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This paper applies standard maximum likelihood (ML) techniques to find an optimal agent-
based model (ABM), whereoptimal could refer to replicating a pattern or matching observed
data. Because ML techniques produce a covariance matrix forthe parameter estimates, the
method here provides a means of determining to which parameters and conditions the ABM is
sensitive, and which have limited effect on the outcome. Because the search method and the
space of models searched is explicitly specified, the derivation of the final ABM is transparent
and replicable. Hypotheses regarding parameters can be tested using standard likelihood ratio
methods.



Background

More computational firepower has allowed two types of research to flourish. The first is the agent-based

model (ABM), which keeps track of the decision making behavior of thousands or millions of agents. The

second is optimization as a statistical method, typically involving resampling a likelihood function hundreds

or thousands of times.

This paper demonstrates a method of combining the two streams of computation, by searching for the

optimal ABM within the space of ABMs. Think of any statistical model as a black box, that takes a set of

parametersβ as inputs, and produces a probability valueP as an output. The model could thus be written

as a functionP (β), which expresses the fact that every input parameterβ outputs a likelihood.1 There are a

number of methods for searching the space ofβ to find the value that maximizesP (β), some of which will

be discussed below.

But the internals of theP (·) function could be an agent-based model as easily as they could be a tra-

ditional statistical model. In such a case, the parametersβ include both what are typically called model

parameters (size of the board, for how many periods the simulation runs) and the discrete rules of the model

like whether agents can move or are stationary. Save for sometechnical details to follow, these can be

searched in a manner similar to the search for the optimal parameters in standard statistical models like the

logit or probit.

But there are a number of considerations that must be addressed before maximum likelihood techniques

can be applied to agent-based models. Some are engineering questions about getting good-quality estimates,

and some are conceptual issues about maximizing a stochastic function whose inputs and outputs may be

discontinuous.2

This paper develops a form for the meta-model that smooths out the details, and then gives examples of

optimization searches over two disparate metamodels.

Meta-models

Let a meta-modelbe a set of rules and parameters. The meta-parameters of the meta model may include

both traditional parameters (which are typically real numbers like payoffs), and characteristics which are
1Some authors distinguish aprobability (odds of dataX given a parameterβ) from alikelihood(odds ofβ givenX). I use them

interchangeably here, because they are both derived from one joint distribution,P (X, β).
2Computing power isnot a concern. Optimizing a small agent-based model, like the simulation below that runs on a30 × 30

grid for about fifty periods, actually requires less computation than optimizing some standard statistical models using large data
sets.
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typically considered to be fixed rules of the game, chosen from discrete and unordered sets like eight-way

or four-way movement on a grid, or whether players will engage in a Prisoner’s Dilemma or a Coordination

game.

This paper tests a generic search algorithm to search for themeta-parameters of a meta-model that best

fit a given criterion. That is, it searches a space of models for the parametrized model that best fits the

criterion. If the criterion is that the model best fit observed real-world data, then this process is known as

model validation.

The generic search algorithm borrows from the many comparable routines in the literature that find

the optimum of a function. In this case, the researcher wouldfirst specify a goal for the simulation, such

as maximizing the ratio of doves to hawks in the simulation below, and then specify bounds in which the

algorithm will search for rules. The algorithm would then find the rules of the model that maximize the

expected output.

This setup differs from the long history of searching for thebest agent strategy within a fixed framework,

such as the tournament of Prisoner’s Dilemma strategies runby Axelrod and Hamilton [1981] and the many

offspring tournaments since run. Such tournaments, evolutionary frameworks, and genetic algorithms aim to

optimize a certain agent’s goal (which is invariably a variant on maximizing profit or number of offspring),

whereas the goal here regards the overall shape of the society, such as maximizing the balance of Hawks

and Doves or minimizing the number of clashes between the twogroups. Thus, the key variables here are

meta-parameters of the model (which can include methods by which agents select strategies), rather than

the agent strategies themselves.

