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Abstract 
 

 
New ideas, products, and practices take time to diffuse, a fact that is often 

attributed to some form of heterogeneity among potential adopters.  People may 

realize different benefits and costs from the innovation, have different beliefs 

about its benefits and costs, hear about it at different times, or delay in acting on 

their information.  This paper analyzes the effect of incorporating heterogeneity 

into three broad classes of models -- contagion, social influence, and social 

learning.  Each type of model leaves a characteristic ‘footprint’ on the shape of 

the adoption curve that amounts to a restriction on the pattern of acceleration 

under few (and in some cases no) restrictions on the distribution of parameters.  

These restrictions provide a basis for discriminating empirically between 

different models, and have potential application to marketing, technological 

change, fads, and epidemics.  
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1. Introduction 

 

A basic puzzle posed by innovation diffusion is why there is often a long lag 

between an innovation’s first appearance and the time when a substantial 

number of people have adopted it.  There is an extensive theoretical and 

empirical literature on this phenomenon and the mechanisms that might give 

rise to it.1   A common feature of these explanations is that heterogeneity among 

the agents is the reason that they adopt at different times.  However, most of the 

extant models incorporate heterogeneity in a very restricted fashion, say by 

considering two homogeneous populations of agents, or by assuming that the 

heterogeneity is described by a particular family of distributions.2 

 

In this paper I show how to incorporate heterogeneity into some of the 

benchmark models in marketing, sociology, and economics without imposing 

any parametric restrictions on the distribution of the underlying parameters.   

The resulting dynamical systems turn out to be surprisingly tractable; indeed, 

some of them can be solved explicitly for any distribution of the parameter 

values.   I then demonstrate that each class of models leaves a distinctive 

‘footprint’; in particular, they exhibit noticeably different patterns of acceleration, 

especially in the start-up phase, with few or no assumptions on the distribution 

of the parameters.  The reason is that the models themselves have fundamentally 

different structures that even large differences in the distributions cannot 

overcome.  It follows that, given sufficient data on the aggregate dynamics of a 

diffusion process, one could assess the relative plausibility of different 

mechanisms that might be driving it with little or no prior knowledge about the  

                                                 
1 For general overviews of the subject see Mahajan and Peterson , 1985;  Mahajan, Muller, and 
Bass, 1990; Geroski, 2000;  Stoneman, 2002; Rogers, 2003; and Valente , 1995, 1996, 2005.   
2 See among others Jeuland, 1981; Jensen, 1982;  Karshenas and Stoneman, 1992; Geroski, 2000. 
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distribution of parameters. While this type of analysis is not an identification 

strategy, and is certainly no substitute for having good micro-level data, it could 

be useful in situations where such data are unavailable.   

 

I shall consider three basic types of innovation diffusion models, each arising 

from a different account of how innovations spread.     

 

1. Contagion.  People adopt an innovation when they come in contact with 

someone who has already adopted.   

 

2. Social threshold. People adopt when enough other people in the group have 

adopted.    

  

3. Social learning. People adopt once they see enough evidence among prior 

adopters to convince them that the innovation is worth adopting.  

 

For each type of model I show how to incorporate heterogeneity of the 

parameters in considerable generality without losing analytical tractability; 

moreover this can be done even there are multiple sources of heterogeneity.  Of the 

three types of models, social learning is perhaps the most interesting from an 

economic standpoint, since it is based on the assumption that agents use payoff 

information from prior adopters in order to make a decision. (The other two 

classes are based on the notion of exposure rather than on utility maximization, 

though as we shall see the social threshold model can be reinterpreted in a utility 

maximization framework.)  While there is a substantial theoretical and empirical 

literature on social learning models,3 however, surprisingly little prior work has  

                                                 
3 See among others Bikchandani, Hirshleifer, and Welsh, 1992; Banerjee, 1992; Kirman, 1993; 
Ellison and Fudenberg, 1993, 1995; Kapur, 1995; Bala and Goyal, 1998; Smith and Sorensen, 2000; 
Chatterjee and Hu, 2004; Banerjee and Fudenberg, 2004; Manski, 2004. 
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been done on the implications of such models for the shape of the adoption 

curve.4  One of the main contributions of the paper is to show how to express the 

aggregate dynamics of such a model in an analytically tractable form even when 

there are multiple sources of heterogeneity among agents, including different 

costs of adoption, different prior information, and different amounts of 

‘connectedness’ with the rest of the population.  A limitation of the analysis is the 

use of  a mean-field approach in which the population is assumed to be large and 

encounters purely random.  If instead agents interact through a fixed social 

network, the aggregate dynamics are substantially more complex and depend on 

the network topology.5  The extension of the approach to this situation will be 

considered in future work.      

  

2. Inertia 

 

Before launching into a discussion of the three main models, it will be useful to 

consider an even simpler reason why innovations might take time to diffuse, 

namely, people sometimes delay in acting on new information.   This hypothesis 

leads to a particularly tractable model that has been studied in other contexts, 

notably heterogeneous duration models (see among others Lancaster and 

Nickell, 1980; Heckman and Singer, 1982; Heckman, Robb, and Walker, 1990).    

 

First consider the situation where there is no heterogeneity among the agents.   

Let λ  > 0  be the instantaneous rate at which any given non-adopter first adopts. 

Let ( )p t  be the proportion of adopters at time t , and let us set the clock so that 

(0) 0p = .  The function ( )p t  is called the adoption curve.   Assume for simplicity  

 

                                                 
4 Notable exceptions are Jensen (1982) and Lopez-Pintado and Watts (2006).    
5 For models of diffusion in social networks see among others Blume (1993, 1995), Bala and Goyal 
(1998), Young (2003), Chatterjee and Hu (2004), Cowan and Jonard (2004), Jackson and Rogers 
(2006) ,  Jackson and Yariv (2007), Golub and Jackson (2007), Vega-Redondo (2007). 
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that once agents have adopted, they do not disadopt within the time frame of the 

analysis.  Then the expected motion is described by the ordinary differential 

equation ( ) (1 ( ))p t p tλ= −& , which has the solution ( ) 1 tp t e λ−= − given the initial 

condition (0) 0p = .   

