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ABSTRACT 

Obesity is a rapidly growing epidemic in the United States and a major public 
health challenge worldwide. To counteract this epidemic effectively, better understanding 
of its mechanisms are needed—we must understand not just what factors play a role, but 
how and why they matter. Most studies to date have focused on prices, technology, and 
the general availability of food. Less attention has been paid to the roles of social 
influence and the physiology of energy balance—despite growing evidence that both play 
important roles. In this paper, we present some initial findings from our analysis of two 
non-price mechanisms for obesity: the physiology of dieting, and socially influenced 
weight changes.  

We show how the core equations governing the physiology of weight change can 
generate many of the known facts about diet and weight gain, including: the difficulty of 
maintaining a diet over a long period, high rates of recidivism after dieting, and 
substantial individual heterogeneity in the success of different types of diets.  Using a 
new quantitative index of recidivist temptation, we develop a range of novel diets.  

The notion that social norms are implicated in the obesity epidemic is not new.  
However, we show how a simple conformist social mechanism alone can drive a sharp 
increase in average weight.  For initial weight distributions satisfying criteria identified 
here—and met by U.S. obesity data—a simple “Follow the Average” (FTA) weight 
adjustment rule generates increased mean weight.  Indeed, the general FTA process, 
discussed mathematically below, can generate a rich variety of dynamics beyond obesity, 
including oscillatory behavior for which no conformist explanation has been considered.  

We argue that integrative models adding such social and physiological 
mechanisms to economic ones will provide deeper explanations of the observed 
dynamics of obesity and a powerful array of policy interventions tailored to specific 
communities and individuals within them. The paper concludes with a sketch of one such 
model.  
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Obesity is a rapidly growing epidemic in the United States and many other 

countries worldwide, and represents a major public health challenge. To counteract this 

epidemic effectively, better understanding of its drivers are needed—we must understand 

not just what factors play a role but how and why they matter. By modeling the 

mechanisms at work, research can help identify the most effective allocation of scarce 

government and public health resources, design novel and counter-intuitive intervention 

strategies, and guide future empirical work.  

Most studies to date have focused on prices, technology, and the general 

availability of food. Less attention has been paid to the role of social influences and of 

the physiology of energy balance—despite growing evidence that both the social and the 

physiological play important roles in individual decision-making about eating and 

exercise.  

In this paper, we present some initial findings from our analysis of two non-price 

mechanisms for obesity—physiology and social norms—and propose a multi-level 

synthesis using agent-based modeling. 

 

Background – The Facts of the Obesity Epidemic 

 
We will focus on three sets of important facts about the obesity epidemic: the 

rapid growth in overall rates of obesity and overweight in the United States over the last 

three decades, the demographic disparities in incidence and clear evidence of a role for 

social norms, and finally the well documented problem of recidivism and heterogeneity 

in dieting success. 
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Rapid increase in overall incidence 
 

Over the last three decades, the percentage of Americans classified as obese (body 

mass index, or BMI, of 30 or greater1) has more than doubled, to more than 30% (see 

Figure 1). Fully two thirds of Americans are overweight (BMI of 25 or greater). These 

increases have significant costs to public health, due to the strong links between 

unhealthy body weight and diabetes, high blood pressure, and high cholesterol—leading 

one public health researcher to recently call obesity “the gravest and most poorly 

controlled public health threat of our time.” [2] 
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Figure 1 – Rise in incidence of overweight/obesity in the United States. Source: CDC. 
 
 

An especially disturbing problem is the increase in childhood obesity, which has 

direct health and self-esteem costs and is also strongly linked to obesity in adulthood. In 

the past three decades, the percentage of children who are considered overweight or 

                                                 
1 BMI is defined using the ratio of weight to height squared (BMI= 703*lb/in2). [1] 
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obese has doubled (from 15% to nearly 30% by most estimates) 2. Research in the U.S. 

shows that the odds of adult obesity increase with childhood BMI, that the age of obesity 

onset in childhood is correlated with risk of obesity in adulthood, and that parental 

obesity is associated with a higher likelihood that obese children become obese adults.3 

Thus the dramatic rise in obesity among children and adolescents is an ominous portent 

of even larger increases in adult obesity in the future. 

 
Demographic Disparities and the Role of Social Norms 

 
Not only has the incidence of obesity and overweight risen rapidly, but important 

disparities in both aggregate incidence and in social norms of obesity between 

demographic groups persist. For example, obesity incidence in the U.S., and its growth, 

are not equivalent across socioeconomic cohorts or racial groups.4 Incidence of obesity 

remains highest among those near the poverty line [7-8]. Among children, the highest 

BMI is in families with incomes just over the poverty line, while children from both 

poorer and richer families are less likely to be overweight [9].  

