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Abstract

This paper shows how social influences on individual decisions help resolve a

public health puzzle–the inordinate effect of geography on treatment. To explain

geographical variations, we construct a model in which physician choices are subject

to social influence. Small regional differences in the patient population mix give

rise to divergent treatment patterns–the treatment a patient receives depends on

where she lives. The empirical analysis uses data from Florida on coronary patients

and their doctors. The data reveal significant geographic variation in the treatment

rates. We find empirical support for the claim that local social influences determine

treatment choice.
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I Introduction

This paper deals with a general question and a specific puzzle. The general question

is related to the effect of the social environment on individual decisions. Are medical

decisions influenced by social and cultural forces and, if they are, what is the cost to

society of departures from strict scientific standards? The specific puzzle in question is

the well—documented effect of geography on treatment. The treatment that a patient

receives depends, beyond reasonable limits, on where she lives. We use the idea that

decisions are subject to social influence to provide an explanation of this public health

puzzle. Conversely, the rich detail with which medical decisions are documented presents

us with a unique opportunity to deepen our understanding of the effects of the social

environment on individual choices. For, if medical decisions are influenced by social and

cultural forces, why should other kinds of decisions be immune?

The extent of geographical variation in the United States is quite striking. Consider

the case of two procedures used to treat heart conditions. In a comparison of hospi-

tal referral regions across the country, rates of Coronary Artery Bypass Grafting among

Medicare enrollees varied by a factor of more than 3.5, while the rates of Coronary Angio-

plasty ranged from 2.5 to 16.9 per 1,000 enrollees (The Dartmouth Atlas of Health Care,

1999). Such patterns occur for a number of other procedures as well, with uniformity

of treatment styles within regions, but significant differences across regions. The study

of geographical variations has a long history, going back at least to Glover’s pioneering

study of tonsillectomy in Britain (Glover, 1938). In the United States, Wennberg and

his colleagues (e.g. Wennberg and Gittelsohn, 1973) have documented the phenomenon

comprehensively over a number of years. Geographical variations appear to be both ex-

tensive and persistent, even after controlling for demographic and illness conditions. A

number of explanations have been proposed but, for reasons discussed below, the puzzle

remains largely unresolved.

While attempts have been made to explain the puzzle away based on variations in

patient characteristics and economic incentives, such explanations have not stood up to

rigorous scrutiny (Phelps and Mooney 1993). In our own study, the data on coronary
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care in Florida is extensive, enabling us to control for such factors. It is equally unlikely

that treatment variations reflect gross error or physician ignorance. Practice guidelines

and quality indicators are widely disseminated and easily available, accessible even on the

Internet. Nor do regional variations appear to be an artifact of physician self-selection,

whereby doctors migrate to hospitals or locations based on their practice style. Previous

studies have attempted to quantify a physician’s “practice style” (roughly, her preference

for intensity of treatment). The evidence points towards great variability of styles within

regions (Phelps, 2000). With such stylized facts in mind, we construct a model in which

equilibrium choices display geographical variation and practice norms emerge from the

dynamic interaction of physicians within social networks.

The key ingredient of our model is local social interaction among doctors. In this we

are guided by the recent work of Becker and Murphy (2001), Brock and Durlauf (2001),

Glaeser and Scheinkman (2002), Young (1998) and others. We consider two sources

of social influence on medical decisions–local increasing returns and pure conformity

effects. The former arise when knowledge spillovers are present. The correct diagnosis

and treatment for a patient can be complicated, and there may be an opportunity to

take advantage of the experience of others. The success rate of a procedure is then likely

to depend on the extent to which close colleagues use the same procedure and it could

be rational for a physician to choose a procedure that is used with greater frequency

within her local social sphere. Alternatively, a physician may tend to mimic the choices

of her colleagues even in the absence of increasing returns. This could arise from a

preference for conformity (Bernheim, 1994), or because the prevailing legal standard in

malpractice cases is believed to be conformity to local norms. Conformity could also

result if physicians give greater weight to the direct experience of colleagues than to

general practice guidelines. Either type of social influence can explain the emergence of

local uniformity in procedure choice. However, as we discuss in some detail in the paper,

the welfare implications of the two forms of influence are different.

To explain variation in treatment norms across regions we introduce (possibly small)

demographic differences. It is often the case with medical procedures that their appropri-
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ate use depends upon the characteristics of patients. We find this in procedure guidelines,

and also in an analysis of the data. For instance, bypass surgery is used more sparingly

in the treatment of older patients. Our main theoretical result asserts that the mix of

patients in a region can influence the practice norm that emerges. As a consequence, the

treatment a patient receives depends on where she is treated.

We test our model with data from Florida patient discharge records, focusing on pa-

tients over 35 with primary diagnoses of coronary atherosclerosis and acute myocardial

infarction (AMI, or heart attack). In total we draw on a large sample (over 80,000)

of inpatient stays during the period between 1993 and 2000. Each record reports the

patient’s age, race, sex, principal and secondary diagnoses, treatments received, the at-

tending physician, the hospital name and county location, and the length of stay. We

also employ county-level demographic information from the 1990 and 2000 Census and

other public sources. The combined data provide a rich picture of the sources of variation

in coronary treatments, and in particular allow us to test for local interactions among

physician choices.

Empirically we assume that physicians interact within social networks determined

by where they work. Specifically, we say physician P belongs to physician Q’s social

network if there is some hospital at which they both have admitting privileges. We find

direct evidence of interactions within such networks: the likelihood of a given procedure’s

being chosen by some doctor increases in its recent rate of use by physicians in her social

network, even when controlling for possible endogeneity in the network treatment rates.

Such endogeneity might be expected, for example, if there are unobserved similarities

among either the patients or the doctors in the same social network, or because of the

shared local economic environment. To identify the network interaction effects we adopt

an instrumental variables technique similar to that of Goolsbee and Klenow (2002) in

their study of network externalities in computer adoption.