 

Notice that this curve is concave throughout; in particular, it is not S-shaped.  It is 

a rather remarkable fact that this remains true when any amount of heterogeneity is 

introduced.  To see this, suppose that ( )ν λ  is the distribution of λ  in the 

population.  Then the expected trajectory of the process is given by  

 

                                                     ( ) 1 tp t e dλ ν−= − ∫ .                                                   (1) 

 

Differentiating (1) twice over, we see that ( ) 0p t <&&  irrespective of the distribution 

( )ν λ .6  The intuition is straightforward: agents with high values of λ  tend to 

adopt earlier than those with low values of λ .  It follows that the average value 

of λ  in the current population of non-adopters is non-increasing, and the 

number of such individuals is strictly decreasing.  Thus the flow of new adopters 

is strictly decreasing.   

 

This simple example illustrates the kinds of results that hold in more complex 

situations: the structure of the model has implications for the shape of the curve 

that remain true even when an arbitrary amount of heterogeneity is introduced; 

indeed we can derive analogous results even with multiple sources of 

heterogeneity.    

 

 

                                                 
6 Furthermore the higher-order derivatives alternate in sign; see Heckman and Singer (1982).   
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3. Contagion 

 

Contagion refers to a process in which an agent adopts a new product or practice 

when he comes into contact with someone else who has adopted it.  An everyday 

example would be a new fashion that spreads because people imitate those who 

have already adopted. The resulting dynamics are similar to those of an 

epidemic; indeed, some of the models are borrowed more or less directly from 

the epidemiology literature.   In the context of innovation diffusion it is common 

to use a two-parameter model that allows for contagion from within the group 

(at one rate) and also from sources outside the group (at a possibly different 

rate). This is known as the Bass model of new product diffusion (Bass, 1969, 1980) 

and also as the mixed-influence diffusion model (Mahajan and Peterson, 1985).  In 

the context of a new fashion in clothing, for example, these two rates would 

correspond to seeing other people on the street who are wearing it, and seeing 

ads that are promoting it.   

 

Let us begin by describing the homogeneous version of the model, then we shall 

introduce heterogeneity.  Let λ  be the instantaneous rate at which a current non-

adopter ‘hears about’ the innovation from a previous adopter within the group, 

and let γ  be the instantaneous rate at which he ‘hears about’ it from sources 

outside of the group.  We shall assume that λ  and γ  are nonnegative, and that 

not both are zero.  In the absence of heterogeneity, such a process is described by 

the ordinary differential equation  ( ) ( ( ) )(1 ( ))p t p t p tλ γ= + −& , and the solution is  

 

                                  ( ) ( )( ) [1 ] /[1 ]t tp t e eλ γ λ γβγ βλ− + − += − + ,  β > 0.                        (2)               
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When contagion is generated purely from internal sources ( 0γ = ) this boils 

down to the ordinary logistic function, which is of course S-shaped.7  When  

innovation is driven solely by an external source ( 0γ >  and 0λ = ), we obtain the 

pure inertia discussed earlier.  When both γ  and λ  are positive, we can choose 

β  in expression (2) so that (0) 0p = ; namely, with 1/β γ=  we obtain 

 

                                          ( ) ( )( ) [1 ] /[1 ( ) ]t tp t e eλ γ λ γλ γ− + − += − + / .                                   (3) 

 

This model has spawned many variants, some of which assume a degree of 

heterogeneity, such as two groups with different contagion parameters 

(Karshenas and Stoneman, 1992; Geroski, 2000), while others employ 

distributions from a specific parametric family, such as gamma distributions 

(Jeuland, 1981).  

 

In fact, we can formulate a fully heterogeneous version that is analytically 

tractable and places virtually no restrictions on the joint distribution of the 

parameters.   Specifically, let μ  be the joint distribution of the contagion 

parameters λ  and γ .   Assume for analytical convenience that μ  has bounded 

support, which we may take to be 2[0,1]Ω = .   (Rescaling λ  and γ  by a common 

factor is equivalent to changing the time scale, so this involves no real loss of 

generality.)  The only substantive restriction that we place on μ  is 0dγ γ μ
Ω

= >∫ , 

for otherwise the process cannot get out of the initial state (0) 0p = .    

 

 

 

                                                 
7 The logistic model was common in the early work on innovation diffusion; see for example 
Griliches (1957) and Mansfield (1961). 
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Let ( )p tλ γ,  be the proportion of all type- ( )λ γ,  individuals who have adopted by 

time t .   Then the proportion of all individuals who have adopted by time t  is  

 

                                                          ( ) ( )p t p t dλ γ μ,= ∫ .                                              (4) 

  

(Hereafter integration over Ω  is understood.) Each subpopulation of adopters 

( )p tλ γ,  evolves according to the differential equation  

 

                                           ( ) ( ( ) )(1 ( ))p t p t p tλ γ λ γλ γ, ,= + −& .                                      (5) 

 

This defines an infinite system of first-order differential equations coupled 

through the common term ( )p t .   We can reduce it to a single differential 

equation by the following device:  let ( ) ln(1 ( ))x t p tλ γ λ γ, ,= −  and observe that (5) is 

equivalent to the system ( ) ( ( ) )x t p tλ γ λ γ, = − +&  for all ( )λ γ, .  From this and the 

initial condition (0) 0xλ γ, =  we obtain 

 

                                        
t

0 0
( ) ( ( ) ) ( )

t
x t p s ds p s ds tλ γ λ γ λ γ, = − + = − −∫ ∫ .                      (6) 

 

From the definition of ( )x tλ γ, it follows that 

 

                                                         
( )

( ) 1
x t

p t e dλ γ μ,= − ∫ ,                                             (7) 

 

that is, ( )p t  satisfies the integral equation  

                       

                                                           0
( )

( ) 1
t

t p s ds
p t e d

γ λ
μ

− − ∫= − ∫ .                                            (8) 

Differentiating we obtain 
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                                             0
( )

( ) ( ( ) )
t

t p s ds
p t p t e d

γ λ
λ γ μ

− − ∫= +∫& .                                  (9) 

 

Expression (9) can be put in more standard form by defining 
0

( ) ( )
t

y t p s ds= ∫ .  

Then ( ) ( )y t p t=& , ( ) ( )y t p t=&& & , and (9) becomes a second-order differential equation 

in y , namely, ( )( ) ( ( ) ) t y ty t y t e dγ λλ γ μ− −= +∫&& & .  The right-hand side is Lipschitz 

continuous in , ,t y and y& , hence on any finite interval 0 t T≤ ≤  there exists a 

unique continuous solution satisfying the initial condition (0) (0) 0y p= = .   By 

the Picard-Lindelöf theorem, such a solution can be constructed by successive 

approximation (Coddington and Levinson, 1955).   

