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This paper applies standard maximum likelihood (ML) teges to find an optimal agent-
based model (ABM), whereptimal could refer to replicating a pattern or matching observed
data. Because ML techniques produce a covariance matrithéoparameter estimates, the
method here provides a means of determining to which pasmand conditions the ABM is
sensitive, and which have limited effect on the outcome. aBse the search method and the
space of models searched is explicitly specified, the déivaf the final ABM is transparent

and replicable. Hypotheses regarding parameters can teel tesing standard likelihood ratio
methods.



Background

More computational firepower has allowed two types of rade#w flourish. The first is the agent-based
model (ABM), which keeps track of the decision making bebewaf thousands or millions of agents. The
second is optimization as a statistical method, typicalpiving resampling a likelihood function hundreds
or thousands of times.

This paper demonstrates a method of combining the two sg@dirmomputation, by searching for the
optimal ABM within the space of ABMs. Think of any statisticaodel as a black box, that takes a set of
parametergd as inputs, and produces a probability valdes an output. The model could thus be written
as a functionP(3), which expresses the fact that every input param@tentputs a likelihood. There are a
number of methods for searching the spacg ¢ find the value that maximizel3(3), some of which will
be discussed below.

But the internals of theé”(-) function could be an agent-based model as easily as they beuh tra-
ditional statistical model. In such a case, the paramegdersciude both what are typically called model
parameters (size of the board, for how many periods the atipalruns) and the discrete rules of the model
like whether agents can move or are stationary. Save for ¢eamical details to follow, these can be
searched in a manner similar to the search for the optimahpeters in standard statistical models like the
logit or probit.

But there are a number of considerations that must be addiéssore maximum likelihood techniques
can be applied to agent-based models. Some are engineagstians about getting good-quality estimates,
and some are conceptual issues about maximizing a stacHiasttion whose inputs and outputs may be
discontinuous.

This paper develops a form for the meta-model that smooth#heuwletails, and then gives examples of

optimization searches over two disparate metamodels.
Meta-models

Let ameta-modebe a set of rules and parameters. The meta-parameters ofetiaermodel may include

both traditional parameters (which are typically real nensblike payoffs), and characteristics which are

1Some authors distinguishpobability (odds of dataX given a parametes) from alikelihood (odds of3 given X). | use them
interchangeably here, because they are both derived frenjpant distribution,P (X, 3).

2Computing power isiota concern. Optimizing a small agent-based model, like tmeilsition below that runs on 30 x 30
grid for about fifty periods, actually requires less comgintathan optimizing some standard statistical modelsgutange data
sets.
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typically considered to be fixed rules of the game, chosem filiscrete and unordered sets like eight-way
or four-way movement on a grid, or whether players will erggaiga Prisoner’s Dilemma or a Coordination
game.

This paper tests a generic search algorithm to search fan#ta-parameters of a meta-model that best
fit a given criterion. That is, it searches a space of modeldhfe parametrized model that best fits the
criterion. If the criterion is that the model best fit observeal-world data, then this process is known as
model validation.

The generic search algorithm borrows from the many companadutines in the literature that find
the optimum of a function. In this case, the researcher wordt specify a goal for the simulation, such
as maximizing the ratio of doves to hawks in the simulatiololweand then specify bounds in which the
algorithm will search for rules. The algorithm would thendfithe rules of the model that maximize the
expected output.

This setup differs from the long history of searching for liest agent strategy within a fixed framework,
such as the tournament of Prisoner’s Dilemma strategiebyuxelrod and Hamilton [1981] and the many
offspring tournaments since run. Such tournaments, doolaty frameworks, and genetic algorithms aim to
optimize a certain agent’s goal (which is invariably a vatrian maximizing profit or number of offspring),
whereas the goal here regards the overall shape of the gaireh as maximizing the balance of Hawks
and Doves or minimizing the number of clashes between thegt@ops. Thus, the key variables here are
meta-parameters of the model (which can include methodstigimagents select strategies), rather than
the agent strategies themselves.