We also find uniformity of treatment within regions exceeding what could be explained

on the basis of patient similarities alone, and we find that similar patients may be treated

differently in different places. A subtle implication of our geographical variation result
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is that the likelihood of a procedure being used on a patient depends on the population

mix. For instance, if bypass surgery is (globally) less likely to be used on older patients

then it will be used less often on younger patients in regions where the population of

old patients is larger. This appears to be the case. The evidence of discrepancies in the

quality of care across regions is mixed. We find that an indirect measure of the quality of

care—giving patients risky surgery at low-volume hospitals—may be substantially affected

by the network’s treatment tendencies. At the same time, however, treatment variations

across regions are not systematically related to differences in the length of hospital stay.

The paper draws upon several different lines of research. The theoretical roots extend

back as far as Schelling’s (1971) work on segregation, which showed how interdependent

preferences can produce much greater racial uniformity within neighborhoods than any

individual would prefer. Our paper is more directly related to recent work on evolutionary

games and local interaction models, such as Ellison (1993), Ellison and Fudenberg (1993),

Kandori, Mailath and Rob (1993), Morris (2000), Young (1993), Young (1996) and, most

closely, Young and Burke (2001). The latter paper treats contracting norms in share-

cropping and develops an explanation for the prevalence of conventional arrangements

that seem not to vary sufficiently with the relevant fundamentals. Incorporating pref-

erences for conformity and local influence, the stable contracting pattern exhibits local

uniformity together with global diversity.1

In the health economics literature, Phelps (2000) provides an extensive survey of

empirical and theoretical studies of regional variations, including his own explanation

(Phelps and Mooney 1993). In the latter, physicians update their beliefs about proper

treatment rules by observing local treatment patterns. Local norms, once in place, tend

to persist because the learning rule pulls beliefs in the direction of dominant practice.

The story in this model is not inconsistent with ours, but there are significant differences.

In particular, our model can explain the emergence of local treatment norms in addition

to their persistence. We allow for many forms of social influence to investigate whether

welfare losses are an inevitable consequence of treatment variations.

The medical literature is extensive, even after we limit attention to cardiac care. In
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addition to the works cited above, the phenomenon is also described in The Dartmouth

Atlas of Cardiovascular Health Care (1999), in O’Connor et. al. (1999), and Pilote et.

al. (1995).

The rest of the paper is organized as follows. In section II, we describe the theoretical

model and results. The efficiency of the outcome is examined, and we establish results

on convergence and selection. Section III contains the empirical analysis. We begin

with a discussion of the data,describe the econometric model, present results from the

analysis of coronary angiography, and of surgical interventions. Concluding remarks are

in section IV.

II A Model of Procedure Choice

The model contains two essential features–local interaction and social influence–which

combine to yield the characteristic combination of local uniformity and global diversity

of treatment. We imagine a population of physicians, at fixed locations along a line, who

treat randomly arriving patients. A patient may be one of two types, and the physician

must choose between two alternative treatments. The payoffs to the treatments depend

on patient characteristics as well as on the past treatment choices of the physician’s

’neighbors’, defined in the model as the physicians at adjacent locations. The social

influence may be viewed as deriving from local increasing returns, or from doctors’ taste

for conformity. The geometric structure implies that the neighborhoods overlap, a feature

that permits influence to percolate across the line of physicians. We define distinct regions

of the line which differ in their respective arrival probabilities of the two patient types

(i.e. demographic mix). These regions are not isolated. Absent social influence each

physician would switch treatment depending on a patient’s type. But the interdependent

payoff structure leads eventually to a single procedure being applied to all patients in

a given region regardless of type, while the regional demographic variation implies that

this single dominant procedure will differ across regions. The differences in the patient

distributions across regions do not have to be extreme to produce this sort of choice

pattern.
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II-A Theoretical Model

The pattern of use of procedures arises as a steady state of a stochastic dynamic process.

We begin by describing the process. Physicians are indexed by their location on Z, the set

of integers. For each x ∈ Z, {x−1, x+1} denotes the set of neighbors of x. There are two
types of patients, denoted α and β, and two procedures A and B. Let πz(h,L,R) denote

the quality of the outcome when the physician uses procedure z ∈ {A,B} on a patient
of type h ∈ {α, β}, assuming her neighbors use {L,R} (L and R belong to {A,B}). It
will be convenient to think of the outcome as being characterized by a single number,

the likelihood of success of the procedure. Then πA(α,A,B) will denote the likelihood of

success of procedure A on an α-patient when one neighbor uses A and the other B. We

assume functions πA and πB are the same for all physicians. The utility of a physician

will depend upon πA and πB , but is likely to depend upon other things as well. First, the

quality of outcomes will depend upon the quality of complementary inputs like hospital

services, and also upon unobservable physician effort or investment. Second, physicians

may incur different costs in their choice of procedures, either from the inherent riskiness

of certain procedures or else because of incentives in the insurance and payment system.

Finally, the presence of preference for conformity, whereby physicians get utility when

their choices agree with those of their neighbors, could lead to regional variations even if

spillovers are absent.

We use the following specification of preferences:

U(z, h,L,R, . . .) = πz(h,L,R),

so that physicians care only about the quality of outcomes. In particular, by assuming

that physician and patient interests are perfectly aligned, we neglect the important role

of incentives. However, our results rely on qualitative features of preferences that survive

generalization. Moreover, many different kinds of social interaction have these features.

The essential assumption about payoffs is the following:2

Property P. Preferences satisfy the following two conditions:
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(a) Procedure A is optimal for α—patients if one or more neighbors use A, but B is

optimal if both neighbors use B.

(b) Procedure B is optimal for β—patients if one or more neighbors use B, but A is

optimal if both neighbors use A.

Three properties of payoffs can generate this feature: (1) payoffs from using a pro-

cedure increase with the number of neighbors who use the same procedure, (2) neither

procedure dominates the other, and (3) for any fixed neighborhood, A yields higher pay-

offs when used on an α type than when used on a β type (and B yields higher payoffs

when used on a β type than on an α type). However, it is not true that procedure A is

always better than procedure B for an α type, nor that B is better than A for β types.