There are a number of benefits to the automated optimization presented here. The first is the simple

benefit of automation, such as the time-savings and precision a researcher could reap by having a computer

fine-tune the model’s specification and parameters. But beyond that, automation affords transparency, re-

ducing the sense that the parameters are simply anad hocset of assumptions. Other options that the output

model could have used are explicitly listed, so there is no doubt in the reader’s mind about the alternatives.

Leombruni et al. [2006] suggests a standard protocol for testing an ABM, with an eye toward better

transparency, that includes the recommendation that a “full exploration” of all parameters should be run.

With six continuous parameters, each sliced into a grid of a hundred possibilities, a full exploration would

cover a billion possible combinations. If the model takes one second to run, the full grid search would take

3,170 years. The simulated annealing method below providesa standard method of covering the space that
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finds the areas most likely to affect the outcome, that typically runs in a few minutes or hours.

Further, the maximum likelihood estimation (MLE) literature has developed a number of statistical

techniques associated with MLEs, which can be beneficial to an ABM.

• One can develop a confidence interval around the parameters of the model, using the information

matrix and the Cramér-Rao inequality. This shows to which parameters the model is sensitive, and

which parameters do not significantly affect the model outcome.

• The same confidence intervals can be used for standardt or F tests to determine whether a parameter

has a true influence on the outcome of the model or is merely a ‘nuisance parameter’.

• The likelihood ratio test allows one to test hypotheses regarding whether a given parameter provides

a statistically significant improvement over an alternative.

This paper applies such techniques directly to the parameters of agent-based models.

The space of inputs

The meta-model consists of selecting a vector of parametersµ, and then using those parameters to select a

model with parametersβ, which will then map to outcomeV . One could think of this as a simple model

with outcomeV (µ), but this paper will take the equivalent approach of assuming a meta-model and a model

proper, and thus a two-step mappingµ → β → V .

An optimization requires a goal to optimize; the examples below will use such goals as the number of

hawks adjacent to doves or the number of contiguous groups ofhawks. Below, the search will be done using

simulated annealing, and that optimization method places certain regularity conditions on the space from

whichβ is drawn. There must be a metric on the parameter space, and itis useful if the space has a topology

such that anyβ is surrounded by a neighborhood of arbitrarily close alternatives.

Continuous parameters∈ R have their standard topology and Euclidean metric, and so the meta-model

can search over them without modification. For integer parameters (such as the number of periods or size

of the board) the optimization can search overµ ∈ R, and the first step of the simulation would round the

input toβ = ⌊µ⌋ (meaning that the outputV may have a discontinuity at the jump fromµ = i− ǫ to µ = i,

which is not a problem).

Only the discrete, unordered parameters remain. For example, in the simulation below, agents could be

able to move in four directions (North, South, East, or West), or eight directions (those directions plus NE,
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NW, SE, and SW).3 Let the movement parameter beβM , and the options beβM = F for four-directional

movement orβM = E for eight-directional movement.

The obvious method of generating a continuous scale over thetwo discrete modes of movement would

be to have agents play a mixed strategy in whichβM = F with probabilityp andβM = E with probability

1− p. But this is unsatisfactory, because a mixture could produce a higher payoff than either purelyF or E,

or there could be a sharp discontinuity in outcomes betweenp = ǫ andp = 0. In short, the mixed outcomes

may say nothing about the pure outcomes.

The solution is to repeat the model using pure rules fixed before the model is played. Over a hundred

models,100p of them will be played with a pure rule ofβM = E and100(1− p) will be played with a pure

rule of βM ≡ F . Let E(V |βM = E) ≡ KE andE(V |βM = F ) = KF ; then the expected outcome given

p will be pKE + (1 − p)KF , and so there is a simple linear relation between the input parameterp and the

output parameterE(V ).

If the discrete parameter could take onn values, then a choice among them would requiren − 1 meta-

parametersµ1, . . . µn−1, all ∈ [0, 1], such that0 ≤
∑

n−1
i=1 µi ≤ 1. At the outset of each model, draw a

random numberr from a uniform distribution and select option one ifr ≤ µ1, option two if r ≤ µ1 + µ2,

. . . , and optionn if r >
∑

n−1
i=1 µi.