There are a number of benefits to the automated optimizatiesepted here. The first is the simple
benefit of automation, such as the time-savings and precsmesearcher could reap by having a computer
fine-tune the model’s specification and parameters. Butrmbyloat, automation affords transparency, re-
ducing the sense that the parameters are simpddmcset of assumptions. Other options that the output
model could have used are explicitly listed, so there is ndtln the reader’'s mind about the alternatives.

Leombruni et al. [2006] suggests a standard protocol famgsan ABM, with an eye toward better
transparency, that includes the recommendation that eflloration” of all parameters should be run.
With six continuous parameters, each sliced into a grid afiredred possibilities, a full exploration would
cover a billion possible combinations. If the model takes sacond to run, the full grid search would take

3,170 years. The simulated annealing method below proddgandard method of covering the space that

p. 2



finds the areas most likely to affect the outcome, that tylyicans in a few minutes or hours.
Further, the maximum likelihood estimation (MLE) litereduhas developed a number of statistical

techniques associated with MLEs, which can be beneficiah t&EM.

e One can develop a confidence interval around the paramdtéinge anodel, using the information
matrix and the Cramér-Rao inequality. This shows to whictapeeters the model is sensitive, and

which parameters do not significantly affect the model oueo

e The same confidence intervals can be used for standard’ tests to determine whether a parameter

has a true influence on the outcome of the model or is merelyisdnce parameter’.

e The likelihood ratio test allows one to test hypothesesraigg whether a given parameter provides

a statistically significant improvement over an alterrativ

This paper applies such techniques directly to the paramet@agent-based models.
The space of inputs

The meta-model consists of selecting a vector of paramgteasid then using those parameters to select a
model with parameter8, which will then map to outcom&. One could think of this as a simple model
with outcomeV/ (), but this paper will take the equivalent approach of assgraimeta-model and a model
proper, and thus a two-step mapping— 3 — V.

An optimization requires a goal to optimize; the exampldswevill use such goals as the number of
hawks adjacent to doves or the number of contiguous groulpavais. Below, the search will be done using
simulated annealing, and that optimization method plaegsin regularity conditions on the space from
which 3 is drawn. There must be a metric on the parameter space, iangéful if the space has a topology
such that any3 is surrounded by a neighborhood of arbitrarily close adéves.

Continuous parameters R have their standard topology and Euclidean metric, andesonsta-model
can search over them without modification. For integer patars (such as the number of periods or size
of the board) the optimization can search opueg R, and the first step of the simulation would round the
inputto3 = | 1] (meaning that the outpdf may have a discontinuity at the jump fram= i — eto u = 1,
which is not a problem).

Only the discrete, unordered parameters remain. For exanmphe simulation below, agents could be

able to move in four directions (North, South, East, or Wasteight directions (those directions plus NE,
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NW, SE, and SW¥.Let the movement parameter pg;, and the options bg,, = F for four-directional
movement o3, = F for eight-directional movement.

The obvious method of generating a continuous scale ovamheiscrete modes of movement would
be to have agents play a mixed strategy in whigh = F with probability p and3,; = E with probability
1 — p. But this is unsatisfactory, because a mixture could predubigher payoff than either purelyor E,
or there could be a sharp discontinuity in outcomes betweere andp = 0. In short, the mixed outcomes
may say nothing about the pure outcomes.

The solution is to repeat the model using pure rules fixedrbdfte model is played. Over a hundred
models,100p of them will be played with a pure rule ¢fy; = E and100(1 — p) will be played with a pure
rule of By = F. Let E(V|By = E) = Kg andE(V |3y = F') = KF; then the expected outcome given
pwillbe pKg + (1 — p)KF, and so there is a simple linear relation between the inpatnpeterp and the
output parameteE (V).