We present, and graph, an example of such preferences:

πA(α,B,B) = 0.3 πA(β, B, B) = 0.2

πA(α,A,B) = 0.4 πA(β,A, B) = 0.3

πA(α,A, A) = 0.5 πA(β,A,A) = 0.4

Similarly, for procedure B the payoffs are

πB(α,B,B) = 0.4 πB(β,B,B) = 0.5

πB(α,A,B) = 0.3 πB(β,A,B) = 0.4

πB(α,A, A) = 0.2 πB(β,A,A) = 0.3

Figure 1 illustrates physician payoffs from using each procedure on an α-patient. Observe

that the preferences satisfy property P(a).

Figure 1 here.

Patients arrive randomly at each location, with inter-arrival times that are exponential

with parameter λ. Without loss of generality we take λ = 1. The concentration of patient
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types varies by region. We partition Z into two regions, East and West. The negative

integers constitute the West, while the non-negative integers constitute the East. The

probability that a patient who arrives at any given location in the East (West) is of

type α will be given by pE (pW ). The state of the system is a function from integers to

{A,B} (ω : Z→ {A,B}). An ‘A’ at any location indicates that the physician there used
procedure A on her most recent patient. A ‘B’ denotes the use of procedure B on the

most recent patient. The set of states is denoted by Ω.

Consider a specific location x ∈ Z. When a patient arrives at x, the physician makes
a choice between A and B. The choice depends on the type of patient, as well as the

choices made (in the recent past) by neighboring physicians. We can imagine an infinite

sequence, with values at each location indicating the most recent choice made by the

physician there:

· · ·AABBBABAAABA · · · .

At random dates there is a transition: the value at one location changes from A to B or

vice versa. The process is a continuous time Markov chain, Xt, and we are interested in

the invariant (equivalently stationary, or equilibrium) distributions of this process.

Let A ∈ Ω denote the state ω with ω(i) = A for all i ∈ Z. In other words,

A ≡ · · ·AAAAAAAAAAAA · · · .

Similarly, B ∈ Ω denotes the state ω with ω(i) = B for all i ∈ Z:

B ≡ · · ·BBBBBBBBBBBB · · · .

The configuration at a particular date t will be identified by ωt.

Let δω be the probability that puts all of its mass on ω. Clearly, δA and δB are

invariant measures. If we somehow reach the configuration A (or B), the process can

never escape from this state. Following Liggett (1999), we say the process coexists if there

is an invariant measure that is not a mixture of δA and δB. Alternatively, the process
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coexists if for i and j, limt→∞Prob{ωt(i) 6= ωt(j)} > 0. We show that the process Xt

defined above coexists by identifying an invariant distribution in which both procedures

are used with strictly positive probability at the same dates.

Define the set of states S ⊂ Ω as follows: ω ∈ S if there exists m ∈ Z such that
ω(i) = A for all i < m and ω(i) = B for all i ≥ m. In other words, S consists of states

such as

· · ·AAAAAABBBBBB · · · .

S is irreducible–every state in S is reached with positive probability from any other

state in S. It is closed–once in S, we can never escape. It is recurrent–we eventually

return to every state in S–but not periodic.3

We prove the existence of an invariant distribution that has S as its support. For

simplicity, the distribution is characterized in terms of the location of the boundary point

between the region in which procedure A is used and the region in which procedure B

is the norm. In the proposition below, ρ(·) specifies the probability distribution of this
boundary point. The proof is in the appendix.

Proposition 1. Suppose preferences satisfy property P. Let pW > 1/2 and pE < 1/2.

Then the physician choice process coexists. Specifically, there is an invariant measure ρ,

with support Z, such that

ρ(m) =
1

K

µ
1− pW

pW

¶−m
if m < 0

ρ(m) =
1

K

µ
pE

1− pE

¶m

if m ≥ 0.

K is a real number constant which can be chosen to ensure that ρ is a probability.

The proposition above tells us that the location of the East—West boundary is random.

The probability ρ(m) gives us the likelihood that the boundary will be m. Imagine the

process as follows: each state consists of an infinite string of A’s followed by infinitely

many B’s, but the boundary between the two regions keeps moving around, according

to the probabilities governed by ρ(·). We refer to the long-run outcome ρ to describe the
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steady state in which the states from S appear according to probability ρ.

Remarks. (1) In case pW < 1/2 and pE > 1/2, we get a similar result, only the support

now consists of a string of B’s followed by A’s. In case pW < 1/2 and pE < 1/2, the

invariant distribution is δB. If pW > 1/2 and pE > 1/2, it is δA. (2) When pW = pE = 1/2

the state always remains in S and the boundary performs a symmetric random walk. This

process is like the one-dimensional linear voter model (see Liggett). Despite the fact that

the state always remains in S, the process does not coexist. This is because limt→∞

Pr{ωt(i) 6= ωt(j)} = 0. (3) The proof of Proposition 1, as well as Proposition 2 below,
requires infinitely many locations (i.e. Z). In the finite case we would reach either A

or B with positive probability, and then be trapped there. It seems likely that one can

recover geographical variation by adding small noise to the model, but the analysis of

such a process is beyond our scope here.

The model has interesting observable implications. It suggests that the procedure

performed on a patient depends on the demographic mix of the region. For instance,

the procedure performed on a 50 year old patient could depend on the proportion of

the local population that is 70 years or older (in cases where a specific procedure is

considered medically more appropriate for the aged). In cardiac care, expert panels and

procedure guidelines differ in their recommendation for different groups of patients (our

empirical analysis can pick this up as well). In our empirical investigation, one of our

robust findings is the effect of local demographics on procedure use.