 

 It turns out that we can deduce some key dynamic properties of the process 

without solving it explicitly however. In particular, we claim that 

( ) /[ ( )(1 ( ))]p t p t p t−&  is strictly decreasing, that is, the hazard rate ( ) /(1 ( ))p t p t−&  

decreases relative to the adoption level ( )p t  irrespective of the joint distribution of 

λ  and μ .  

 

Proposition 1.  Suppose that diffusion is driven by heterogeneous contagion with joint 

distribution μ  on the parameters 2( ) [0,1]λ γ, ∈  such that the unconditional mean γ  is 

positive.  Then for all 0t > , ( ) /[ ( )(1 ( ))]p t p t p t−&  is strictly decreasing in t , which is 

equivalent to  

                                                      ( ) (1 2 ( )) ( )
( ) ( )(1 ( )

p t p t p t
p t p t p t

−
<

−
&& &

&
 for all 0t > .                        (10) 

                                                                                                                  

The latter condition implies that the relative rate of acceleration has an upper 

bound that goes to zero as ( ) 1/ 2p t → ; in particular the process cannot accelerate 

at all beyond 1/ 2p = .   As we shall see in subsequent sections, this stands in 
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contrast to social threshold and social learning models, where ( ) /[ ( )(1 ( ))]p t p t p t−&  

can be strictly increasing and acceleration can continue well beyond 1/ 2 .  The 

proof of Proposition 1 is given in the Appendix.  

 

Note that Proposition 1 is a statement about the curvature of the adoption 

function, and is considerably more subtle than saying that it is S-shaped.   Indeed 

there are perfectly reasonable S-shaped curves that are inconsistent with this 

criterion.  Consider a curve of the form ( ) ( )(1 ( ))ap t p t p t= −& , which was first 

proposed as a model of innovation diffusion by Easingwood, Mahajan, and 

Muller (1981, 1983).   When 1a > , 1( ) /[ ( )(1 ( )] ( )ap t p t p t p t−− =&  is strictly increasing, 

hence Proposition 1 shows that such a process cannot arise from a contagion 

model with any amount of heterogeneity.   Nevertheless, it is possible to generate 

an S-shaped curve from a contagion model -- in fact from a homogeneous 

contagion model – whose overall appearance is very similar (see Figure 1).   The 

differences between the two models are only revealed by studying the behavior 

of the modified hazard rate ( ) /[ ( )(1 ( ))]p t p t p t−& .  
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Figure 1.  Two adoption curves: the solid line is generated by 1.2( ) (1 )p t p p= −&  
and (0) 0.01p = , the dashed line by a Bass model with .75λ = and .0025γ = . 
 
4. Social thresholds 
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The sociological literature on innovation stresses the idea that people have 

different ‘thresholds’ that determine when they will adopt as a function of the 

number (or proportion) of others in the population who have adopted.     The 

dynamics of these models were first studied by Schelling (1971, 1978), 

Granovetter (1978), and Granovetter and Soong (1988); for more recent work in 

this vein see Macy (1991), Valente (1995, 1996, 2005), Dodds and Watts (2004, 

2005), Centola (2006), and Lopez-Pintado and Watts (2006).   

 

For each agent i , suppose that there exists a minimum proportion 0ir ≥  such 

that i  adopts as soon as ir  or more of the group has adopted.  (If 1ir >  the agent 

never adopts.)  This is called the social threshold of agent i .  The precise meaning 

of these thresholds varies from one context to another; broadly speaking we can 

think of them as representing different degrees of responsiveness to social influence. 

A concrete example would be the transmission of rumors: some people would 

need to hear the rumor from many people to pass it on while others might only 

need to hear it once.  A key feature of the model is that the adoption depends on 

the innovation’s current popularity rather than on how good or desirable the 

innovation has proven to be. The latter is the basis of social learning models, which 

we shall take up in the next section. 

 

We wish to model the mean-field dynamics of heterogeneous social threshold 

models without assuming a parametric form for the distribution of thresholds.  

To this end, let ( )F r  be the cumulative distribution function of thresholds 0r ≥  

in some given population.   Following Granovetter (1978), we can then define the 

discrete-time version of the adoption process as follows.   Let ( )p t  be the 

proportion of adopters in period 0,1,2,...t = .   The clock starts in period 0 when 

no one has yet adopted: (0) 0p = .  In period 1, everyone adopts whose thresholds 

are zero, that is, (1) (0)p F= .  These are the innovators.   We shall assume that 
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(0) 0F > , for otherwise the process cannot get started.  In period 2, everyone 

adopts whose thresholds are at most (0)F .   Thus at the end of the second period 

the fraction (2) ( (0))p F F=  have adopted.   Proceeding in this way, we obtain 
[ ]( ) (0)tp t F= , where [ ]tF  is the t -fold composition of F  with itself.  

 

A useful generalization is to allow for some inertia in the adoption decision.  

Specifically, let us assume that in each period only a fraction (0,1)α ∈  of those 

who are prepared to adopt actually do so.   In other words, among those people 

whose thresholds have been crossed but who have not yet adopted by the end of 

period t , only α will adopt by the end of the next period.8  This yields the 

discrete-time process  

                                             ( 1) ( ) [ ( ( )) ( )]p t p t F p t p tα+ − = − .                                  (11) 

 

The continuous-time analog is  

 

                                                ( ) [ ( ( )) ( )], 0p t F p t p tλ λ= − >& .9                                   (12) 

 

Assume now that (0) 0F >  and let b  be the first fixed point, that is, the smallest 

number in (0, 1] such that ( )F b b= . (Such a point always exists.)   We then have 

( )F r r>  for all [0, )r b∈ .   Since (12) is a separable ordinary differential equation, 

we obtain the following explicit solution for the inverse function 1( )t p x−= :  

 

                             [0, ),x b∀ ∈      1

0
( ) (1/ ) /( ( ) )

x
t p x dr F r rλ−= = −∫ .10                       (13) 

                                                 
8 A stochastic version of the model would represent this as a discrete-time process such that each 
agent whose threshold has been crossed converts with some given probability in each period.   
Here, and throughout the paper, we shall focus solely on the expected dynamics in a large 
population setting. 
9 Independently, Lopez-Pintado and Watts (2006) derive the same continuous-time generalization 
and study its fixed points under various assumptions about F . 
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Observe that the right-hand side is integrable because ( )F r  is monotone 

nondecreasing and ( )F r r−  is bounded away from zero for all r  in the interval 

[0, ]x  whenever x b< .   (The constant of integration is zero because of the initial 

condition (0) 0p = .)  As x b→ , the right-hand side of (13) goes to infinity, which 

implies that the adoption curve approaches b  asymptotically; in particular, the 

adoption process peters out at the first fixed point of F .   