Mixing over pure elements in the metagame is a separate process from a game with mixed elements.

The models in this paper will use only fixed elements, but one could have a series of possible parameters

• four-way movement,

• eight-way movement, and

• four way movement with probabilityp, eight way with probability1 − p,

and then do a search over these three possible parameters as above.

The interpretation of derivatives of discrete choices onlymakes sense as the change inV from a shift

from one option to another. Here, I will take the derivative with respect to optionj to be the expected

difference in outcome given a switch from the (arbitrarily chosen) first option to optionj.4

To summarize, the parameters of the meta-model will correspond to the parameters of the model, but

their relation will depend on the type of the parameter:
3Four-directional movement is sometimes called thevon Neumanntopology and eight-directional movement theMoore topol-

ogy.
4In the case of a continuous derivative, the alternative is basically implicit, but one can interpret a derivative as the difference in

outcome given a switch fromβi = x to βi = x + ǫ.
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• Continuous parameters are their own meta-parameters:βi = µi.

• Integral parameters have continuous meta-parameters, which are simply rounded or truncated to pro-

duce the parameters:βi = ⌊µi⌋. Other discrete, ordered parameters can be handled similarly.

• Unordered discrete parameters that could take onn values have a set ofn − 1 meta-parameters, each

in [0, 1], such that the meta-parameters sum to a value in[0, 1].

Searching the space

The process described in this paper is simply an optimization, and one could use any optimization method

to execute the search for the optimum, including genetic algorithms, conjugate gradient methods, simplex

methods, hill-climbing, root-finding, and so on. But for a number of reasons, simulated annealing (SA)

recommends itself for this situation.

Briefly, simulated annealing is an application of the Metropolis-Hastings algorithm for searching a

space. It is a random walk, jumping from state to state, with two simple rules. Randomly select state

t + 1. If the probability of statet + 1 is greater than the probability of statet, then the system jumps to state

t + 1; if the probability of statet + 1 is less than that of statet, then the system still jumps to statet + 1

with a probability decreasing int. Early on, when the probability of jumping to a less-likely state is high,

the state can easily jump anywhere in the state space, but as time progresses, the system will only move to

more likely states, and so approach the nearest optimum.

This method works well for the given situation for a number ofreasons. First, the information matrix

is a global property of the model, meaning that one needs to sample parameters from the entire parameter

space to calculate it. Ackley [1987] notes that simulated annealing is often slow to converge, which in this

case is a good thing, because its many iterations gather muchmore information for use in calculatingI, over

a larger range of values, than relatively fast-converging algorithms like conjugate gradient methods. That is,

SA provides a search for the optimum and a sampling routine for the information matrix at the same time.

Second, the mapping from models to outcomes is unknown. There may be a simple linear relationship

among elements (as there is along the artificial linear combinations in the meta-model above), or there may

be a complex series of local maxima and minima. Simulated annealing is well-suited to such a situation,

because it has some likelihood of jumping from the neighborhood of any local optimum to that of any other.

Simulated annealing also offers the benefit that it is memoryless: the odds of jumping from statet to
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statet + 1 in no way depends on statest − 1, t − 2, . . . . Some optimization methods build up an image

of the space based on past draws, which normally improves efficiency. But with stochastic outcomes, it is

possible that if some early draws are not representative, then the optimization will be led astray. With SA,

an erratic draw may lead to an erroneous jump/non-jump in onestep, but that may readily be corrected in

later iterations.5

Sensitivity and confidence intervals

This paper is concerned not only with finding the optimal model, but also finding the level of confidence

that one can place on that optimum, which breaks down into twosubquestions.

The first is the traditional hypothesis test. The likelihoodratio test is a natural complement to maximum

likelihood estimation, and requires little additional calculation. Let the likelihood of the best set of param-

eters beLu, and let the likelihood of the best parameters constrained such that one parameter is fixed at a

given value beLc. Then the statistic2 ln(Lu) − ln(Lc) has aχ2
1 distribution, and can be used to produce

traditional confidence intervals andp-values.