In addition, incidence of overweight and obesity is heavily skewed by race and 

gender (see Figure 2). Approximately 76% of Black and Mexican-American adults are 

overweight or obese [10], with incidence among black females nearing 80%--compared 

to incidence of 58% among white females. Among adolescents, studies also show that 

minorities engage in consistently higher levels of sedentary behavior than do their white 

counterparts [11]. 

                                                 
2 Discussion of childhood obesity rates is qualified, as the definition of obesity in children is controversial. However, 
there is wide agreement that the weight distribution among children is shifting upward, and that the increases are cause 
for concern [3]. 
3 For example, the probability that a child who is obese at age 3-5 will be obese as an adult grows from 24% if neither 
parent is obese to 62% if one of the parents is obese [4]. 
4 Obesity trends in European countries such as France and Germany exhibit similar patterns [5, 6]. 
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Figure 2 – Increase in US overweight/obesity by race and gender. Source: CDC. 
 

There is strong evidence that social norms regarding body type play important 

roles in explaining these disparities among socioeconomic and racial groups--an 

individual’s “ideal weight” often reflects social influences. Several studies find that the 

cultural ideal for black women, in particular, is heavier than for other groups (see [13-

17])—black women who are at least 20 lbs overweight often do not consider weight a 

problem [18-19]. In general, dissatisfaction with body weight (resulting from discrepancy 

between current and ideal body type) occurs at a lower BMI in white women than for 

black and Hispanic women [20]. Dissatisfaction begins among white women at an 

average BMI of 24.6 (below the BMI=25 cutoff for overweight), but at an average of 

29.2 and 28.5, respectively, for black and Hispanic women (well above the cutoff for 

overweight).  

Adolescents’ perceptions of size also vary significantly by race and gender—with 

black females seven times more likely than white to say they were not overweight, 
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despite the reality of much higher incidence of overweight and obesity among black 

females [12]. White females reported wanting to be smaller than their current size and 

felt encouraged to lose weight by significant others, while black females tended to feel 

happy with their current size and reported that their size was considered positive by 

significant others. Related research suggests substantial variation in obesity-related 

discrimination due to differences in ideal weight norms [8, 21].  

 

Recidivism and Heterogeneity in Dieting 

 
Central to efforts to reduce obesity and overweight is the topic of dieting. 

Although there is much written in the popular media about dieting, there have been 

relatively few careful longitudinal studies of diet until recently. Recent work has 

confirmed three “stylized facts” about dieting that are familiar from popular experience. 

First, gains from dieting are often short-lived because rates of recidivism (a tendency to 

regain weight) are generally very high. Although evidence of short-term gains from 

dieting is abundant, there is little evidence of lasting benefit. The few studies that have 

used long-term follow-ups find that the majority of individuals regain “virtually all of the 

weight” lost through dieting [39]. Second, the most crucial factor for weight loss and 

improved health through diet appears to be adherence to the diet regimen—not the 

specific foods eaten—and adherence rates fall to very low levels over periods of time 

approaching a year [40]. The same studies confirm a third fact: different diet types seem 

to work best for different people, although no clear categorization of either diets or types 

of individuals has been derived.  
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Previous Approaches to Modeling Obesity 

 
Much of the research on obesity has focused on changes in the price and 

technology of food as the main explanatory factors [22-24]. Such studies attribute the 

increase in obesity in the U.S. to the declining prices of food and the increasing 

convenience of preparing home-cooked meals [see 22]. Similar arguments are made 

throughout the literature on obesity, and prices are almost certainly part of the story. In 

our view, however, they cannot fully explain either the rise in obesity or (especially) the 

variance in incidence across cohorts.  

Recent empirical research lends weight to the argument that the current obesity 

epidemic cannot be reduced to a single explanation (such as changes in the price of food), 

but rather results from a complex interaction of social, physiological, and economic 

factors. For example, a recent study in the New England Journal of Medicine 

demonstrates empirically that social networks play an important role in the spread of 

obesity [41]. Other research has demonstrated that models can do a significantly better 

job of explaining changes in obesity incidence and distribution by including social norms 

in individuals’ utility functions than by focusing on food price and ease of preparation 

alone [7]. Studies of motives for dieting also confirm that decision-making about eating 

cannot be reduced to economic factors alone [25]. And, indeed, the role of social norms 

in eating behaviors has been explicitly documented in recent experimental work [26]. 

In addition, the role of physical activity and exercise has often been overlooked in 

research on obesity, which has a long tradition of focusing on eating behavior and on the 

prices of food [27]. Yet examination of the key physiological processes of energy balance 

(see below) shows clearly the important role of exercise and physical activity in 
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achieving and maintaining healthy weight, and there is growing evidence that the 

effective cost of exercise has gone up over the same period as obesity has increased. In 

fact, the upward trend in obesity and overweight in the United States is mirrored by a 

downward trend in physical activity, and the same socioeconomic and racial disparities 

observed in obesity incidence can be found in the data on physical activity [28]. 