 

This phenomenon is illustrated in figure 2.  Here we assume that the thresholds 

are normally distributed to the right of the origin, and there is a point mass at the 

origin corresponding to the subset of innovators -- the people who are willing to 

adopt even when no one else adopted.   Notice that the adoption curve 

asymptotes to 0.50p = , which is the first fixed point of F .  There is nothing 

special about the normal distribution in this regard; similar results hold for any 

c.d.f. where it first crosses the 45o - line.    

 

In this example the adoption curve is concave, but this is by no means necessary 

or even typical for this family of models.  Figure 3 illustrates an entirely different 

adoption curve that is generated by a truncated normal with smaller mean and 

variance.  An interesting feature of this curve is that it accelerates very sharply in 

the early stages; indeed it can be shown that it grows at a faster-than-exponential 

rate up to 0.10p = .   We shall now show that whenever the process starts in the 

left tail of the distribution, these are the only two possible shapes: the curve 

either decelerates initially, or it accelerates initially at a super-exponential rate. 

                                                                                                                                                 
10 The fact that this kind of process has an explicit analytic solution for any distribution seems not 
to have been recognized before. 
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Figure 2.  Density, c.d.f., and social threshold adoption curve generated by  
N(.50, .25) and λ = 4. 
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Figure 3.  Density, c.d.f., and social threshold adoption curve generated by  
N(.10, .01) and λ = 4. 
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 To see why this is so, consider the basic dynamic equation in (12). Assume that 

(0) 0F >   and  that  ( )F r   has  a  continuous  density  ( )f r   defined  for  all  0r > .  

(Note that the density  is not defined at the origin because there  is a point mass 

there.)     Differentiating (12) with respect to t  and dividing through by ( )p t& , 

which by assumption is positive, we obtain 

 

                                                    ( ) / ( ) [ ( ( )) 1]p t p t f p tλ= −&& & .                                      (14) 

 

In other words, the relative acceleration rate traces out a positive linear 

transformation of the underlying density.  It follows that the process accelerates 

initially if and only if the initial density is large enough, that is, ( ) 1f r >  in a 

neighborhood of the origin.  Suppose further that ( )f r  is increasing in a 

neighborhood of the origin, that is, the process starts in the left tail of the 

distribution of thresholds.  Then (14) shows that the relative acceleration rate 

( ) / ( )p t p t&& &  is also strictly increasing, which means that the adoption curve exhibits 

super-exponential growth.11  This phenomenon results from the compounding of 

two effects.   First, as more and more people adopt, the amount of information 

available to the remainder of the population increases.  Second, the number of 

people persuaded by each additional bit of information increases as the process 

moves up the left tail of the distribution.   

 

These conclusions continue to hold when λ  is heterogeneously distributed 

according to some distribution function ν λ( ) .   Since λ  is a scaling parameter, 

there is no real loss of generality in assuming that the support of ν  lies in (0, 1].  

Let ( )F rλ  be the cumulative distribution of thresholds conditional on λ , and 

                                                 
11 Growth is exponential if ( ) / ( )p t p t&& & is constant, super-exponential if ( ) / ( )p t p t&& &  is strictly 
increasing, and sub-exponential if ( ) / ( )p t p t&& &  is strictly decreasing. 
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assume that the conditional density ( )f rλ  exists for every 0r > .  (We shall 

assume that (0) 0Fλ > , so (0)fλ  is undefined.)   

 

Proposition 2.  Suppose that diffusion is driven by a heterogeneous social threshold 

model such that, for each level of inertia (0,1]λ ∈ , the conditional distribution of 

thresholds satisfies (0) 0Fλ > , has a continuous density ( )f rλ  for all 0r > , and the 

densities ( )f rλ  are strictly increasing in a common open neighborhood of the origin. 

Then initially the relative acceleration rate ( ) / ( )p t p t&& &  is strictly increasing, which 

implies that the process either decelerates or accelerates at a super-exponential rate.  

    

Proof.   The equations of motion are   

 

                                                 ( ) [ ( ( )) ( )]p t F p t p tλ λ λλ= −& ,                                          (15) 

 

where the initial conditions are (0) 0.pλ =   Since (0) 0Fλ > , ( ) 0p tλ >&  for all 

sufficiently small 0t >  and 

 

                                              ( ) / ( ) [ ( ( )) 1]p t p t f p tλ λ λλ= −&& &  .                                         (16) 

 

By hypothesis the functions ( ( ))f p tλ  are strictly increasing on some common 

interval 0 ( )p t p< < .   It follows that, for every λ  and all t  in a suitable interval 

(0, ]T , 

 

                                             2( ) / ( ) ( ( ) / ( )) 0p t p t p t p tλ λ λ λ− >&&& & && & ,                                   (17) 

that is, 

                                                           ( ) ( ) ( )p t p t p tλ λ λ>&&& & && .                                        (18) 

Hence 
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                                                  ( ) ( ) ( ) ( )p t p t d p t d p tλ λ λν ν> =∫ ∫&&& & && && .                          (19) 

By Schwarz’s inequality,  

 

                               1/ 2( ) ( ) ( ( ) ( ) ) ( ) ( )p t p t p t d p t d p t p t dλ λ λ λν ν ν= ≥∫ ∫ ∫&&& & &&& & &&& & .              (20) 

 

Combining this with (19) we conclude that ( ) ( ) ( )p t p t p t>&&& & && , which implies that 

[ ( ) / ( )] 0d p t p t
dt

>
&& &

, that is, ( ) / ( )p t p t&& &  is strictly increasing on (0, ]T .  This concludes 

the proof of Proposition 2. 