The second means of evaluating the level of confidence one canplace on a model is via sensitivity

checks: as a given parameter shifts, how much does it affect the outcome measure? Again, it is easy

to use the information gathered during a maximum likelihoodsearch to produce a covariance matrix that

answers such questions directly. The bumper-sticker explanation for how this is done is that the variance of

a maximum likelihood estimate of a parameter achieves the Cramér-Rao lower bound (CRLB). The details

of the CRLB and its underlying technical conditions are presented in the appendix.

Subjective confidence intervals In the case of an agent-based model intended to explain a dataset, one

could write down a traditional likelihood function, that expresses the probability of observing the output

given a distribution assumed to take a certain form (typically a Normal distribution) based on the real-world

mean and variance of the output measure.

For a theoretical agent-based model based on a goal that doesnot correspond to a real-world set of

events, such as the number of doves in a hawk-dove game, one needs a subjective probability distribution.

5The stochastic nature ofV (·) itself can also be mitigated by simply taking the mean of several runs. In the test below, the
simulation reports the mean of twenty plays of the model for eachβ.
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Configuration 41 Configuration 43 Configuration 105

Figure 1: Configurations 41 and 105 both produce the Sierpinski triangle.

Given the outcomeV (β) ≥ 0, the natural subjective probability measure is simply

Psubj(β) ≡
V (β)

∫

∀β V (β)
.

It is essential for the proofs regarding the CRLB thatP integrate to a constant (i.e., one), but for most

calculations it is sufficient to state thatPsubj(β) ∝ V (β).

The appendix provides a few additional technical details regarding the calculation of the information

matrix using a subjective probability distribution.

An example: The Sierpinski triangle

Wolfram [2002] describes how the progress of a one-dimensional cellular automaton can describe a Sier-

pinski triangle, as pictured in Figure 1.

Define the parents of a point to be the three points above the given point (to its Northwest, North, and

Northeast). There are eight possible configurations for theparent: (off, off, off), (off, off, on), (off, on, off),

(off, on, on), . . . . These can be read as the binary numbers from zero to seven, by writing, say, (off, on, off)

as (0, 1, 0), or more compactly, 010.

A rule in this system consists of an outcome for each of the eight parent configurations: either the child

point is on or off. A rule can thus be summarized as a sequence of eight ones or zeros—another binary

number, from zero to 256. For example, rule 13=0001101 specifies that if the parent configuration is 1=001,

3=011, or 4=100, then the child cell is on; else the child cellis off.6

6As an arbitrary point of æsthetics, the parent configurationof 0=(0, 0, 0) always produces no child. This ensures that thespace
outside the triangle remains blank.

p. 7



The process of generating a configuration begins with a grid that is blank save for a single cell in the

center of the top line. The second line is generated by checking each cell’s parents on the first line and

determining whether the rule dictates that the child on the second line should be on or off. Once the second

line is generated, the third line is generated in the same way, continuing to the end of the grid.

The goal is the Sierpinski triangle, which has three key features. The sides of the triangle are generated

by cells whose parents are either 1=001 on the left side of thetriangle, or 4=100 on the right side. The

straight horizontal lines followed below by blank spaces are a clear feature of the figure, but it is hard to tell

from the low-resolution diagram above whether the triangleis a solid line or a dotted line of alternately on

and off elements. If it were a straight like, then the hollow triangles would be created by the rule that if all

three parent cells are on, 7=111, then the child is off; if it were a dotted line, then the rules 5=101 and 2=010

would need to be off. Configuration 41=0101001 fits all of these characteristics, and Figure 1 shows that

configuration 41 does indeed produce a Sierpinski triangle.