In sum, most previous research on obesity has focused on a small number of 

factors, especially prices and eating. There has been little attention to the role of social 

influence and norms, to the interaction of physiological realities with decision-making 

about eating, to the role of exercise, or to the impact of media and public health 

messages. Yet there is evidence that each of these factors may be important in 

understanding the rise in obesity and discrepancies in its incidence.  

 
 
Analysis of Price-Independent Mechanisms 
 

In this paper, we focus on price-independent, individually-based, and simple 

mechanisms for explaining the key facts of the obesity epidemic. The focus on price-

independent mechanisms stems from our belief that prices alone cannot capture the full 

story; there is clear evidence that both social norms and physiology play important roles. 

Our focus on individually-based mechanisms comes from a belief that a truly explanatory 

model must provide a mechanism that can generate, or “grow” key phenomena from the 

bottom up.  For a full exposition and defense of this generative explanatory standard, see 

[42]. Our focus on simple decision mechanisms derives from a large empirical and 
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psychological literature on bounded rationality [43], and from an interest in model 

parsimony.  

We will begin our analysis with the core equations known to govern the 

physiology of human energy balance (weight loss and weight gain). We will show 

through straightforward analysis how these equations can generate many of the known 

facts about diet and weight gain, including: the difficulty of maintaining a diet over a 

long period, high rates of recidivism (tendency to regain weight), and substantial 

individual heterogeneity in the success of different types of diets (one size does not fit 

all). 

We will then explore a simple model of social influence in decision-making about 

eating and weight, and demonstrate a mechanism through which ideal weight norms 

alone can drive a sharp increase in incidence of overweight and obesity—even beginning 

in a population which is predominantly of healthy weight. 

 
 
I. Physiology 

 
We have thoroughly surveyed the clinical nutrition literature for physiology 

equations. The Harris-Benedict equations [37] are generally accepted as empirically 

corroborated and reliable predictors of weight change as a function of daily caloric intake 

(C); basal metabolic rate [itself a specific function of current weight (w), height (h), and 

age (A)], and activity level (α ). The equation governing female weight gain differs from 

that governing male weight gain, in respects which will prove directly relevant to policy. 

With the variables as just defined, and one pound equal to 3500 calories, the equations 

are: 
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 [66 6.23 12.7 6.8 ]
3500male

C w h Aw α− + + −
Δ =        

[655 4.35 4.7 4.7 ]
3500female

C w h Aw α− + + −
Δ =  

 

Immediate Implications of Physiology 

 
 Virtually everyone acquainted with dieting will agree on two points: first, that 

the last ten pounds is harder to lose than the first, and second, and that having lost weight, 

it is difficult to keep it off. And, indeed, careful empirical studies confirm these 

phenomena [39-40]. It is not widely appreciated, however, that both these well-known 

patterns are predicted by the Harris-Benedict equations.  

While these results can be proved in the general case (see Appendix I), an 

exposition by numerical example may be more transparent. So, posit a representative 40-

year old female, of height 5’4”, with a moderate activity level5, and initial BMI of 30 

(i.e., 175 lbs). From the equations, we compute that a daily caloric intake of 2292 calories 

will exactly maintain this BMI.  

Suppose her goal is to lose 1 lb per week until her BMI is 20. Since 1 lb equals 

3500 calories, she must eat 500 calories per day fewer than the maintenance level at 

every point in her weight loss program. The problem is that, as her weight falls, her 

maintenance caloric level also falls (because her BMR does), and with it the daily 

calories she is permitted if weight loss is to continue. 

                                                 
5 PAL (Physical Activity Level) for moderate activity level derived from Black et al.’s 2004 analysis of 500+ distinct 
doubly-labelled water studies [38] 
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Continuing numerically, 2292 was her day 1 maintenance level. So, for the first 

week, she must cut 500 per day, to 1792 cal/day. After a week, she’ll have lost 1 lb. But, 

her BMR has fallen, as per the Harris-Benedict equations shown above. So, she must cut 

her daily caloric intake further to keep losing. And so it goes every week. After 59 weeks, 

her BMI reaches 20. But to lose that last pound (to drop from 118 to 117) she needed to 

consume a mere 1405 calories per day for the final week. So, it is indeed much harder to 

lose the last pound (1405) than the first (1792).  

Why is it hard to keep it off? To reach the goal of 117 lbs, our subject reduced her 

daily caloric intake to 1405. However, from the equations, we calculate that maintenance 

caloric intake for this final weight is actually 1905. Notice that this exceeds the caloric 

intake from the first day of the diet, which was 1792. And, most importantly, it exceeds 

by more than 35% the intake (1405 calories) on the final day of the diet.  