 

5.  Social learning 

 

A difficulty with both of the preceding models is that they provide no clear 

reason why an agent would adopt an innovation given that others have adopted 

it.  In this section we consider a class of models in which the adoption decision 

flows directly from expected utility maximization.  Specifically, an agent adopts 

if he has reason to believe the innovation is better than what he is doing now, 

where the evidence comes from directly observing the outcomes among prior 

adopters. For example, when a new product becomes available -- e.g., a new 

medication (aspirin), communication technology (cellphone), or agricultural 

practice (no till) – many people will want to see how it works for others over a 

period of time before trying it themselves.   These are variously known as social 

learning models or social learning models based on direct observation.   

 

There is a sizable theoretical literature on social learning, but it is difficult to 

summarize due to the great diversity in behavioral and informational 

assumptions that different authors use. Some assume that payoff outcomes 

among prior adopters are fully observable, while others assume only that the act 
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of adoption is observable (the latter are usually called herding models).  Some 

assume that agents can recognize others’ types, while others assume that types 

cannot be identified.   There are also significant differences in the relevant 

characteristics that authors choose to focus on, including heterogeneity in risk 

aversion, discount rates, and amount of information.12    There is considerable 

empirical evidence, however, that learning from the experience of others does in 

fact occur.13  

 

Here I shall make a number of simplifying assumptions in order to get a handle 

on an issue that has not received much previous attention in this literature, 

namely, what do the short-run aggregate dynamics of a heterogeneous learning model 

look like, and do they differ qualitatively from the dynamics generated by other classes of 

models? To make some progress on this question let us make the following 

assumptions: i) payoffs are observable; ii) agents are risk-neutral and myopic; iii) 

there is no idiosyncratic component to payoffs due to differences in agents’ 

types, but agents may have different costs (not necessarily observable); iv) there 

are differences in agents’ prior beliefs about how good the innovation is relative 

to the status quo; and v) there are differences in the number of people they 

observe and hence in the amount of information they have.  Many other 

complicating factors could be introduced, such as discounting, one-time 

switching costs, risk aversion, and imperfect observability (to name but a few), 

but these would distract from the main point, which is to identify the dynamic 

characteristics of a fairly general class of learning models without attempting to 

formulate the most general such model.  

 

                                                 
12 See among others Bikchandani, Hirshleifer, and Welsh, 1992; Banerjee, 1992; Kirman, 1993; 
Ellison and Fudenberg, 1993, 1995; Kapur, 1995; Bala and Goyal, 1998; Smith and Sorensen, 2000; 
Chatterjee and Hu, 2004; Banerjee and Fudenberg, 2004; Manski, 2004. 
13 Foster and Rosenzweig (1995), Munshi (2004), Conley and Udry (2005).  
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I claim that, under the above assumptions, the dynamical system has a 

surprisingly simple structure.  In particular, one can reduce the various types of 

heterogeneity to a composite index that measures the probability of a given agent 

adopting conditional on the amount of information that has been generated so far.  The 

equation of motion of such a process turns out to be analogous to the one 

obtained for the social threshold model, except that here the relevant state 

variable at time t  turns out to be the integral of the adoption curve up through t , 

0
( )

t
p s ds∫ , rather than the level of adoption ( )p t . The reason is that 

0
( )

t
p s ds∫  

measures the cumulative information generated by all prior adopters from the 

time they first adopted, which is the relevant variable in the learning context.        

 

To illustrate how such a model works, let us walk through a particular example 

using a standard normal-normal updating framework.  This is chosen mainly for 

its computational transparency; similar results hold under alternative 

assumptions.14  Consider a population of  n  individuals, where n  is large, and 

let us maintain the five assumptions mentioned above.  Let us also assume that 

the payoff from the innovation is a normally distributed random variable X  

with mean 0μ >  and variance 2σ , which is i.i.d. among agents and time periods.  

We shall interpret μ  as the mean payoff gain per period from using the innovation as 

compared to the status quo technology.  Each agent is assumed to have an 

idiosyncratic variable cost ic  of using the innovation, so he adopts if and only if 

he believes that the mean payoff per period is at least  ic .    

 

If everyone knew the true value of μ  from the outset, then everyone would 

adopt for whom ic μ< .  This is the efficient outcome.   Ex ante, however, people do 

                                                 
14 Jensen (1982) and Lopez-Pintado and Watts (2006) study the case where the outcome variable is 
binomial  (payoffs are “high” or “low”). However, they assume that agents pay attention only to 
current outcomes, not the cumulative amount of information generated from earlier periods. 
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not know the true value of μ ; furthermore, they may start with substantially 

different beliefs (based on their prior private information) about what the true 

value is.  As more information comes in, they update their beliefs.  If the  

information is sufficiently favorable, more people will adopt, which creates a 

still-larger base of information, which causes even more people to adopt, and so 

on.  This is the essential logic driving the learning dynamics.   

 

To continue with our example, suppose that each agent i  has a prior belief about 

the unknown mean μ  and unknown precision 21/ρ σ=  such that: i) the 

marginal of ρ  is gamma-distributed, and ii) for each value of ρ  the conditional 

distribution of μ  is normal with mean 0iμ  and precision iρτ .  (This is a standard 

normal-normal updating model; see for example De Groot (1970).)   Low values 

of iτ  reflect flexibility in beliefs, that is, relatively little evidence is needed to shift   

'i s  belief about the mean by a given amount.  Low values of 0iμ  reflect pessimism 

about the payoffs from the innovation.   In particular, if i  initially believes that 

the mean is less than his costs, 0i icμ < , he will not want to adopt.  As more 

information comes in, however, his posterior estimate of the mean, itμ , may 

increase sufficiently that he changes his mind.  The point at which this happens 

depends (among other things) on how much information i  collects and how 

flexible his beliefs are.   

 

For the moment we shall assume a discrete-time process, then consider the 

continuous-time analog.   Let itX  be the payoff realization to adopter i  in time 

period t.  By the end of period t , a total of tN  independent realizations of X  will 

have been generated in the population, where  

 

            
1

[( 1) (1) ( 2)[ (2) (1)] ... [ ( ) ( 1)]] ( )
t

t
s

N n t p t p p p t p t n p s
=

= − + − − + + − − = ∑ .      (21) 
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Let 
1

( ) ( )
t

s

r t p s
=

= ∑ . A given agent can only be expected to know a few of these 

outcomes given the random nature of information flows and the fact that each 

agent has a limited number of social contacts.  To model the information 

transmission process, assume that, in each period s , agent i  hears about some of 

the payoff outcomes according to a Poisson arrival process with mean ( )i p sβ .  