Comparative statics The search for an optimum is not very interesting in this case. Given training infor-

mation of configuration 9=0001001, each element is comparedpixel-by-pixel to the output produced by rule

9, and gets a point for each pixel that matches. Ranking the configurations by score easily finds those rules

that produce the Sierpinski triangle (configurations 9, 13,41, 45, 73, 77, 105, 109; rule 11 is a near-miss

that bears a resemblance but is not quite correct).

It is more interesting to ask about the comparative statics.If a mutation appeared that switched one bit

in a rule that produces a Sierpinski triangle, would the mutated rule continue to produce the same pattern?

The covariance matrix of the set of games, produced via the information from the subjective likelihoods

as described in the appendix, gave the following variances:

rule variance
1: (0, 0, 1) 4.790
2: (0, 1, 0) 3.541
3: (0, 1, 1) 14.402
4: (1, 0, 0) 4.788
5: (1, 0, 1) 15.994
6: (1, 1, 0) 14.403
7: (1, 1, 1) 20.471

A small variance indicates sensitivity, so the rules that are most likely to destroy the output given a

mutation are rules 1, 2, and 4. Rules 1=001 and 4=100 were listed as essential above. The comparative statics
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see what the low-resolution diagram could not show: Wolfram’s cellular automata produce a Sierpinski

triangle where the tops of the hollow triangles are covered by an alternating on-off pattern rather than a solid

line. This is demonstrated by the fact that rule 7 is almost irrelevant to the output score, while it is very

important that rule 2=010 not be on. Figure 1 shows configuration 41, then configuration 41 plus rule 2

(equals configuration 43), and finally configuration 41 plus rule 7 (equals 105). When rule 2 is added, there

is a drastic change in output, while when rule 7 is added, the output is pixel-for-pixel identical.7 When rule

5 is added, the output is generally a checkerboard pattern, much like the Sierpinski triangle with the holes

filled in; as such the digression is less than when rule 2 is added, which produces sharp vertical lines.

Thus, the variances, readily derived from the subjective likelihood calculations, readily demonstrate in

what ways the system is sensitive to mutation.

An example: Agent groupings

This section presents a more complex example that is somewhat less predictable than the last, which hopes

to match a number of rules of the game with a number of outcome metrics.

The set of rules The basic form of the model is a set of agents on a grid of spaces, who are born, move

around, die, and play some type of exchange game amongst themselves.

The choices are culled from a variety of sources, including the demographic prisoner’s dilemma (as in

Epstein [1998]), the Hawk-Dove game (as in Gintis [2000]), and the familiar coordination game.

The complete specification of the meta-model consists of a listing of rules, like the seven possible

on/off rules for the Sierpinski Triangle example, althoughthese rules have no neat ordering and many are

continuous or multi-valued. The rules listed as TBD (to be determined) are the free parameters for whose

values the optimization will search.

D H
D (4, 4) (-6, 6)
H (6,-6) (-5, -5)

D H
D (4, 4) (-5, 6)
H (6,-5) (-6, -6)

D H
D (2, 2) (-1, -1)
H (-1,-1) (2, 2)

Prisoner’s dilemma Hawk-dove Coordination

Figure 2: The payoff matrices that may be used by the model.

7Notice, in fact, that the configurations that produce the desired figure divide into a set of configurations with rule sevenoff—9,
13, 41, and 45—and that exact set repeated with rule seven (27−1 = 64) on—73, 77, 105, and 109.
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• The grid is ann × n torus (top connects to bottom; left connects to right), wheren is TBD.

• The sequence of play is: all agents move, all play a game with one neighbor (if any), all possibly

spawn a new agent, all who meet certain criteria die.

• All agents are one of two types. Borrowing from the hawk/dovegame, they are named H or D.

• Initially, agents are placed at random on the grid with a density TBD. These initially-placed agents

have equal odds of being H or D.

• Each agent moves one space at a time to a randomly selected adjacent space. If no adjacent spaces are

free, the agent does not move. The simulation here uses the 8-direction topology; leaving the choice

of topologies TBD is left as an extension for future work.

• Each agent randomly selects a neighbor (if any) with which toplay. The payoff will be based on one

of the games in Figure 2; which table is used for a given run is TBD.