II-B Emergence of Norms

We show here how, starting from almost any initial state, the dynamic evolution of the

system leads to regional norms of practice. In other words, since the process has several

invariant distributions, we would like to identify the distribution which is most likely to be

selected in the long run from randomly chosen initial conditions. Proposition 2 suggests

that the uniform states A and B are, in a well-defined sense, exceptional. Typically, we

would expect the system’s behavior to be described by the invariant distribution ρ from

Proposition 1.
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We assume the initial value (procedure choice) at each location is picked by tossing

a θ-coin, where θ ∈ (0, 1)–i.e. the initial distribution is the Bernoulli product measure
with density θ. Let πt denote the distribution of the Markov chain at time t. We consider

the behavior of the sequence {πt} as t→∞. In the long run, the behavior of πt is closely
approximated by ρ.

Proposition 2. Suppose the initial distribution is νθ, the Bernoulli product measure with

density θ ∈ (0, 1), pW > 1/2 and pE < 1/2. Let πt denote the distribution of the Markov

chain at time t. Then πt converges weakly to ρ as t→∞.

The proposition shows that from “most" initial configurations the process will evolve

to display geographical variation. The proof is patterned after Durrett (1988) and Bram-

son and Griffeath (1981), who investigate the so-called “biased voter model". The process

discussed in our paper is not identical to the biased voter model, but the differences are

inconsequential for the main arguments. One difference is the presence of regions with

different “bias"; another is the transition rate at a site where both neighbors make the

opposite choice.4

II-C Efficiency

In our model, regional variations can arise either from scale effects in technology (as

a result of knowledge spillovers, for instance) or else because of the presence of peer

effects. While this has no significant implication for long-run outcomes, the distinction

is pertinent for efficiency. With scale effects, some patients are likely to benefit from

local uniformity of practice, since the likelihood of success of a procedure increases when

others choose the same procedure. If regional variations arise because of physicians’

desire to conform with one another then patients must suffer. The distinction is also

important for comparisons of policy. For instance, is strict enforcement of procedure

guidelines (matching patient characteristics to procedure) necessarily a good thing from

the point of view of patients and physicians? More generally, are the long-run outcomes

of section II-A efficient? These questions are addressed next.

11



Suppose that physician preferences are not subject to peer effects and, as in section II-

A, utility equals the likelihood of success of the procedure used. We consider a policy

which involves enforcement of procedure guidelines requiring the use of A on α-patients

and B on β-patients.5Under such a policy, at any given state, some patients will be

worse off and some better off than in the long-run coexistent steady state. The more

interesting question is whether the policy improves expected outcomes for the population

as a whole.6We provide an illustration of the tradeoffs introduced by a policy of procedure

guidelines, and its desirability from the perspective of patients and physicians. Since a

physician’s expected utility at a location equals the expected likelihood of success for the

population profile at that location, we can speak of patient welfare in terms of these same

payoffs.

Assume initially we are in the long-run coexistent steady state, with choice A blanket-

ing the region to the left of the (stochastic) boundary location, and choice B blanketing

the region right of the boundary. Consider the fate of a β type arriving in the region to

the left of the boundary: formerly she would have faced a payoff of either πA(β, A,A) or

πB(β,A, B), the latter occurring only at the rightmost location in the region. Under the

guidelines, she will get a payoff of either πB(β,A,A) or πB(β,A,B), or even πB(β, B, B).

The first of these is less than πA(β,A,A), what she would have received formerly when

surrounded by choice A. However, under guidelines it will become more likely that she

arrives at a location with at least one neighboring choice of B, since β types are now

always treated with procedure B. Thus the payoffs πB(β, A,B) and πB(β,B,B) might

alternately replace payoff πA(β,A,A). If the technology is such that each of these first

two exceeds the third, β types might be made better off from the guidelines, depending

on the differences between the various payoff possibilities, and on the arrival probabil-

ity of β types in the west. The latter probability matters because the greater it is, the

greater will be the increase in the frequency of (A,B) and (B,B) neighborhoods in the

west under the guidelines policy.

We must consider also the fate of an α type arriving in the region to the left of

the steady-state boundary when guidelines are suddenly imposed: if one arrives at a
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location surrounded by choice A she will receive the same treatment under the guidelines

as formerly, and similarly if she arrives at a heterogeneous location (with choice A on

one side and B on the other). But since heterogeneity becomes more probable, she will

more often face the lower payoff πA(α,A,B) than the payoff πA(α,A, A). In addition the

possibility arises that an α arrives at a location surrounded by B choices, in which case

she will receive (suboptimally) choice A. Thus we can see that α types arriving in the

region which would have been dominated by choice A in the long-run steady state will

be made unambiguously worse off by the imposition of procedure guidelines. Inverting

this analysis to consider the region to the east of the boundary, it should be easy to see

that β types will be made unambiguously worse off and α types may be (but are not

necessarily) made better off.

Given these contingencies, we want to know whether the net effect of procedure

guidelines on the expected success probability at any given location can ever be positive.

We find that it can, as we state in the following proposition:

Proposition 3. The long-run outcome ρ need not be efficient. In particular, it may be

dominated by a policy of enforced procedure guidelines.

In the appendix we prove the proposition by identifying a plausible technology for

which the guidelines policy proves superior to the long-run outcome ρ. We show that in

general guidelines are more likely to dominate the long-run outcome (a) the more similar

are the population profiles in the different regions (both pW and pE are close to 1/2), (b)

the greater the payoff advantage to neighborhood heterogeneity over homogeneity, and

(c) the smaller the losses from reversing procedure choices at locations with homogeneous

neighborhoods. Note that following procedure guidelines when others do so is not a best

response–the policy requires enforcement. Individually rational doctors do not take into

account the fact that a heterogeneity of skills in the population creates external benefits.

Preferences that display a desire to conform to the actions of peers raise a different

set of questions. When are decisions more likely to be subject to social pressures? How

does one design policy to diminish negative social influences? We can only frame these

questions here. This paper is an analysis of the effects of social influence on individual
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actions. It is not clear that we understand the causes of social influence well enough to

say something concrete about the way in which policy might influence it.

III Empirical analysis

Using the Florida data on coronary patients, we examine the effects of physician interac-

tions and regional demographics on discrete treatment choices. We find that doctors in

likely proximity influence each others’ choices at the margin, with the result that diverse

patients are treated similarly within regions, while similar patients are treated differently

in regions with different patient demographics, as the model predicts. We also find some

evidence to support the model’s predictions on patient welfare in the presence of local

social interactions.