If the discrete parameter could take @walues, then a choice among them would require 1 meta-
parametersiy, ... u,—1, all € [0, 1], such that) < Z:‘:‘f i < 1. At the outset of each model, draw a
random number from a uniform distribution and select option one ik p1, option two ifr < 1 + o,
..., and optiom if r > S .

Mixing over pure elements in the metagame is a separate sgdo@m a game with mixed elements.

The models in this paper will use only fixed elements, but andcchave a series of possible parameters

e four-way movement,
e eight-way movement, and

e four way movement with probability, eight way with probabilityl — p,

and then do a search over these three possible parametévas a

The interpretation of derivatives of discrete choices anbkes sense as the changé/irirom a shift
from one option to another. Here, | will take the derivativiéharespect to optiory to be the expected
difference in outcome given a switch from the (arbitrarihosen) first option to optiof.*

To summarize, the parameters of the meta-model will coomdgo the parameters of the model, but

their relation will depend on the type of the parameter:

3Four-directional movement is sometimes callediba Neumannopology and eight-directional movement thieore topol-
ogy.

“In the case of a continuous derivative, the alternative sidadly implicit, but one can interpret a derivative as tfiféetence in
outcome given a switch fromi; = xto 5; = = + .
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e Continuous parameters are their own meta-parametees: 1.

¢ Integral parameters have continuous meta-parametershwahé simply rounded or truncated to pro-

duce the parameters; = |u;|. Other discrete, ordered parameters can be handled dimilar

e Unordered discrete parameters that could take galues have a set of — 1 meta-parameters, each

in [0, 1], such that the meta-parameters sum to a valye, itj.

Searching the space

The process described in this paper is simply an optimizaaod one could use any optimization method
to execute the search for the optimum, including genetiorélgns, conjugate gradient methods, simplex
methods, hill-climbing, root-finding, and so on. But for anmler of reasons, simulated annealing (SA)
recommends itself for this situation.

Briefly, simulated annealing is an application of the Metdig@Hastings algorithm for searching a
space. It is a random walk, jumping from state to state, with simple rules. Randomly select state
t 4 1. If the probability of state + 1 is greater than the probability of statehen the system jumps to state
t + 1; if the probability of state + 1 is less than that of state then the system still jumps to state- 1
with a probability decreasing ih Early on, when the probability of jumping to a less-likebate is high,
the state can easily jump anywhere in the state space, buaptogresses, the system will only move to
more likely states, and so approach the nearest optimum.

This method works well for the given situation for a numberedsons. First, the information matrix
is a global property of the model, meaning that one needsnmpleaparameters from the entire parameter
space to calculate it. Ackley [1987] notes that simulatedkeating is often slow to converge, which in this
case is a good thing, because its many iterations gather machinformation for use in calculatiri, over
a larger range of values, than relatively fast-convergiggrihms like conjugate gradient methods. That is,
SA provides a search for the optimum and a sampling routinthéinformation matrix at the same time.

Second, the mapping from models to outcomes is unknown.eTinealy be a simple linear relationship
among elements (as there is along the artificial linear coailzins in the meta-model above), or there may
be a complex series of local maxima and minima. Simulate@amy is well-suited to such a situation,
because it has some likelihood of jumping from the neighbodhof any local optimum to that of any other.

Simulated annealing also offers the benefit that it is metaesy the odds of jumping from statgo
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statet + 1 in no way depends on statées- 1, t — 2, .... Some optimization methods build up an image
of the space based on past draws, which normally improvesesffly. But with stochastic outcomes, it is
possible that if some early draws are not representaties tie optimization will be led astray. With SA,
an erratic draw may lead to an erroneous jump/non-jump inst&®, but that may readily be corrected in

later iterations.

Sensitivity and confidence intervals

This paper is concerned not only with finding the optimal mobdat also finding the level of confidence
that one can place on that optimum, which breaks down intostwixmuestions.