• If the agent reaches a given wealth level (currently fixed at 12 units), then the agent spawns a child.

The child will have the same type as the parent, unless there is a mutation, which occurs with like-

lihood TBD. The child is placed in a random empty space adjacent to the parent; if no such space

exists, the parent can not spawn.

• There are a number of rules by which agents can die. The first istaken from Conway’s Game of Life.

[Gardner, 1983].

– Loneliness: agents have zero or one neighbors.

– Old age: agents are over 11 periods old.

– Poverty: agent wealth falls below zero.

A model may use between zero and three of these rules. The simulations here used the poverty and

old age rules; allowing the use of all three rules TBD is left as a future extension.

The goals As in Figure 3, different rules lead to different patterns inoutcomes. The figure shows three

types of outcome: large clumps of each type, large clumps of one type surrounded by the other type, and a

general intermixing. Formally, these general forms provide three outcome metrics:

• Clumping. This can be read as ‘edge minimization’: the goal is to minimize the ratio of (edges

between an agent and another agent or open space) to (total number of agents).
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period 49 period 49 period 49

Figure 3: Different games lead to different patterns of outcomes. Left: the coordination game leads to two
solid blocks [edges wrap around]. Center: the Prisoner’s dilemma leads to clumps of doves surrounded by
hawks. Right: the hawk/dove game leads to a closer mixing of types.

• Surrounding. Maximize the percentage of agents who are adjacent to both a blank square and an agent

of opposite type.

• Intermixing. Maximize the ratio of (edges between agents ofdifferent types) and (number of agents).

The entire metagame includes a great many free parameters, from relatively small details like the age of

death to the basic structure of the payoff table. It may be impossible to predict before the fact what rules

will have a significant impact—perhaps the initial density really is the determining factor in the structure of

outcomes. For the purposes of the testing here, the additional degrees of freedom make it less-than-trivial

for an optimization routine to find the best point in the space.

The results

Above, the paper discussed three outputs to the likelihood search: the most likely outcome itself, the sensi-

tivity of the outcome to each metaparameter, and likelihoodratio tests regarding whether a constraint on the

system produces a real improvement. The Sierpinski triangle example showed how the variance matrix can

be used to glean information about the models; this section will look at the other two outputs.

The most likely outcome The most clear and simple benefit from a maximum likelihood search is that it

saves the researcher the pain of finding optimal parameters manually.8

Figure 4 shows the results of the search for the configurationwith the least edges, given the Coordination

payoff table. The game is played for 26 periods, on a small board.9 The initial density is 21%. The mutation

8The data used in this section was produced using approximately 1.8 million runs of the game, which took several hours using
a typical high-end PC.

9The board is fixed to be of size 10 or greater, so the size here can be read to mean ‘as small as possible.’
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periods 26.780228
boardsize 10

density 0.214842
passed_on 0.050099

mutation 0.013070

Figure 4: The optimal configuration for an edge-minimizing coordination game.

rate is only 1% and the amount that a parent passes on to its child is only 5%—both amounts that are lower

than what one typically sees in an ABM of this type.

It is hard to imagine a sequence of manual tests that would arrive at the values above, especially given

that modifications in one variable can readily offset others. As above, a thorough and direct grid search

could take literally years. Further, the last two variablestook on values that a manually-searching researcher

may not have even considered.

Likelihood ratio tests The typical setup for a likelihood ratio (LR) test involves an unconstrained and a

constrained model. The null hypothesis is that the constraint is irrelevant, meaning that the log likelihood

of the system given the constraint is the same as the log likelihood of the system without the constraint.

The statistic for such a likelihood ratio test isS ≡ 2(Lu − Lc), whereLu is the likelihood at the global

unconstrained optimum, andLc is the likelihood at the optimum given a constraint. The statistic has aχ2
1

distribution [Vuong, 1989].