This means that, having lost her weight, the subject could go back to eating at her 

pre-diet level of 2292 calories per day for almost a week and a half before gaining even 

one full pound. This is why it is easy to “fall off the wagon” for weeks with virtually no 

visible effect on weight. By then old eating habits may be re-established; one overshoots 

the mark, and regains the weight. Thus, the equations also offer insight into the familiar 

pattern of so-called “yo-yo” dieting. This is why it is hard to keep weight off. 

 
Temptation and Psychological Heterogeneity 

 
The crux of this problem is that maintenance calories exceed current intake during 

the diet. So, as one loses weight, one can, in fact “get away with” eating more. Hammond 

formalizes this by defining “temptation” on any day t as follows: 
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keloric_intaCurrent_ca
)keloric_intaCurrent_cae_caloriesMaintenanc(Temptation −

=  

 

This is the percent by which one could increase calories above the current level without 

gaining weight. We will shortly demonstrate and exploit the fact that the temptation 

trajectory over time is diet dependent.  

 
 
Temptation Trajectories of Selected Diets 

 
We have devised and begun to explore a number of diets. 

 
CLR Diet. 

The diet used in the numerical example above is a constant loss rate [CLR] diet (1 lb lost 

per week). It can be shown that for CLR diets, (a) Temptation to cheat increases (strictly) 

as weight falls, (b) that it does so at an increasing rate, and (c) that it attains its maximum 

at the lowest weight. This is shown in Figure 3 below (and demonstrated analytically in 

Appendix I). 
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Figure 3. BMI vs. Temptation for the CLR Diet 
 
 
We have said little about individual heterogeneity in this connection. People certainly 

differ in their capacity to cope with temptation. They also differ in the urgency with 

which they must lose weight. For some, it can be a serious medical imperative. Modeling 

permits us to design different diets, and consider how well-suited they are to different 

individuals, given their medical situation and psychological profile. We just considered 

the Constant Loss Rate (or CLR) diet, from our numerical example. 

 
 
CEL Diet 

A second type of diet would specify a constant eating level, or CEL. In general, one 

would pick a target weight and then use the Harris-Benedict equations to compute the 

maintenance daily calories for that weight. One would simply cut one’s eating to that 

level in one shot, and just stay there until the goal weight is attained. For the numerical 

example above, this CEL diet will take our subject from her initial BMI of 30 to her goal 
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of 20 if she cuts her initial daily intake by 500 calories and sticks to it. However, it will 

take her substantially longer than the CLR diet discussed earlier.  

 
CTL Diet 

Yet a third type of diet would sustain a constant temptation level (CTL). Here, one would 

fix (perhaps based on MRI studies or other evaluations) a sustainable level of Temptation 

(defined technically as above). Each week, one would reduce daily caloric intake as much 

as possible without exceeding this constant temptation level. In our numerical example, 

the diet then ends when the target BMI of 20 is attained.  

 

For our 40 year old female numerical example, the BMI trajectories for these three diets 

are plotted in Figure 4. 
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Figure 4. BMI over time for three diets. 
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The main thing to notice is that they can all succeed, but that the CLR diet is fastest, that 

the CTL diet is slower by roughly two months, and that the CEL diet is by far the 

slowest, requiring more than two years to complete.  

The more surprising, and potentially policy-relevant, result of this exercise is the 

radically different temptation trajectories associated with these diets (Fig 5).  
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Figure 5. Temptation Trajectories for three diets. 
 
 
By design, the constant temptation diet [CTD] produces a horizontal temptation 

trajectory. The constant loss rate diet [CLR] by contrast, entails ever-increasing 

temptation. In this sense, it is the “tougher” of the two. But it is also somewhat faster, as 

shown in figure 4. Whether the increased temptation is worth incurring would depend on 

the medical urgency with which one must lose, and the prospects of success given one’s 

psychological capacity to endure the rising temptation curve. Diametrically opposite is 

the CEL diet. Here, temptation actually falls over time. The diet becomes progressively 
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easier to stay on. But weight loss is dramatically slower on this diet than the others. 

Again, if one’s psychology precludes success on the rising temptation [CLR] diet, this 

slower diet may be indicated. However, one’s obesity may pose an immediate health 

threat requiring sharp near-term weight loss, and a different diet. We have also explored 

further diets, for example, the “punctuated equilibrium” diet in which sustained periods 

of rigorous caloric restriction are punctuated by short episodes of high caloric intake.   

 
 
Gender Differences 

 
Individual heterogeneity in the effectiveness of diets is not limited to 

psychological or health differences. Other demographic differences may also be 

significant. For example, the calculations above were for a single representative female. 

However, the Harris-Benedict equations clearly show important differences by sex. For 

example, the constant multiplier on alpha, the activity level, is 66 for men, but 655 for 

women, higher by a factor of literally ten. So, let us consider the same three diets treated 

above, CLR, CEL, CTL, but do each analysis separately for men and women. First we 

show the BMI trajectories; then the Temptation trajectories, broken out by gender. 