Thus ( )i p sβ  is the expected number of realizations of X  that i  hears about in 

period s , and [ ] ( )it iE n r tβ=  is the expected number that i  has heard about 

through period t .    The parameter iβ  is a measure of 'i s  information, or the 

extent to which i  “gets around.”15 

 

Let itx  denote the realized mean among the itn  observations of agent i  at time t .  

Given our assumptions, itx  is normal with mean μ  and standard devation 

/ itnσ .   In the present framework, 'i s  Bayesian posterior estimate of the mean, 

itμ , can be expressed very simply as a convex combination of 0iμ  and itx , 

namely,  

                                                        0it it i i
it

it i

n x
n

τ μμ
τ

+
=

+
 .                                               (22) 

 

In other words, the posterior estimate is just a weighted average of the prior and 

the observed mean, where the weight on the mean is the number of independent 

observations that produced it.   

 

  

                                                 
15 If agents were embedded in a fixed social network, the analogous parameter would be the 
number of other agents with whom a given agent is connected. In this case, however, the 
aggregate amount of information ( )r t  will generally not be sufficient to describe the state of the 
system; the dynamics of the process will depend on the specific network topology.       
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Since i  is myopic, she is prepared to adopt once itμ  is at least equal to her 

discounted switching cost ic , which by (22) is equivalent to  

 

                                                      0( ) ( )it i it i i ix c n cτ μ− ≥ −  .                                        (23) 

    

This expression becomes more transparent when we focus on the subpopulation 

of agents for whom adoption is worthwhile: 0 { : }iP i cμ= > .   In the interest of 

computational transparency let us also (temporarily) substitute the expected 

value [ ] ( )it iE n r tβ=  into (23).  After rearranging terms we obtain 

  

                                                 0 ( ))( )( )
( ) ( )

iti i i

i i i i

r t zcr t
c c

στ μ
β μ μ β

−
≥ −

− −
,                                  (24) 

 

where itz  is (0,1)N .  Define i’s resistance level (or information threshold) to be the 

expected value of the right-hand side of this inequality, namely, 

 

                                                               0( )
( )

i i i
i

i i

cr
c

τ μ
β μ

−
=

−
 .                                             (25) 

 

From (24) and (25) we conclude that an agent with characteristics ( 0, , ,i i i ic τ β μ ) is 

increasingly likely to adopt as ( )r t  passes the threshold ir .   Moreover, this 

threshold has a natural interpretation: agents with high ir  are those who are 

initially pessimistic that the innovation will cover their costs ( 0i ic μ−  is large), 

inflexible in their initial beliefs ( iτ  is large),  marginally  profitable ( icμ −  is low), 

and relatively uninformed ( iβ  is small). 
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The precise form of expressions (24) and (25) is not particularly important for our 

purpose however: the key point is that each agent i  has a response function ( )i rφ , 

which represents the probability that i believes the innovation is worth adopting, given 

that the total amount of information generated by the prior adopters equals r .16  

 

Let us now abstract from this particular example and take the notion of a 

response function as a primitive of the model.   Suppose that each agent in the 

population has a “type” i  that is characterized by a response function 

: [0,1]i Rφ + → , where ( )i rφ  is the probability that 'i s  information threshold has 

been crossed when the total amount of information generated by the prior 

adopters is r .  For ease of interpretation we shall assume that the functions ( )i rφ  

are monotone nondecreasing, though this is not actually necessary for some of 

the results to follow.   Notice that a given individual will typically know only a 

small fraction of the prior outcomes, that is, r  is a state variable that represents a 

common pool of information but it is not common knowledge.  

 

Let ip  be the proportion of i -types in the population, which we shall assume is 

infinitely large.   When the total information generated by prior adopters equals 

r , the proportion of the population whose thresholds have been crossed is given 

by the function 

                                                               ( ) ( )i i
i

F r p rφ= ∑  .                                (26)  

 

                                                 
16 In the present case, the response function has the following explicit representation. Given that 

( )r t r= , itn  is Poisson-distributed with mean i rβ .   Given a realization 0itn k= > , the mean 

observed payoff, itx , is normal with mean μ  and variance 2kσ .   Let Φ  denote the standard 
normal c.d.f.  Then the probability that 'i s  posterior estimate exceeds 'i s  costs, as given by 
expression (23), is  

                                                0

1

( ) ( ) ( )
( ) [( ]

!

i rk

i i i i i

k

i

r e c k c
r

k k

ββ μ τ μ

σ σ
φ

−∞

=

− −
= Φ −∑ .                 
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( )F r  is a monotone nondecreasing function which we can interpret as a notional 

distribution function of agents’ information thresholds.  We allow for the 

possibility that some agents have an infinite threshold, hence lim ( )r F r→∞  may be 

less than 1. 17        

 

In a discrete-time framework, the total information generated by the end of 

period t is 
1

( ) ( )
t

s
r r t p s

=

= = ∑ .   If agents adopt as soon as their information 

thresholds have been crossed, the discrete-time dynamics is described by the 

equation 
1

( 1) ( ( ))
t

s
p t F p s

=

+ = ∑ . More generally, when agents act with probabilistic 

delay (0,1]α ∈  , we have  

 

                                        
1

( 1) ( ) [ ( ( )) ( ))]
t

s

p t p t F p s p tα
=

+ − = −∑ ,                                 (27) 

 

In a continuous-time setting the cumulative  information generated by  time  t   is 

0
( ) ( )

t
r t p s ds= ∫ , and the aggregate dynamics is described by the differential 

equation  

                                             
0

( ) [ ( ( ) ) ( )], 0
t

p t F p s ds p tλ λ= − >∫& .                                (28) 

 

 

 

                                                 
17 The closest model to this one in the literature is due to Dodds and Watts (2004, 2005). They  
consider a cumulative-dose model of infection with heterogeneity in the thresholds at which 
agents become infected (including social as well as biological interpretations of “infection”), 
though their analysis of the dynamics emphasizes different features from the ones considered 
here.  



 27 

When  λ  and  r  are jointly distributed, the dynamics are described by the system 

of differential equations 

 

            [0,1],λ∀ ∈    ( ) [ ( ( )) ( )]p t F r t p tλ λ λλ= −& ,  where 
1

0 0
( ) ( )

t
r t p s d dsλ ν= ∫ ∫ ,          (29) 

                                                                                                

where  ν λ( )   is  the  distribution  of  λ , whose  support  is  assumed  to  lie  in  the 

interval  (0,1] .  Given the initial condition  (0) 0p = , for any finite time 0T ≥  there 

exists a unique continuous solution on  [0, ]t T∈  provided that, for each value of 

λ ,  (0) 0Fλ >  and  ( )F rλ  is Lipschitz continuous.  