The first is the traditional hypothesis test. The likelihaatio test is a natural complement to maximum
likelihood estimation, and requires little additional@ahtion. Let the likelihood of the best set of param-
eters bel,,, and let the likelihood of the best parameters constrainet that one parameter is fixed at a
given value bel.. Then the statisti@In(L,,) — In(L.) has ax? distribution, and can be used to produce
traditional confidence intervals apevalues.

The second means of evaluating the level of confidence ongleae on a model is via sensitivity
checks: as a given parameter shifts, how much does it affiecotitcome measure? Again, it is easy
to use the information gathered during a maximum likelihgedrch to produce a covariance matrix that
answers such questions directly. The bumper-sticker eafitan for how this is done is that the variance of
a maximum likelihood estimate of a parameter achieves then€r-Rao lower bound (CRLB). The details

of the CRLB and its underlying technical conditions are presd in the appendix.

Subjective confidence intervals In the case of an agent-based model intended to explain sefatane
could write down a traditional likelihood function, thatmesses the probability of observing the output
given a distribution assumed to take a certain form (typiaaNormal distribution) based on the real-world
mean and variance of the output measure.

For a theoretical agent-based model based on a goal thatndbe®rrespond to a real-world set of

events, such as the number of doves in a hawk-dove game, ede aesubjective probability distribution.

The stochastic nature &f(-) itself can also be mitigated by simply taking the mean of sgveins. In the test below, the
simulation reports the mean of twenty plays of the model fmhg3.
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Configuration 41 Configuration 43 Configuration 105

Figure 1: Configurations 41 and 105 both produce the Sidtpiriangle.

Given the outcomé&’ (3) > 0, the natural subjective probability measure is simply

Vi(B)
fvﬁ V(:B)

It is essential for the proofs regarding the CRLB tl#aintegrate to a constant (i.e., one), but for most

Psubj (ﬁ) =

calculations it is sufficient to state th&},,;(3) o< V(8).
The appendix provides a few additional technical detaidgmrding the calculation of the information

matrix using a subjective probability distribution.

An example: The Sierpinski triangle

Wolfram [2002] describes how the progress of a one-dimeasioellular automaton can describe a Sier-
pinski triangle, as pictured in Figure 1.

Define the parents of a point to be the three points above tlea gioint (to its Northwest, North, and
Northeast). There are eight possible configurations fop#rent: (off, off, off), (off, off, on), (off, on, off),
(off, on, on), .... These can be read as the binary numbers Zevo to seven, by writing, say, (off, on, off)
as (0, 1, 0), or more compactly, 010.

A rule in this system consists of an outcome for each of thhtgigrent configurations: either the child
point is on or off. A rule can thus be summarized as a sequehegglot ones or zeros—another binary
number, from zero to 256. For example, rule 13=0001101 Bpethat if the parent configuration is 1=001,
3=011, or 4=100, then the child cell is on; else the child isatiff.®

®As an arbitrary point of gesthetics, the parent configurasicd=(0, 0, 0) always produces no child. This ensures thaspaee
outside the triangle remains blank.
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The process of generating a configuration begins with a gadlis blank save for a single cell in the
center of the top line. The second line is generated by chgokéach cell's parents on the first line and
determining whether the rule dictates that the child on dw®sd line should be on or off. Once the second
line is generated, the third line is generated in the same eeginuing to the end of the grid.

The goal is the Sierpinski triangle, which has three keyuiest. The sides of the triangle are generated
by cells whose parents are either 1=001 on the left side ofrilmegle, or 4=100 on the right side. The
straight horizontal lines followed below by blank spacesaclear feature of the figure, but it is hard to tell
from the low-resolution diagram above whether the triangle solid line or a dotted line of alternately on
and off elements. If it were a straight like, then the holleiarigles would be created by the rule that if all
three parent cells are on, 7=111, then the child is off; ifeteva dotted line, then the rules 5=101 and 2=010
would need to be off. Configuration 41=0101001 fits all of thebaracteristics, and Figure 1 shows that

configuration 41 does indeed produce a Sierpinski triangle.