Numerous differences are evident in Figure 6. 
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BMI change for various diets - Female vs Male
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Figure 6. BMI Trajectories for Selected Diets by Gender 
 
Perhaps the most startling is the gender difference in effectiveness of the CEL diet: 

females reach the 20 BMI goal in 110 weeks, while males never attain it. In turn, 

temptation is consistently higher in women than in men, as shown in Figure 7. 
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Figure 7. Temptation Trajectories for Selected Diets by Gender. 
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Obviously, these particular results depend on the specific numerical assumptions made. 

But it is abundantly clear that gender is an important heterogeneity—among others--to 

include [40]. This emerges clearly from the Harris-Benedict equations, which compactly 

capture individual physiological aspects of the problem.  

 

 

II. Social Influences 

 
Growing empirical evidence makes it clear that social influence also plays an 

important role in obesity [7,12-21,26,41]. The mechanisms and dynamics of social 

influence are not well understood, however, and it is clear that social influence can take 

many different forms. Social groups (e.g., blacks and whites) may vary widely in their 

weight target and, in turn, their habits and lifestyle choices regarding diet and exercise [7, 

12-16]. Group-specific expectations of economic opportunity can also affect concern 

with weight, and its impact on happiness, that is, individual appraisals of well-being [8, 

12, 17-20, 35, 36]. There can also be vicious cycles between the social and physical, as 

when overweight children avoid (or are ostracized from) participation in sports, 

exacerbating their obesity [32-34.] Children and adolescents may be influenced by peer 

networks, by parents, and by messages received from school and media. These all may 

play a role in shaping the individual’s weight goals and behavior.  

While a full treatment of social influences will be important in designing a 

comprehensive model (see below), an extremely simple example shows the fundamental, 

and counter-intuitive, role they can play. Our analysis of core physiological mechanisms 
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showed how they can generate one set of key facts about obesity, namely the dynamics of 

dieting. Recall that another central fact documented in the obesity literature is the crucial 

upward trend in BMI (Figure 1). Is there a simple plausible social mechanism that may 

be implicated in this trend? We believe so.  

 

Follow the Average (FTA) 

 

People routinely compare themselves to others in their social group. Often, they 

seek simply to conform. One would not think that the impulse to simply “be average” 

could produce dynamics of any interest, or increases in the average itself. Intuition would 

surely suggest rapid convergence to the initial mean. This intuition is correct if the initial 

distribution is symmetrical about the mean. But it is not necessarily correct if the 

distribution is skewed, as we will show. This is of particular relevance in the context of 

obesity, since the real weight distribution in the United States is highly skewed. In 

circumstances of this nature, what does happen if everyone seeks simply to “follow the 

average?”  

We will illustrate by numerical example (for a full analytical discussion of the 

general case, see Appendix II). To begin, let us assume the following initial weights 

among five people: 

  
                  Individual weights:   100    100    100    100    150      Mean = 110.  

 
Let us suppose now that every person wants to be like the average. For simplicity, we’ll 

assume that weights can be directly adjusted (instead of invoking more complex 
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physiology) but, as in the real world, the adjustment rate is limited—they can only adjust 

their weight up or down by 5 lbs per period. Each individual’s weight adjustment rule, 

then, is: 

 If my weight > average, lose 5 lbs. 

 If my weight < average, gain 5 lbs. 6 

 If my weight is exactly equal to the average, maintain it.  

 

How do things unfold?  

 

The first four people are below average (at 100 lb), so they increase by 5 lbs, while the 

150 lb person is above the mean, so she reduces by five. This produces a new 

distribution: 

 
                   Individual weights:   105    105    105     105    145     Mean  = 113. 

 
Note that the mean has gone up, even though movement is toward the center (average). 

The next round of “mean seeking” follows a similar pattern—the first four people are 

below the average and increase their weight, while the fifth is above the average and 

decreases. This yields: 

 
                   Individual weights:   110    110   110     110   140     Mean  = 116.   

 
Notice that four out of five have now attained the initial mean of 110. But that is no 

longer the group average, which has grown to 116. Thus, the process of adjustment will 

continue.  

                                                 
6  We need not posit that people actively increase their weight.  One might argue that, for those below the average, the 
forces balancing temptation (as technically defined earlier) are relatively weak, so the normal impulse to overeat 
prevails and they gain.  
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Ultimately, there is indeed convergence to an average, but it is not the average 

obtaining at the start (110)—in fact, it is 125 (see Table 1).  

 

                 Individual Weights                             Mean 
100 100 100 100 150 110 

105 105 105 105 145 113 

110 110 110 110 140 116 

115 115 115 115 135 119 

120 120 120 120 130 122 

125 125 125 125 125 125 
 
           Table 1. Numerical illustration of a rising mean under the FTA mechanism. 

 

When initial distributions are skewed, then, the simplest conformist impulse—match the 

mean—actually overshoots its initial objective, increasing the mean.  