Identification of local knowledge spillovers and conformity effects presents a challenge

because of the possibility of alternative sources of local treatment uniformity. For exam-

ple, the patients treated in a given locale may have traits in common that affect their

treatment, and the physicians may have similar innate treatment tendencies. The shared

economic environment may contribute further to such uniformity. We adopt a number

of strategies to control for these possibilities, including the use of instrumental variables,

and find our results to be robust.

The Florida patient discharge data comes from a legally mandated and audited census

of inpatient stays, reported quarterly by Florida hospitals. We use records from the

years 1993 to 2000, combining each year’s quarterly reports in two half-year reports.

Each record gives the patient’s age, race, sex, principal diagnosis and (where applicable)

secondary diagnoses, treatments received, the attending physician, the hospital name and

county location, the length of stay, and several other facts.7A limitation of the data is

that each observation is a single hospital stay rather than a longitudinal patient record.

Repeat hospitalizations are masked, so a patient’s complete treatment record may be

censored.

To focus on coronary care we restrict our attention to the records of patients over

35 years old, with a principal diagnosis of either acute myocardial infarction (AMI) or
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coronary atherosclerosis. We include emergency and non-emergency patients, but omit

maternity admissions and patients transferred from other facilities. As described below,

we also employ county-level demographic information from the 1990 and 2000 Census

and other public sources. We also compute a measure of mortality risk for each patient,

the Charlson index, based on the discharge information.8

Table 1 here
Before turning to the econometric models, we describe some salient features of the

uncontrolled treatment rates. Table 1 displays the basic statistical frequencies of treat-

ment for heart disease patients in regions of Florida. For example, the probability of a

younger (under 55) patient’s receiving heart surgery is lower in those regions of Florida

with relatively many older patients than in regions with relatively few older patients.

Specifically, the contrast is great between these rates in the youngest region, District 2,

and those of the oldest, District 9. Conversely the surgery rates for older patients are

higher in younger districts. We also observe that surgery rates decline on average with

age, a natural pattern reflecting the fact that, holding other things the same, surgery-

related risks increase with age. These facts suggest exactly the type of effect predicted by

the model: treatment in a region follows the choice best suited to the dominant patient

type. In this case, younger patients are treated like older patients when their doctors (and

their doctors’ colleagues) treat older patients most of the time, and vice-versa for older

patients in young regions. The controlled econometric tests that follow reinforce this

finding and suggest that social interactions among physicians contribute to its formation.

III-A Probit analysis of treatment choice

For each of two binary treatment choices, we estimate the probability of a patient’s

receiving a given treatment as a function of variables capturing physician interactions,

regional demographics, and individual patient characteristics. The first model estimates

the incidence of coronary angiography, an invasive diagnostic procedure, and the second

examines the choice of heart surgery (either CABG–coronary artery bypass grafting–or

PTCA–percutaneous transluminal coronary angioplasty) over non-invasive drug treat-
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ments. In each model, the dependent variable is an indicator of whether the invasive

procedure (angiography or surgery, respectively) was performed on the given patient.

Let Y ∗i be a latent variable describing the (unobserved) relative payoff of the specific

treatment for patient i. Recall that physician choices are assumed to follow patient

welfare, at least as the physician perceives it. There is some threshold value Ȳ ∗i such

that the treatment is chosen if and only if Y ∗i meets or exceeds this value. Y i is given

the value 1 if patient i is observed to have received the treatment, and the value zero if

she did not. We express the basic econometric model as follows:

Y ∗i = α+Njiβ +X 0
iγ +R0kiδ + P 0iθi + �i. (1)

Yi = I(Y ∗i ≥ Y
∗
i ), i = 1, ...,N (2)

In the equation, Nji is the treatment rate in the social network (defined below) as-

sociated with the patient’s physician, the latter denoted ji. Note that other patients

treated by the same physician during the same period will have the same value for Nji .

Xi is the vector of patient characteristics, Rki is the vector of demographic variables and

district dummies for the region, ki, in which the patient was treated, and Pi is the vector

of dummy variables indicating the patient’s provider type.

According to the theoretical model, the choice made by a doctor at a given location

depends on the recent choices at neighboring locations and on the patient’s type. To

capture the latter we include the patient’s race, sex, and age, fifteen discrete indicators

of secondary diagnoses or ‘comorbidities’, and the age-adjusted Charlson index, a measure

of the risk of mortality derived from the patient diagnostics (Charlson, et. al. 1987). To

capture recent local treatment choices we construct a variable called the ‘network rate’,

described in detail below, indicating the (lagged) use of the invasive procedure among the

peers of the acting physician. Further sources of spillovers could include the hospital’s

absolute volume in the given procedure, as well as demographic factors that proxy for

average health factors in the local region. For the former we define a dummy variable

taking a value of one if the hospital of treatment performed more than 200 angiographies
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(or 100 surgeries, respectively) in the same six-month period.9For the latter we include

the population over age 65, the percent high school graduates, population growth rate,

physicians per capita, and income per capita, all measured at the district level from the

most recent census and other public sources. We also include a set of dummy variables

to capture fixed effects across the 11 administrative planning districts in Florida.

To construct an empirical counterpart to the model’s social network, we assume that

doctors practicing in the same hospital are more likely to interact and influence each

other’s decisions than doctors working at different hospitals. On this assumption a physi-

cian’s social network will consist of the set of all physicians practicing at any one of the

same hospitals as the given physician during the period of observation. We impose the

requirements, however, that each included physician must have treated no fewer than

10 patients total during the period, and no fewer than 5 at each hospital at which he

showed any activity. Patient records of doctors not meeting these requirements are ex-

cluded when computing network treatment rates because we take low activity to mean a

low level of social influence.