Figure 5 presents the results of the LR tests. For the edge minimization outcome, the coordination payoff

table is the most likely (using the subjective likelihood function), meaning that it is the unconstrained opti-

mum. This verifies the observations of Epstein [2006, pp 221–224], but with the added bonus of confidence

intervals. If the system is constrained to use the Hawk-Dovepayoff table, then the likelihood drops with

98.8% confidence. The Prisoner’s dilemma table causes the likelihood to fall with 89.2% confidence, which

is generally considered to be not statistically significant, but which can be read to provide modest evidence

that the PD payoff table will produce a lower outcome than theCoordination payoffs.

The edge maximization outcome shows a similar pattern: the Hawk-Dove game is most likely in this

case, and the other two payoff tables can be said to reduce theoutcome measure with 92.6% and 84.4%

confidence. The bordering outcome measure found little difference in outcome given the three payoff tables.

To read the LR tests in the opposite direction, if we observeda world where agents tended to clump
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Payoff table L(·) S conf.

Edge minimization
Coordination 0.869537
Prisoner’s dilemma -0.429038 2.597 89.2%
Hawk-Dove -2.30259 6.344 98.8%

Edge maximization
Hawk-Dove -0.574383
Coordination -1.58324 2.018 84.4%
Prisoner’s dilemma -2.17568 3.20 92.6%

Surrounding
Prisoner’s dilemma 1.3282
Coordination 0.945448 0.766 61.8%
Hawk-Dove 0.776576 1.103 70.6%

Figure 5: LR test results

together, the LR tests indicate that it is unlikely that thatworld was the product of agents using a Prisoner’s

dilemma or Hawk-Dove payoff table. It is certainly possiblethat the agents used any of a multitude of

other tables not tested here. No statistical test of any sortcan ever prove causation, but taken with other

evidence regarding the situation, the LR test can be read to provide supporting evidence to the claim that the

Coordination payoff table causes an edge-minimized outcome, while the other two payoff tables do not.

Conclusion

A maximum likelihood search provides more than just the mostlikely outcome. It also provides information

about the sensitivity of the outcome to changes in parameters and fodder for traditional statistical hypothesis

tests. These results from the statistical literature can bedirectly applied to the problem of designing agent-

based models to fit observed patterns, thus producing modelsthat better fit the patterns—and how well they

fit can be measured and tested.

Appendix: Calculating the covariance matrix

The variance of a maximum likelihood estimate of a parameterachieves the Cramér-Rao lower bound

(CRLB). Given a maximum likelihood estimate based onn data pointsβ̂(y1, . . . , ym), a log-likelihood
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functionL, dlog-likelihood vectorS (often called the score, and of the form

[∂L(β)/∂β1 ∂L(β)/∂β2 · · · ∂L(β)/∂β1]),

then:

var(β̂) = (n var(S))−1

= −

(

nE

(

∂2L

∂β2

))−1

≡ − (nI)−1

There are only two assumptions underlying the derivation ofthe CRLB. The first is that the integral of

the probability distribution over the entire space is constant. In the context here, this means that a subjective

probability will have to be normalized to integrate to one.

The second condition for the above result is that

∫

∂p(x, β)

∂β
dβ =

∂
∫

p(x, β)dβ

∂β
. (1)

This too is a very general statement, that is satisfied by any function that demonstrates uniform convergence,

which in turn is satisfied by any member of an exponential family. The definition and use of exponential

families will not be discussed here, but it is worth noting that Barron and Sheu [1991] demonstrate that

any PDF can be approximated arbitrarily closely (measured by Kullback-Leibler distance) by a sum of

exponential family distributions.

Finally, the result only makes sense when the derivatives and second derivatives are defined almost ev-

erywhere. The framework above makes a point of meeting this criterion: there is a linear mapping from

discrete parameters to outcomes, and a linear function clearly satisfies the differentiability requirements

above. In most cases, the optimum will be where only one modelparametrization is used and the parameter-

to-outcome mapping is nondifferentiable, but the CRLB is a global property, so it does not require differen-

tiability at the optimum, only differentiability almost everywhere.
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