 

Observe  that  (28)  is  similar  to  the  dynamical  equation  (12)  defining  a  social 

threshold model,  except  that  in  the  present  case  the  argument  of  F    is  the  

integral  of  the  adoption  curve  rather  than  the  adoption  curve  itself.  This  arises 

because agents use all past  information generated by previous adopters  rather 

than just the most recent information.18   

 

The  cumulative  feature  of  the  social  learning  model  has  some  important 

implications  for  the shape of  the adoption curve.      Indeed such a model always 

decelerates initially irrespective of the distribution generating it.   First we shall show 

why this is so assuming a homogeneous inertia rate λ ; it will then be clear how 

to generalize the argument to the case of heterogeneous λ ’s.   Fix some (0,1)λ ∈   

                                                 
18 This suggests the following generalization.  If agents discount past information at some rate 

0δ ≥ , then the dynamical equation takes the form ( )

0
( ) [ ( ( ) ) ( )]

t t sp t F e p s ds p tδλ − −= −∫& .  When 

0δ =  we obtain the undiscounted learning model discussed in the text, whereas when δ  is large 
the process is similar to the social thresholds model. The specific context will determine which of 
these seems most appropriate.   
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and let ( ) ( )F r F rλ=  be the distribution function of the resistance levels.  Assume 

that ( )F r  has a differentiable density ( )f r  such that ( )f r′  is continuous and 

bounded for 0 1r< ≤ .   Differentiating the defining equation (28) with respect to t , 

and recalling that ( ) ( )p t r t= & , we obtain  

 

                                                   (1/ ) ( ) ( ) ( ( )) ( )p t p t f r t p tλ = −&& & .                                 (30)   

 

The solution ( )p t  is continuous and 
0

lim ( ) (0)
t

p t p+→
= .  Assume that initially 

(0) 0p = . (In fact the results below continue to hold if (0)p  is positive and 

sufficiently small.)   Then ( ( )) ( )f r t p t  is close to zero when t  is close to zero.  We 

also know from (28) that (0) (0) 0p Fλ= >& .   It follows from this and (30) that  

 

                                            2
0

lim ( ) (0) ( (0)) (0) 0
t

p t F f p pλ+→
= − + <&& .                      (31) 

 

Figure 4 illustrates this phenomenon for the same two densities that were used to 

generate the social thresholds adoption curve in Figures 2-3.  The logic is that the 

initial block of optimists (0)F  exerts a decelerative drag on the process: they 

contribute at a decreasing rate as their numbers diminish, while the information 

generated by the new adopters gathers steam slowly because there are so few of 

them to begin with.  These arguments continue to hold when there is 

heterogeneity in λ , as the reader may verify.19 

 

 

                                                 
19Initial deceleration does not necessarily occur, however, if innovations are bunched at particular 
points in time. An example would be an agricultural innovation (e.g., a new type of crop) that is 
tried once in each growing season, and whose outcomes farmers observe at the end of the season. 
For example, Griliches’s classic study of the diffusion of hybrid corn found very strong 
acceleration in the early phases of adoption; this is consistent with a learning model with 
‘bunched’ observations (Griliches, 1957; Young, 2005).      
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Figure 4.  Adoption curves generated by social learning and a normal  
                 distribution of information thresholds. 
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Next it will be shown that the relative acceleration rate is strictly increasing in a 

neighborhood of the origin provided that 
0

(0) lim ( ) 0
r

f f r+→
= > . Let  

 

                                                       ( ) (1/ ) ( ) / ( )t p t p tφ λ= && & .                                           (32) 

 

From (30) we deduce that 

 

                                                 ( ) ( ( )) ( ) / ( ) 1t f r t p t p tφ = −& .                                          (33) 

 

Differentiating (33) we obtain 

  

                          2 2( ) ( ( )) ( ) / ( ) ( ( )) ( ( )) ( ) ( ) / ( )t f r t p t p t f r t f r t p t p t p tφ ′= + −& & && & .              (34) 

 

As 0t +→  the first term in (34) goes to zero, because by assumption f ′  is 

bounded, ( ) 0p t → , and (0) 0p >& .  The third term also goes to zero.  However, 

( ( )) (0) 0f r t f→ > , so the second term is positive in the limit. (Recall that the 

density is not defined at the origin.)  It follows from continuity that ( )tφ&  is strictly 

positive on some initial interval 0 t T≤ ≤ .  In the region near the origin where 

( ) 0p t <&& , this says that the relative acceleration rate is becoming less negative.   

Suppose that at some time 0t  the process begins to accelerate.  Inspection of (34) 

shows that if 0( ( )) 0f r t′ > , then  ( )tφ&  is positive for some interval of time after 0t , 

that is, the process undergoes a period of super-exponential growth after it 

begins to accelerate. The reader may verify that similar arguments hold in the 

heterogeneous case.   
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Proposition 3.  Suppose that diffusion is driven by social learning, where for each level 

of inertia (0,1]λ ∈  the conditional distribution of resistances satisfies (0) 0Fλ > , 

0
(0) lim ( ) 0

r
f f rλ λ+→

= > , and the derivatives ( )f rλ′  are continuous and uniformly 

bounded above for all λ  in a neighborhood of 0t = .   Then initially the process strictly 

decelerates whereas the relative acceleration rate strictly increases; moreover if the 

densities are strictly increasing when the process begins to accelerate (if it does so at all), 

then the process exhibits super-exponential growth.   

  
 
6. Summary 

 

In this paper I have studied several models of innovation diffusion, and shown 

how to characterize their dynamical behavior with few (in some cases no) 

restrictions on the distribution of agents’ characteristics.  Below I summarize 

some of the points that follow from the preceding discussion and Propositions    

1-3.   

 

1.  Acceleration over any part of the trajectory is inconsistent with a pure inertia 

model. 

 

2. An accelerative phase, possibly at super‐exponential rates, can easily occur in 

social  threshold  and  social  learning models;  however,  acceleration  at  the  very 

start  of  the  process  is  inconsistent  with  the  class  of  social  learning  models 

considered here.   
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3.   Acceleration  in a contagion model cannot occur beyond the 50% penetration 

level, and the relative acceleration rate cannot be too large before that level, but 

these restrictions do not apply to social threshold or social learning models.   