Note that a given social network (or network for short) is specific to a given doctor and

a given time period, and does not include the doctor himself. The networks of different

physicians, however, may overlap substantially. If Doctor A practiced at Hospital 1 and

Hospital 2, and Doctor B practiced at Hospital 1 and Hospital 3, Doctors A and B are in

each other’s respective networks for the relevant period, and both networks contain all

physicians besides A and B who worked at Hospital 1. Doctors who practiced at Hospital

2 are in A’s network but not in B’s, and vice-versa for doctors at Hospital 3.

To measure a social network’s use of a procedure, we compute the proportion of in-

stances of a specific treatment out of the total volume of patient treatments by doctors

in the given network for the given period. This measure, called the network rate, includes

all relevant treatments chosen by all physicians in the given network, even those admin-

istered at a ‘non-network’ hospital. Referring to the example above, when computing the

rates of A’s network we count Doctor B’s procedures at both Hospital 1 and Hospital 3,

even though Doctor A treated no patients at Hospital 3.10
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The term ‘network effects’ will refer here to interactions among physicians–based

on knowledge spillovers, increasing returns, or pure conformity–that produce relative

uniformity of treatment choice. The model predicts a positive relationship between the

probability that a given patient receives a given treatment and the tendency of her

physician’s social network to administer such treatment. That is, we predict a positive

coefficient on our network rate variable when estimating the probability of a given choice.

Identification of network effects is difficult given that factors affecting treatment–

patient characteristics, physician practice styles, economic incentives–may be correlated

within the network regardless of direct interaction effects. Residential sorting on age,

wealth, education, or a number of other factors may produce local patient populations

with similar health factors requiring similar treatments. Physicians might sort into hospi-

tals on the basis of predetermined treatment styles, or factors associated with treatment

styles such as medical school or residency affiliation. The matching of patients with

physicians may produce similar and reinforcing effects, depending on the degree of con-

trol patients exert over the choice of physician. For example, physicians with a propensity

to order angiography may attract patients who desire angiography, and any network bias

in favor of angiography will be strengthened. Alternatively, a given demographic and

economic climate may select for a particular type of physician, inducing a kind of unin-

tended sorting. In each of these cases, treatments could be correlated regardless of any

direct network effects, and the coefficient on the network variable will be biased when

the relevant factors are unobserved.

Drawing on the approach of Goolsbee and Klenow (2002), we use an instrumental

variables (IV) model to identify the network effects. In the IV model the instruments are

the average values, among the other patients treated in the given social network, of the

Charlson index and the reported comorbidities. These average patient characteristics

should help predict the network’s aggregate treatment rates, but should not directly

affect individual treatment choices. The instrumental network variable should then isolate

network effects, provided the instruments are uncorrelated with the errors. To ensure such

independence, we include as regressors the individual patient characteristics (including
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age, race, and sex, in addition to the Charlson index and comorbidity dummies), the

patient’s insurance type, and the five regional demographic factors listed above. With

these controls in the model, the coefficient on the instrumental network rate will be

biased only if the average patient traits are correlated with relevant unobserved factors,

in excess of any correlations between the included variables and the errors. For example,

suppose an individual’s Charlson index value (observed) is correlated with her smoking

behavior (unobserved), as well as correlated with the average Charlson index value in

the network’s patient population (an instrument). For identification to be compromised,

the network’s average Charlson index number must predict her smoking behavior, after

controlling for her own Charlson number .

We can express the IV probit model as follows:

Y ∗i = α+ IV Njiβ +X 0
iγ +R0kiδ + P 0iθ + �ki + �ji + �i. (3)

Yi = I(Y ∗i ≥ Y
∗
i ), i = 1, ...,N (4)

In equation 3, the variables are defined as before except that the instumental variable

IV Nji replaces Nji . The error is decomposed to indicate a hierarchy of unobserved

variation: �ki denotes unobserved factors common to the region, �ji common disturbances

at the network level, and �i an idiosyncratic error, all presumed independent of each other.

Each error is normally distributed with mean zero, but the variances may differ.

The error structure captures the various sorting possibilities, and renders more ex-

plicit the requirements for identification of network effects. A positive value of �ji could

represent, for example, the effect of a common (exogenous) practice style among physi-

cians in the network, an effect that would bias the coefficient on the uncorrected network

variable. However, by construction the �ji represent only sorting effects not predictable

on the basis of the traits of the patients in the network (traits which might be correlated

with physician practice style), nor on the basis of the regional demographic factors. The

patient and demographic factors may therefore absorb a portion of the effect of unob-

served sorting, but the residual portion is independent of these regressors, and therefore
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likely to be independent of the instruments as well. A similar argument applies to region-

level effects, captured by �ki . To reiterate the argument above, identification is threatened

only if the network’s average patient traits are correlated with the errors, controlling for

correlations between the individual patient and demographic factors and the errors.

In addition to providing econometric controls, we actually test directly for physician

sorting. While we can’t observe practice styles, we do observe each doctor’s age and

residency hospital. Research in medical sociology (Wilkes, et al. 1998, Yedidia et al.

1996) suggests that residency training affects the formation of beliefs and practice styles

among new physicians. We might expect that the timing of residency would matter

as well as the location. Hence any sorting on residency location or cohort (proxied by

age) could contribute to regional treatment variations. To measure the extent to which

doctors sort into hospitals on the basis of either residency location or age, we employ

an assortativity index (Newman 2002). Based on this measure, we find no systematic

tendency for physicians to locate on the basis of residency, nor on the basis of age. The

index is described in detail in the Appendix.

III-B Analysis of Angiography

We begin by investigating the binary choice of whether or not to perform coronary angiog-

raphy11, a diagnostic procedure that is used to identify, locate and measure the severity

of coronary artery disease. While it is extremely accurate, the procedure is invasive

and risky, and may be dominated in terms of cost-effectiveness by other, non-invasive

diagnostics such as echocardiography and SPECT (Garber and Solomon 1999).

