 5 shows, even this small amount of flight dramatically
increases the size and speed of the epidemic (comparing the
rightmost bars of 5a and b to the middle ones). Average incidence
in the population is 64% and the average epidemic duration is 595
time periods. This small proportion of flecing agents causes the
population to suffer more than 2.3 times as many disease cases as
in the all-hiders configuration.

Of course, the 10% of agents who are fleeing are also not
hiding. By remaining in circulation, even ignoring (neither fleeing
nor hiding) agents should have an inflammatory effect on the
epidemic. So, is it the flight or simply the increased circulation
from non-hiding which is driving the previous result? To answer
this question, we ran the simulation with 90% ‘“hiders” and 10%
“ignorers.” As Figure 6 illustrates, the results from these runs differ
noticeably from the runs with actual flight: we observed an average
incidence of 32% and an average epidemic duration of 640 time
periods. Flight has a substantial impact above and beyond
increasing the number of “non-hiders”.

Not only does flight increase incidence dramatically, but it also
increases the rapidity and geographic scope of the epidemic. One
way to measure the geographic spread of the bug is to begin the
epidemic with an index case in one corner of the 2D lattice, and
observe if and when the bug reaches the far diagonal corner.
Figure 7 shows that epidemics rarely spread fully across the lattice
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Figure 5. (A&B): Epidemic duration and total incidence under three different parameter settings. Each bar in the chart represents an
average across 30 simulation runs for a given parameter setting, with standard error range. When all agents hide, the epidemic is shorter and has
substantially lower incidence that with no adaptive behavior. When a small percentage of agents flees (with the majority hiding), however, incidence

goes up substantially even as the duration falls farther.
doi:10.1371/journal.pone.0003955.9g005
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Figure 6. (A&B): A comparison of epidemic duration and total incidence with 10% “‘fleers’ versus 10% “‘ignorers.” As before, each bar
in the chart represents an average across 30 simulation runs for a given parameter setting, with standard error range. The runs with 10% “ignorers”
have similar incidence to runs with 100% “hiders,” and similar duration to runs with 100% “ignorers.” By contrast, the runs with 10% “fleers” have
much higher incidence and lower duration.

doi:10.1371/journal.pone.0003955.9g006
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Figure 7. The percentage of runs (out of 30) for each parameter setting in which the epidemic spreads fully across the landscape,
from an index case in one corner of the lattice all the way to the opposite corner.
doi:10.1371/journal.pone.0003955.g007
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Figure 8. In rare cases where the epidemic spreads fully across the lattice without flight, it takes much longer to do so than in cases
with flight. Without flight the epidemic takes roughly 600 time periods to cross the lattice.
doi:10.1371/journal.pone.0003955.g008
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Figure 9. (A&B): Screenshots from the agent-based simulation
model without and with flight. Each agent is represented by a
colored dot on the lattice.

doi:10.1371/journal.pone.0003955.g009

Table 2. Summary of flight results.

Coupled Contagion

with no flight—but almost always spread fully across the lattice
with even a small amount of flight. Specifically, when merely 10%
flee, the epidemic reaches the far corner an average of 92% of the
time. However, when no agents flee, the epidemic only reaches the
far corner 17% (all hiders) or 27% (90% hide / 10% ignore) of the
time.

Furthermore, in rare cases where the epidemic spreads fully
across the lattice without flight, it takes much longer to do so than
in cases with flight, as shown in Figure 8. Without flight the
epidemic takes roughly 600 time periods to cross the lattice. When
fight is allowed, the average run takes 340 time periods to traverse
the lattice, almost twice as fast.

For an illustration of how flight spreads the epidemic quickly
across the lattice, increasing both incidence and speed, see
Figure 9. Blue dots represent susceptibles (infected with neither
fear nor pathogen); yellow dots, infected with fear alone; orange
dots, acting on fear; red dots, infected with pathogen; white dots,
recovered.

In the first screen shot (9a), with no flight, yellow agents
(infected with fear) form a moving buffer zone between the
epidemic of pathogen and the susceptible agents. The latter thus
have an opportunity to remove themselves from circulation
because they are likely to contract fear before they are exposed to
the pathogen (as per our earlier discussion of the fear R0), The
second screenshot shows how a small amount of flight enables a
few infected fleeing agents to pierce this buffer zone, introducing
the pathogen quickly into the susceptible pool.

These specific quantitative results are summarized in Table 2.
They are, of course, dependent on the specific parameters used
above. But the larger qualitative point is robust. Behavioral
adaptation need not damp the force of an epidemic. If flight is
admitted, this form of “social distancing” can increase both the
speed and size of an epidemic.

This exposition invites a great deal of further work, including
development of the multi-patch (meta-population) ODEs with
flight, full sensitivity analysis of the agent-based model, further
“dialogue” between the two approaches, and calibration to
historical cases.

However, the present effort clearly enforces the overarching
point that infectious disease models must incorporate behavioral adaptation.
In the development above, the adaptive repertoire is quite narrow,
including only self-isolation and flight. But it can obviously be
broadened substantially. Moreover, the model—while explored for
contagious disease here—can be applied to a wide range of cases
where momentous contagions of fear eventuate from events that
are not themselves contagious, such as toxic chemical plumes or
floods, fires, and earthquakes.
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