Comparative statics The search for an optimum is not very interesting in this c&een training infor-
mation of configuration 9=0001001, each element is compaires-by-pixel to the output produced by rule
9, and gets a point for each pixel that matches. Ranking thigrtomations by score easily finds those rules
that produce the Sierpinski triangle (configurations 9,413,45, 73, 77, 105, 109; rule 11 is a near-miss
that bears a resemblance but is not quite correct).

It is more interesting to ask about the comparative statfes mutation appeared that switched one bit
in a rule that produces a Sierpinski triangle, would the teataule continue to produce the same pattern?

The covariance matrix of the set of games, produced via foenration from the subjective likelihoods

as described in the appendix, gave the following variances:

rule variance
:(0,0,1) 4.790
:(0,1,0) 3.541
:(0,1,1) 14.402
:(1,0,0) 4.788

:(1,0,1) 15.994
:(1,1,0) 14.403
:(1,1,1) 20.471

NOoO oM~ WNPR

A small variance indicates sensitivity, so the rules that miost likely to destroy the output given a

mutation are rules 1, 2, and 4. Rules 1=001 and 4=100 weee l&st essential above. The comparative statics
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see what the low-resolution diagram could not show: Wolfsacellular automata produce a Sierpinski
triangle where the tops of the hollow triangles are covesedrbalternating on-off pattern rather than a solid
line. This is demonstrated by the fact that rule 7 is almasiawvant to the output score, while it is very
important that rule 2=010 not be on. Figure 1 shows configamadl, then configuration 41 plus rule 2
(equals configuration 43), and finally configuration 41 plule 7 (equals 105). When rule 2 is added, there
is a drastic change in output, while when rule 7 is added, titeut is pixel-for-pixel identical. When rule
5 is added, the output is generally a checkerboard pattennhrike the Sierpinski triangle with the holes
filled in; as such the digression is less than when rule 2 is@ddhich produces sharp vertical lines.

Thus, the variances, readily derived from the subjectieliiood calculations, readily demonstrate in

what ways the system is sensitive to mutation.
An example: Agent groupings

This section presents a more complex example that is sonésgsapredictable than the last, which hopes

to match a number of rules of the game with a number of outcoetecs.

The set of rules The basic form of the model is a set of agents on a grid of spades are born, move
around, die, and play some type of exchange game amongssehass.

The choices are culled from a variety of sources, includirgdemographic prisoner’s dilemma (as in
Epstein [1998]), the Hawk-Dove game (as in Gintis [2000fd ¢he familiar coordination game.

The complete specification of the meta-model consists oftangdj of rules, like the seven possible
on/off rules for the Sierpinski Triangle example, althoubhse rules have no neat ordering and many are
continuous or multi-valued. The rules listed as TBD (to btedrined) are the free parameters for whose

values the optimization will search.

D H D H D H
D[@44) (6,6)] D[@&4 (56| D[22 (1-1
H|(6,6) (5-5| H| 65 (6-6)| H| (L1 (2 2

Prisoner’s dilemma Hawk-dove Coordination

Figure 2: The payoff matrices that may be used by the model.

"Notice, in fact, that the configurations that produce thérdddigure divide into a set of configurations with rule sewér—9,
13, 41, and 45—and that exact set repeated with rule s&Ven & 64) on—73, 77, 105, and 109.
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e The grid is am x n torus (top connects to bottom; left connects to right), veheis TBD.

e The sequence of play is: all agents move, all play a game wi¢hreeighbor (if any), all possibly
spawn a new agent, all who meet certain criteria die.

¢ All agents are one of two types. Borrowing from the hawk/dgaene, they are named H or D.