 It is important to note that the linear increase in the average weight is altogether 

consistent with the abrupt increase in percentage overweight (and obese) observed in the 

data (in Figure 1)7.  

 The result can be proved more generally for any unimodal distribution that meets 

certain criteria (see Appendix II). This sort of social mechanism can compound the 

physiological ones discussed above to produce dynamics comparable to those of the 

obesity epidemic. Calibration of the integrated social-physiological model to those data is 

an important topic for future research.   

                                                 
7 Imagine that the cutoff for overweight in our example was 120. While the mean grows linearly, the 
percentage above 120 jumps sharply at a particular stage (in the next to last row). 
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While the “follow the average” (FTA) process is of clear relevance to obesity 

dynamics, it may well underlie other forms of social adjustment where the impulse to 

conform eventuates in unexpected dynamics. As the analysis in Appendix II notes, the 

process can produce a rich array of dynamics, including cycling as well as convergence. 

This suggests that FTA may be implicated in phenomena far beyond obesity, including 

political and economic dynamics.  

 

 

Toward an Integrative Model of Obesity 

 
In this paper, we have shown how several simple, individually-based, non-price 

mechanisms (including norms, social influences, and physiology) can provide insight into 

the obesity epidemic.  The Harris-Benedict equations alone explain core facts of 

individual obesity and dieting (such as the familiar pattern of recidivism), while the 

simple “follow the average” social adjustment mechanism produces a powerful, and 

counter-intuitive upward BMI dynamic in the population. These results are notable in 

their own right, and highlight the importance of non-price mechanisms in the obesity 

epidemic.  A fully integrated model will offer a still deeper explanation of the observed 

dynamics and a powerful array of policy interventions tailored to specific communities 

and individuals within them.  In carrying this line of work forward, we plan to exploit the 

technique of agent-based modeling ABM [29,42]. 
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Gedankenmodel 

Somewhat more specifically, we imagine an ABM in which individual 

children/adolescents are embedded in a social structure where they are influenced by 

parents, by peers, and by media. Different social groups might have different exemplars 

for ideal weight. Social conformity toward the group ideal weight (as in the FTA 

mechanism) would be an important driver of individual behavior. Depending on the 

network structure of contacts and influence, stigmatization of obesity might occur and 

could lead to divergent behaviors—including dieting, increased overeating (75-80% of 

subject in one study self-report this response to weight stigmatization [31]), or avoidance 

of physical activities [32-34]. Heterogeneity in diet choice and diet outcome (as analyzed 

above) would play an important role. Individual behavioral responses would, in turn, 

affect changes in individual weight according to detailed individual physiology (captured 

in the Harris-Benedict equations).  

By including physiology, a complex social structure, diverse norms, and 

heterogeneity of behavioral responses, the model would attempt to “grow” observed 

empirical patterns and trends. Specific macro-level “targets” for the simulation model 

would include: the observed overall growth in obesity over time (and the shape of the 

growth rate, with acceleration in 1980); differing distributions of obesity in different 

demographic groups (e.g., black/white adolescent females); and different levels of 

subjective well-being for equally obese (same BMI) individuals from different groups 

(e.g. racial groups).  
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Having generated these in an agent model, one could more thoroughly and 

credibly explore the space of policy interventions best tailored to the communities at 

greatest risk.  
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Appendix I: Algebraic Analysis of Diet and Temptation Results 
 

 
A. CLR diet 
 
Claim: Temptation on this diet is strictly increasing, and at increasing rate. 
 
Proof: 
 
Define “temptation” at any time8 t to be  
 

    
t

tt

C
CTDEE )( −

=τ  .                                                           [1] 

 
Since 1 lb = 3500 cal, a constant loss rate of 1 lb. / week requires that 7(C-TDEE) = -3500. 
Thus  
 
                                    Ct = TDEEt – 500                  [2]                                                
 
at each time step t. Substituting this into [1], we obtain  
 
                                     

 
)500(

)500(
−

−−
=

t

tt
t TDEE

TDEETDEEτ ,           [3]   

 
which reduces to: 
 

                                      
)500(

500
−

=
t

t TDEE
τ .                                                        [4] 

 
For the female case, this is 
 

                                      
500]7.47.435.4655[

500
−−++

=
Ahwt

t α
τ .                      [5] 

 
For the specific α, h and A values used in the numerical example, this simplifies to 
 

3.101.0
1
+

=
t

t w
τ  ,                       [6] 

 
 

                                                 
8 In Appendices I and II, we will sometimes suppress the explicit time dependence where it is obvious, for notational 
convenience. 



p. 28 

which is obviously of the general form 
 

                                         .1
BAwt

t +
=τ                                                                  [7]  

    
Thus, as wt decreases linearly the temptation will increase monotonically at an increasing rate, as 
was to be shown.  Note that the male case is completely parallel.  
 
 
B. CTL diet 
 
Temptation for this diet is constant by definition. 
 