Table 2 shows the coefficient estimates from the full model for 1994, using instrumen-

tal variables probit estimation.12,13Results in Table 2 are broadly consistent with the

hypothesis that variations in regions and their demographics, patient characteristics and

networks rates are important in the choice of this diagnostic treatment. For example,

patients who are admitted from the emergency room or who are transferred to another

hospital are less likely to receive the procedure. Variations in treatment rates across re-

gions remain, even factoring into account education levels and other demographics. Older
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patients and black patients are substantially less likely to receive the procedure. Finally,

the results are consistent with the hypothesis that the economies of scale in performing

these procedures may influence the decision, at the margin, to choose the angiography

procedure.

Table 2 here
These considerations held constant, the lagged rate of angiography procedures within

the physician social network is highly significant, in both the IV model and the standard

probit model. The robustness of the network rate coefficient to the IV specification lends

critical support to the claim that we are witnessing true network effects. We take this

as strong evidence that the transmission of experience via informal contacts with peers

helps explain the readiness to order this diagnostic test.

III-C Choice of Surgery over Non-invasive Treatment

Patients who are hospitalized with AMI and coronary atherosclerosis may be given in-

tensive surgical interventions such as bypass surgery or angioplasty, or may simply be

held for observation, diagnostic testing and drug therapy. The data reveal that the two

surgical interventions plus non-surgery inpatient stays account for the preponderance of

patient care given in our data.

The econometric model is analogous to the angiography case, with the latent de-

pendent variable capturing the payoff to surgical intervention. The instruments for the

network surgery rate are the same as the instruments for the network angiography rate.

The results are reported in Table 2, again for the IV probit model. The results show

that the decision to perform the expensive surgical procedure is correlated with patients

admitted from emergency and those who are discharged as a transfer to another hospital.

The tendency to promote surgery in hospitals that do relatively large numbers of surgeries

is confirmed by the significant coefficients on the economies of scale for coronary angio-

plasties and for bypass operations. But after controlling for these factors, detailed patient

comorbidities and the regional variations, there remain in the evidence substantial effects

associated with the propensity to choose surgery within the physician’s social network.
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Relatively high rates of surgery in the attending physician’s network are associated with

a higher probability that the patient will be given surgery.

III-D Predicted treatment patterns across regions

The model predicts that treatment patterns may diverge across regions when local in-

teraction effects couple with regional differences in the patient mix. Looking at Table

3, we find substantial empirical support for this prediction for a ’representative’ patient

who has sample mean characteristics. The first columns of the table gives the estimated

probabilities of a representative patient’s receiving angiography (and surgery) in each

of the 11 districts.14We see that the same patient’s treatment would vary substantially

across the districts. This result is precisely what our theoretical model would expect in

the presence of peer effects. Absent peer influence and knowledge spillovers, we might

still observe regional treatment variations, but we should not expect the same patient to

be treated differently at different locations.

Table 3 here
Our results indicate that local interactions are a significant factor in treatment pat-

terns. We argue that the observed network or peer effects are genuine, not mere proxies

for unobserved correlations, given the robustness of the coefficient estimates to instru-

mental variables estimation and extensive controls.

III-E Analysis of patient outcomes

We conduct a number of tests to discern the impact of network effects on patient out-

comes. Does conformity imply that patients get the wrong treatment? Or do knowledge

spillovers imply that uniformity need not have deleterious effects?

It would be desirable to look directly at outcomes and determine whether the patients’

survival rates or quality of life varies across regions. Direct tests prove impractical in this

study, however, because of the unavailability of quality measures, such as mortality rates

in the period following the hospital stay. One observable, albeit weak, proxy for outcome

quality is the length of hospital stay for patients who are given surgery. Longer hospital
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stays are generally associated with complications or slower recovery from surgery. In

a large sample, controlling for patient age, demographics and illness characteristics, we

would not expect to see systematic variations in length of stay if the quality of outcomes

were similar. Indeed, the right column of Table 3 reports the predictions of a least-

squares model of the length of stay, in logs, across regions and again for ’representative’

patient. 15The extent of regional variations is quite small in Table 3. This result would

suggest that the impact of network effects is minimal, despite the appearance of large

regional variations.

A second test of this hypothesis is an indirect one and asks whether the network

effects encourage treatments at low volume facilities. Recent medical research has shown

extensively that risky operations such as bypass surgery and angioplasty, when conducted

at low volume hospitals, produce worse outcomes than when conducted at high volume

facilities (Birkmeyer, 2000). We cannot observe the bad outcomes, but would expect

them to be more likely at these facilities. Thus, it is interesting to ask whether there is a

correlation between the network rate and the probability that a patient is given surgery

at the low quality hospital. We re-estimated our IV probit models of angiography and

surgery, using a subsample of patients treated in hospitals classified as low volume, i.e. the

hospital of treatment performed less than 200 angiographies (or surgeries, respectively)

in the same six-month period. The results in Tables 4 reveal that the network effects

are highly significant even in this subsample of patients who are admitted to facilities

without appropriate economies of scale in performing these procedures.16We cannot be

sure that this result means that doctors interacting in networks with high rates of surgery

are induced into recommending, at the margin, surgery at the wrong facility, or if they are

reacting to knowledge spillovers from the network that mitigate the facility disadvantages.

These last results, if substantial, further suggest that there is a risk of adverse effects to

patients when social interaction induces network effects in low volume hospitals.

Table 4 here
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IV Conclusion

Our study of medical practice, like many others, finds variations in the rates of diagnostic

and treatment choices for patients across regions. These variations are sustained, even

between regions of a single state, after controlling for demographic and illness conditions

in some detail. Our theoretical model attempts to develop an explanation of the phenom-

enon in terms of social influences. We show, in Proposition 1, how the observed pattern

of regional practice norms could arise in equilibrium. But perhaps the more striking

result is Proposition 2, where we find that, starting from almost any initial condition,

simple adaptive behavior leads to the emergence of co-existent norms.

Although our model is designed with the health care problem in mind, there are other

applications. Consider corruption of government officials, for instance. Let A denote the

risky act of soliciting a bribe, while B denotes not demanding a bribe. People who are

likely to accede to the demand are the α-types, and β-types are likely to refuse. Now our

results can be used to illustrate how regional governance norms emerge.