¢ Initially, agents are placed at random on the grid with a eriBD. These initially-placed agents
have equal odds of being H or D.

e Each agent moves one space at a time to a randomly selecéagaid$pace. If no adjacent spaces are
free, the agent does not move. The simulation here usesdire@ion topology; leaving the choice
of topologies TBD is left as an extension for future work.

e Each agent randomly selects a neighbor (if any) with whichlag. The payoff will be based on one
of the games in Figure 2; which table is used for a given rurBBT

¢ If the agent reaches a given wealth level (currently fixedzatidits), then the agent spawns a child.
The child will have the same type as the parent, unless teexamutation, which occurs with like-
lihood TBD. The child is placed in a random empty space adjat®the parent; if no such space
exists, the parent can not spawn.

e There are a number of rules by which agents can die. The fitgkén from Conway’s Game of Life.

[Gardner, 1983].
— Loneliness: agents have zero or one neighbors.
— Old age: agents are over 11 periods old.
— Poverty: agent wealth falls below zero.

A model may use between zero and three of these rules. Théasioms here used the poverty and

old age rules; allowing the use of all three rules TBD is lsfaguture extension.

The goals As in Figure 3, different rules lead to different patternoirtcomes. The figure shows three
types of outcome: large clumps of each type, large clumpseftgpe surrounded by the other type, and a

general intermixing. Formally, these general forms preutitee outcome metrics:

e Clumping. This can be read as ‘edge minimization’. the gealoi minimize the ratio of (edges

between an agent and another agent or open space) to (tothknof agents).
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Figure 3: Different games lead to different patterns of oates. Left: the coordination game leads to two
solid blocks [edges wrap around]. Center: the Prisonelsrdina leads to clumps of doves surrounded by
hawks. Right: the hawk/dove game leads to a closer mixingped.

e Surrounding. Maximize the percentage of agents who are@uljao both a blank square and an agent

of opposite type.

e Intermixing. Maximize the ratio of (edges between agendifférent types) and (number of agents).

The entire metagame includes a great many free parametarsrdlatively small details like the age of
death to the basic structure of the payoff table. It may beossjble to predict before the fact what rules
will have a significant impact—perhaps the initial dens#glty is the determining factor in the structure of
outcomes. For the purposes of the testing here, the additimyrees of freedom make it less-than-trivial

for an optimization routine to find the best point in the space
The results

Above, the paper discussed three outputs to the likeliheadch: the most likely outcome itself, the sensi-
tivity of the outcome to each metaparameter, and likelihedis tests regarding whether a constraint on the
system produces a real improvement. The Sierpinski treaegample showed how the variance matrix can

be used to glean information about the models; this sectibhowk at the other two outputs.

The most likely outcome The most clear and simple benefit from a maximum likelihocatdeis that it
saves the researcher the pain of finding optimal parametensiaty?
Figure 4 shows the results of the search for the configuratitinthe least edges, given the Coordination

payoff table. The game is played for 26 periods, on a smalidsd@he initial density is 21%. The mutation

8The data used in this section was produced using approxiriagmillion runs of the game, which took several hours gsin
a typical high-end PC.
°The board is fixed to be of size 10 or greater, so the size herbegead to mean ‘as small as possible.’
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periods 26.780228
boardsize 10
density 0.214842
passed_on 0.050099
mutation 0.013070

Figure 4: The optimal configuration for an edge-minimizimgination game.

rate is only 1% and the amount that a parent passes on toltisi€linly 5%—both amounts that are lower
than what one typically sees in an ABM of this type.

It is hard to imagine a sequence of manual tests that wouikkaat the values above, especially given
that modifications in one variable can readily offset otheks above, a thorough and direct grid search
could take literally years. Further, the last two varialitesk on values that a manually-searching researcher

may not have even considered.

Likelihood ratio tests The typical setup for a likelihood ratio (LR) test involvess anconstrained and a
constrained model. The null hypothesis is that the comdtiaiirrelevant, meaning that the log likelihood
of the system given the constraint is the same as the loghdai of the system without the constraint.
The statistic for such a likelihood ratio test$s= 2(L, — L.), whereL,, is the likelihood at the global
unconstrained optimum, and. is the likelihood at the optimum given a constraint. Theistiathas ay?
distribution [Vuong, 1989].