 

While these features are certainly not sufficient to identify one family of models to 

the exclusion of all others, they do provide a way of assessing the relative 

plausibility of different types of explanation.  This could be useful in situations 

where aggregate adoption curves are available but micro-level adoption data are 

not.   

 

I hasten to point out that the trio of models discussed here does not cover all of 

the numerous and varied models in the literature.  One important family that has 

not yet been mentioned is the class of moving equilibrium models (David, 1966, 

1969, 1975, 2003; David and Olsen, 1984, 1986; Stoneman, 2002).   These proceed 

on the assumption that adoption is driven by changes in some exogenous 

variable, such as price: if agents have different net benefits from adopting, for 

example, then as the price falls more and more agents will adopt.   More 

precisely, suppose that each agent i  adopts once the price is less than i ’s 

reservation value iv .   Let  ( )F v  be the distribution of reservation values in the 

population, and suppose that prices decline according to some function ( )tπ . 

Then the adoption curve is given by ( ) 1 ( ( ))p t F tπ= − .   In this case, ( )p t  is 

simply the composition of two monotone functions, so not much can be said 

about the shape of the curve without knowing more about the distribution F  

and the driving function ( )tπ .   The models that we have considered in this 

paper are fundamentally different because the dynamics are driven from within.   

It is this feature that places nontrivial restrictions on the shape of the curve.     
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Appendix: Proof of Proposition 1. 

 

Define the function ( )H t = ( ) / ( ) ( ) /[ ( )(1 ( ))]h t p t p t p t p t= −& ; this is well-defined for 

all 0t >  because by assumption (0) 0p γ= >& , hence ( ) 0p t >  when 0t >  .  We 

need to show that ( ) 0H t <& . 

 

For each parameter pair ( )λ γ,  let ( ) (1 ( ))q t p tλ γ λ γ, ,= −  denote the proportion of the 

( )λ γ, -population that has not yet adopted by time t .  The proportion of the total 

population that has not adopted by t  is therefore  

 

                                                      ( ) ( )q t q t dλ γ μ,= ∫ .                                                 (A1) 

 

For each ( )λ γ,  we have 

 

                                               ( ) ( ( ) ) ( )p t p t q tλ γ λ γλ γ, ,= +& .                                          (A2) 

 

Integration with respect to μ  yields  

 

                                               ( ) [ ( ) ( ) ( )] ( )p t t p t t q tλ γ= +& ,                                           (A3)                 

 

where 

                           1( ) ( ) ( )t q t q t dλ γλ λ μ−
,= ∫  and 1( ) ( ) ( )t q t q t dλ γγ γ μ−

,= ∫ .                 (A4) 

 

Note that ( )tλ  and ( )tγ  are the expected values of λ  and γ  in the population of 

non-adopters at time t .   It follows that 

 

                                        ( ) ( ) /[ ( ) ( )] ( ) ( ) / ( )H t p t p t q t t t p tλ γ= = +& .                             (A5) 
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Claim:  For every 0t > , ( ) ( ) ( ) 0t p t tλ γ+ ≤& & .                                                               (A6) 

 

Proof of claim.  For every 0t >  we have 

 

                                
2

( ) [ ( ) ][ ( ) ]
( )

( ) [ ( ) ]

q t d q t d q t d
t

q t d q t d
λ γ λ γ λ γ

λ γ λ γ

λ μ λ μ μ
λ

μ μ
, , ,

, ,

= −∫ ∫ ∫
∫ ∫
& &

& ,                       (A7) 

and 

                                
2

( ) [ ( ) ][ ( ) ]
( )

( ) [ ( ) ]

q t d q t d q t d
t

q t d q t d
λ γ λ γ λ γ

λ γ λ γ

γ μ γ μ μ
γ

μ μ
, , ,

, ,

= −∫ ∫ ∫
∫ ∫
& &

& .                        (A8) 

 

To show that ( ) ( ) ( ) 0t p t tλ γ+ ≤& & , multiply (A7) by ( )p t  and add it to (A8); after 

simplifying we obtain the equivalent condition  

 

    [ ( ( ) ) ( ) ][ ( ) ]p t q t d q t dλ γ λ γλ γ μ μ, ,+∫ ∫& [ ( ( ) ) ( ) ][ ( ) ]p t q t d q t dλ γ λ γλ γ μ μ, ,− +∫ ∫ & 0≤ .    (A9) 

 

We need to show that (A9) holds for every 0t > .   (Notice that t  does not vary in 

this expression; t  is fixed and integration is taken with respect to λ  and γ .)  We 

know from (A2) that ( ) ( ( ) ) ( )q t p t q tλ γ λ γλ γ, ,= − +&  for every λ γ, , and t .   

Substituting this into (A9) we obtain  

 

                  2[ ( ( ) ) ( ) ][ ( ) ]p t q t d q t dλ γ λ γλ γ μ μ, ,+∫ ∫ 2[ ( ( ) ) ( ) ]p t q t dλ γλ γ μ,≥ +∫ .           (A10) 

 

Fix 0t >  and define the random variables  

 

                                  ( ( ) ) ( )X p t q tλ γλ γ ,= +  and ( )Y q tλ γ,= .                              (A11) 
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The realizations of X  and Y  are determined by random draws from μ .   Thus 

(A10) follows directly from Schwarz’s inequality: 2 2 2[ ] [ ] ( [ ])E X E Y E XY≥ .  This 

establishes the claim.   

 

We can now apply this result to show that ( )H t  is strictly decreasing in t for all 

0t > .  Differentiating ( )H t  we obtain 

 

                                         2( ) ( ) ( ) / ( ) ( ) ( ) / ( )H t t t p t t p t p tλ γ γ= + −&& & & .                         (A12) 

 

By the above claim, ( ) ( ) ( ) 0t p t tλ γ+ ≤& & , so division by ( ) 0p t >  yields 

( ) ( ) / ( ) 0t t p tλ γ+ ≤& & .    Thus the sum of the first two terms on the right-hand side 

of (A12) is nonpositive.   But the last term is strictly negative, because ( ) 0tγ >  for 

all 0t >  given the initial condition (0) 0γ γ= > .   Hence ( ) 0H t <&  as was to be 

shown. 

 