 
C. CEL diet 
 
Claim: Temptation on this diet is strictly decreasing, and at a decreasing rate. 
 
Proof: 
 
The proof proceeds in two steps.  First, we show that temptation is linear in w; then, that w is 
strictly decreasing at a decreasing rate.  
 
To begin, define temptation at any time t as in [1] above. The eating level C on this diet is fixed 
at the maintenance level for target BMI (a constant, X), which is to say that for all t 
 
                             C = X = αBMR(targetWeight).                                       [8]  
 
Substituting, the equation for temptation reduces to: 
  

1)( −= tt BMR
X
ατ  .                                                [9] 

 
Assuming α, h, A, and X to be constants, the equation is further reducible. For the female 
numerical example used in the paper, we obtain 
 

                                    28.00043.0 −= tt wτ .                                             [10] 
 
So temptation is linear in w.  Now we show that w decreases at a decreasing rate. By the female 
Harris-Benedict equation, during the course of this diet w changes as follows: 
 

                                           
3500

]7.47.435.4655[
1

AhwXww t
tt

−++−
+=+

α            [11] 

 



p. 29 

Assuming α, h, A, and X to be constants, this equation is also further reducible. For the female 
numerical example used in the paper: 
 
                                                         wt+1 = 0.9979wt + 0.141262,                                         [12] 
 
which is of the general form   
 

wt+1 = Awt + B,  with 0 < A < 1, and B positive.                   [13]  
 

  
Thus w decreases at a decreasing rate, and since temptation is linear in w, it does as well. The 
male case is parallel.   
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Analytical Appendix II: Social norms and “Follow the Average” 
 
 
Two specific cases 
 
To best elucidate the logic behind the result, we first present an analysis of two specific cases: 
one for a distribution with an odd number of elements (n=5) and one for a distribution with an 
even number of elements (n=4). For the general proof, see the section below. 
 
Example 1: n=5 
 
Start with a unimodal distribution comprised of five elements with values: {x1, x2, x3, x4, x5} 
 
Define medianx =~  of the set, and x = the mean. Assume that x  > x~ . 
 
(1) By definition, half of these numbers are ≤ x~ , and half are  ≥ x~ .  As in any set with an odd 
number of elements, at least one of them must be equal to the median itself. 
 
Without loss of generality, then, assign: 
 
                                                 x1, x2 ≤ x~  
                                                 x3 = x~  
                                                 x4,x5 ≥ x~  
 
(2) To apply our “follow the average” rule, individual element values change from one period to 
the next as follows: if below the average, increase by a fixed amount k; if above the average, 
decrease by k instead. 
 
Since x  > x~  for our sample, the minimum increase in weight will be as follows9: 
 
                        x1 → x1+k, since x1 ≤ x~  (and x~ < x ) 
                        x2 → x2+k, since x2 ≤ x~  (and x~ < x ) 
                        x3 → x3+k, since x3 = x~  (and x~ < x ) 
                        x4 → x4-k, since x4 ≥ x~  (and so x4 might be > x ) 
                        x5 → x5-k, since x5 ≥ x~  (and so x5 might be > x ) 
 
(3) Even assuming x4 and x5 decrease in value, the distribution’s mean will go up: 
 

                                      
5

54321 xxxxxxt
++++

=  

 

                                      
5

)()()()()( 54321
1

kxkxkxkxkxxt
−+−++++++

=+  

 
                                                 
9 The arrow symbol means “updates to.” 
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5

5
54321

kx

kxxxxx

t +=

+++++
=

 

 
(5) By updating x1 thru x5 and recalculating x~  and x in the new distribution, the same processes 
will repeat until x ≤ x~ .  We now illustrate the even-numbered case. 
 
Example 2: n=4 
 
For an even number of elements {x1…x4}, the median is defined as the mean of the middle two 

elements. Without loss of generality, then, assign x1 ≤ x2 ≤ x3 ≤ x4, so 
2

~ 32 xxx +
= . 

 
Under the “follow the average” rule: 
 

x1 → x1+n, since x1 ≤ x~ , and x~ < x  
x2 → x2+n, since x2 ≤ x~ , and x~ < x  

 
What about x3? Under the same logic as above (in the n=5 case), x3 must go up in order for the 
overall distribution average to go up. 
 
Remember that x3 ≥ x2 . Thus there are two possibilities: 
 
a. If x3=x2 

Then x~ = x2 = x3 
Since x  > x~ , x > x3 and x3 will go up (and so will the average). 

 
b. If x3 > x2 

Under this condition, x3 will go up only if 
3

124
3

xxxx ++
< .   