Figure 5 presents the results of the LR tests. For the edgenmation outcome, the coordination payoff
table is the most likely (using the subjective likelihooahdtion), meaning that it is the unconstrained opti-
mum. This verifies the observations of Epstein [2006, pp 224}, but with the added bonus of confidence
intervals. If the system is constrained to use the Hawk-Dmawoff table, then the likelihood drops with
98.8% confidence. The Prisoner’s dilemma table causeskedénbbod to fall with 89.2% confidence, which
is generally considered to be not statistically significéat which can be read to provide modest evidence
that the PD payoff table will produce a lower outcome thanGberdination payoffs.

The edge maximization outcome shows a similar pattern: taek-Dove game is most likely in this
case, and the other two payoff tables can be said to reduceutteme measure with 92.6% and 84.4%
confidence. The bordering outcome measure found littlewdifice in outcome given the three payoff tables.

To read the LR tests in the opposite direction, if we obsemedbrld where agents tended to clump
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Payoff table L(-) S conf.

Edge minimization

Coordination 0.869537
Prisoner’s dilemma -0.429038 2.597 89.2%
Hawk-Dove -2.30259 6.344 98.8%

Edge maximization
Hawk-Dove -0.574383
Coordination -1.58324 2.018 84.4%
Prisoner's dilemma -2.17568 3.20 92.6%

Surrounding
Prisoner's dilemma 1.3282
Coordination 0.945448 0.766 61.89
Hawk-Dove 0.776576 1.103 70.6%

Figure 5: LR test results

together, the LR tests indicate that it is unlikely that thatld was the product of agents using a Prisoner’s
dilemma or Hawk-Dove payoff table. It is certainly possilttat the agents used any of a multitude of
other tables not tested here. No statistical test of anycsortever prove causation, but taken with other
evidence regarding the situation, the LR test can be reambtade supporting evidence to the claim that the

Coordination payoff table causes an edge-minimized ougcavhile the other two payoff tables do not.

Conclusion

A maximum likelihood search provides more than just the rtiksly outcome. It also provides information

about the sensitivity of the outcome to changes in parasmatst fodder for traditional statistical hypothesis
tests. These results from the statistical literature caditeetly applied to the problem of designing agent-
based models to fit observed patterns, thus producing mtidglbetter fit the patterns—and how well they

fit can be measured and tested.

Appendix: Calculating the covariance matrix

The variance of a maximum likelihood estimate of a paramatdnieves the Cramér-Rao lower bound

(CRLB). Given a maximum likelihood estimate basedomlata pointsB(yl, ...,Ym), @ log-likelihood
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function L, dlog-likelihood vectorS (often called the score, and of the form

[OL(B)/0p1  OL(B)/9B2 -+ OL(B)/9p1)),
then:
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There are only two assumptions underlying the derivatiothefCRLB. The first is that the integral of
the probability distribution over the entire space is canstin the context here, this means that a subjective
probability will have to be normalized to integrate to one.

The second condition for the above result is that

[y 0 [ pl. B)d8
op op '

This too is a very general statement, that is satisfied by@amgtion that demonstrates uniform convergence,

(1)

which in turn is satisfied by any member of an exponential famihe definition and use of exponential
families will not be discussed here, but it is worth notingttlBarron and Sheu [1991] demonstrate that
any PDF can be approximated arbitrarily closely (measusedudlback-Leibler distance) by a sum of
exponential family distributions.

Finally, the result only makes sense when the derivativelssanond derivatives are defined almost ev-
erywhere. The framework above makes a point of meeting titisrion: there is a linear mapping from
discrete parameters to outcomes, and a linear functiomlylsatisfies the differentiability requirements
above. In most cases, the optimum will be where only one mualgimetrization is used and the parameter-
to-outcome mapping is nondifferentiable, but the CRLB isadogl property, so it does not require differen-

tiability at the optimum, only differentiability almost ewywhere.
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