Why? Under the rule, x3 will go up only if xx <3  
   xx <3  

   
4

4321
3

xxxxx +++
<  

   42133 xxxx ++<  

   
3

124
3

xxxx ++
<  

 
This cannot be proved to be true in all cases[10], so it becomes an additional condition. Its 
generalization is [A2] below. We now proceed to the general case. 
                                                 
10 Since x  > x~ , we can show that x4 > x3+x2-x1. But, x3+x2-x1 < 3x3-x1-x2 so we cannot show if x4 > 3x3-x1-x2 
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General case 
 
To set this up, we define the following[11]: 
 
 n = number of elements in a distribution 
 k = step size of adjustment of individual elements between periods under the FTA rule 
x  = arithmetic mean of a distribution 
x~ = median of a distribution 
 
Proposition: In a discrete unimodal distribution, the FTA (“follow the average”) process will 
result in a monotonic increase in the mean, as long as two assumptions hold: 
 
[A1] The arithmetic mean of the distribution is strictly greater than its median (e.g. the 
distribution has positive skew). 

[A2]                                     
)1(

2

1 2
2

1
2 −

+

<

∑ ∑
= +=

+ n

xx

x

n

i

n

ni

ii

n        

 
In fact, [A2] is needed only for the even-numbered element case, as shown below. For the odd-
numbered elements case, [A1] is sufficient. 
 
Proof: 
 
Begin with a discrete unimodal distribution. The definition of the median in any discrete 
distribution differs depending on whether n is even or odd. Therefore there are two cases:  
 
Case I. An odd number of elements 
 
(1) In a distribution with an odd number of elements {x1, x2, …, xn}, the median is defined as the 
((n+1)/2)th element: 
 

    
2

1
~

+= nxx  

 
By definition, half of the elements in the distribution are ≤ x~ , and half are ≥ x~ .   
 
Without loss of generality, then, order the elements from lowest (x1) to highest (xn), so: 
 

xxxx n
~,...,,

2
121 ≤−  

xxn
~

2
1 =+  

                                                 
11 Again, where obvious, explicit time dependence is suppressed to reduce notational clutter. 
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xxx nn
~,...,

2
2 ≥+  

 
(2) To apply the FTA rule, individual element values change from period t to t+1 as follows: 

 
If xtxi <)( , then ktxtx ii +=+ )()1(  
If xtxi >)( , then ktxtx ii −=+ )()1(  
If xtxi =)( , then )()1( txtx ii =+  

 
(3) Since xx ~>  (under [A1]), the following changes occur in the first period: 
 

(i) For i =1 to 
2

1−n , ktxtx ii +=+ )()1(  because xxi
~≤  and xx <~  

(ii) For i = 
2

1+n , ktxtx ii +=+ )()1(  because xxn
~

2
1 =+ and xx <~  

(iii) For i=
2

3+n  to n, we may have )1( +txi  = ktxi +)( , or )1( +txi  = ktxi −)( , since xxi
~≥  

       (and so xi might be >  or < x ) 
   
 
(4) Regardless of the direction of movement in (iii), the mean will increase from period t to 
period t+1. A lower bound on the increase in mean can be calculated as follows.  The mean at 
time t is  
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n
ktx += )( . 

 
(5) The process will repeat for the new distribution { )1(),...,1(),1( 21 +++ txtxtx n }, new mean 

)1( +tx ,  and new median )1(~ +tx , and will continue to repeat until xx ~≤ , in which case [A1] 
no longer holds. Cycling and other dynamics are possible in such cases. A full analysis is 
forthcoming.  
 
 
Case II. An even number of elements 
 
If there is an even number of elements, assumption [A2] is needed: 
 

[A2]                                   
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(1) In a distribution with an even number of elements {x1, x2, …, xn}, the median is defined as 
the average of elements (n/2) and (n/2)+1:  
 

 
2

~ 1
22
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+
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nn xx
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As before, half of the elements in the distribution are ≤ x~ , and half are ≥ x~ .  
 
Without loss of generality, then, number elements from lowest (x1) to highest (xn), so: 
 

xxxx n
~,...,,

2
21 ≤  

xxx nn
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2
1 ≥+  

 
(2) To apply the “follow the average” rule, individual element values change from period t to t+1 
as follows: 

 
If xtxi <)( , then ktxtx ii +=+ )()1(  
If xtxi >)( , then ktxtx ii −=+ )()1(  
If xtxi =)( , then )()1( txtx ii =+  

 
(3) Since xx ~>  (under [A2]), the following changes occur in the first period: 
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(i) For i =1 to 
2
n , ktxtx ii +=+ )()1(  because xxi

~≤  and xx <~  

(ii) For i= )1
2

( +
n  to n,  we may have )1( +txi  = ktxi +)( , or )1( +txi  = ktxi −)( , since xxi

~≥   

      (and so xi might be > or < x ) 
 
 
In order for the Proposition to be true, at least element

1
2
+

nx must increase by k (rather than 

decreasing by k), following the same logic as in I (4) above.  
 
 
This requires: 
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which is precisely condition [A2].  This completes the proof. 