Regional variation does not necessarily imply unwarranted or welfare-reducing choices.

If knowledge spillovers are significant, patients could, on the whole, be better off when

physicians utilize the local pool of expertise in a particular procedure. On the other hand,

as Proposition 3 illustrates, there are also benefits associated with a heterogeneity of skills

in the local physician population, so that a policy of enforced procedure guidelines could

dominate the equilibrium outcome. Our empirical results on patient welfare are mixed,

yet they do provide some evidence that network effects may contribute systematically to

adverse outcomes. Variations in the length of hospital stay are not systematically linked

to treatment variations, but network effects appear to promote surgical intervention in

the risky setting of a low-volume hospital. A limitation of our study of outcomes is

that we do not have access to longitudinal patient records, and the question needs to be

addressed with richer data.

There have been significant innovations in cardiac care in the last several years. While

we assume a fixed technology, our model can be extended to account for innovations.

Innovations in medicine often make a procedure viable for new segments of the patient
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population. In a version of our model with multiple types, this leads to regional differences

in the propensity to adopt new technologies. Depending again on the population mix,

quick shifts to the new innovation arise in some regions, while others remain resistant.

To examine social interaction among physicians in hospital settings for advanced

treatment such as this one, we traced the aggregate treatment tendencies of a hypothetical

social network by identifying the most likely points of mutual contact between physicians.

In doing so, we have found that, controlling for patient characteristics, a patient will be

more likely to receive angiography or the surgical options if the attending physician is in

a group prone to recommend those options. While our construction of social networks is

merely suggestive of what in reality is a much richer and more subtle set of interactions, it

contains information that is empirically relevant to treatment choices, and its explanatory

power appears robust across patient populations.
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Appendix

Proof of Proposition 1

Proof. Since the process on Z is irreducible and aperiodic, it has an essentially unique

invariant distribution. Each state can be specified in terms of m, the location of the

first zero. First we define the probabilities b(m) and d(m) of transition m→m+ 1 and

m → m− 1 respectively. Recalling that the rate of arrival of patients is one, these are
given by:

b(m) =


pW if m < 0

pE otherwise.

In other words, m moves to the right if an α-patient arrives at m, which happens with

probability pW in the West and pE in the East.

d(m) =


1− pW if m ≤ 0

1− pE otherwise.

In other words, m moves to the left if a β-patient arrives at m− 1, which happens with
probability 1− pW in the West and 1− pE in the East. The process is reversible, so that

invariant distributions can be obtained from the detailed balance conditions:

b(m− 1)ρ(m− 1) = d(m)ρ(m).

We can confirm that these are satisfied. In case m ≤ 0, we can substitute for ρ and

confirm that

b(m− 1)
d(m)

=
pW

1− pW
=

ρ(m)

ρ(m− 1) .
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When m > 0,
b(m− 1)
d(m)

=
pE

1− pE
=

ρ(m)

ρ(m− 1) .

So ρ(·) is an invariant distribution. It is not a mixture of δ0 and δ1, hence the process

coexists.

Proof of Proposition 2.

Proof. Let ξxt denote the process at time t when the initial configuration has A at site

x, and B elsewhere. In this case the A-region will always constitute an interval, unless

ξxt has no A’s at all. Let Lt ≡ mini{i|ξxt (i) = A} and Rt ≡ maxi{i|ξxt (i) = A}, so that
[Lt, Rt] denotes the A-region (initially, L0 = R0 = x). We first show that for x ∈ West,
and conditioning on the event

Ω = {Rt ≥ Lt for all t > 0},

ξxt , grows linearly in time until Rt reaches the East/West boundary (specifically, until

Rt = −1). Thereafter, only Lt extends westwards. Given pW > 1/2, pE < 1/2, and if

0 > Rt > Lt, Rt and Lt perform independent random walks according to:

Rt →


Rt + 1 at rate λ

Rt − 1 at rate 1

(5)

Lt →


Lt − 1 at rate λ

Lt + 1 at rate 1

(6)

where λ = pW /(1− pW ) > 1. Then, following Durrett (p. 38), and conditioning on Ω,

Rt − x

t
→ (λ− 1) and

Lt − x

t
→−(λ− 1) a.s.
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Once Rt = −1, conditional on Ω, Rt evolves like the boundary in Proposition 1. An

analogous statement holds for the evolution of B regions in the East. Next we consider

an arbitrary configuration ξ and index the A and B regions as follows. Let A0 denote the

easternmost A-region that still occupies sites in the West: i.e. A0 is a set of contiguous

sites with A0∩ West 6= ∅ and [i > maxA0 & i < 0] ⇒ ξ(i) = B. Similarly B0 denotes

the set of contiguous sites with B0∩ East 6= ∅ and [i < minB0 & i > 0] ⇒ ξ(i) = A. If

ξ is chosen according to νθ then, with probability one, both A0 and B0 will exist, and

share a common boundary (defined as in Proposition 1, as the location of the first B in

B0). Label the A-region immediately to the west of A0 by A−1 and the nearest eastern

region by A+1, and so on. We do the same for B-regions, with Eastern regions having

positive indices and western regions having negative ones. Now A regions grow in the

West, B-regions grow in the East, and the A0/B0 boundary evolves like the boundary

of states in the sub-chain on S in Proposition 1, unless one of A0 or B0 becomes extinct

(the right boundary becomes smaller than its left boundary). In case A0 or B0 becomes

extinct, we relabel indices according to the scheme above and get a new A0/B0 boundary.

Since, with probability one, there are initially infinitely many A and B regions, there are

always A and B regions available to be relabelled. As t→∞, |A0|→∞ and |B0|→∞
and their extinction probability becomes zero. All B-regions in the West and A-regions

in the East become extinct. As t → ∞ the probability, for x ∈ West, that ξt(x) = B

approaches the probability that the A0/B0 boundary is at y ≤ x, which converges to

ρ(x):

Prob {ξt(x) = B} =
X
i≤x

ρ(i).

So, observing that Ω = {A,B}Z carries the product topology, all the finite dimensional
distributions converge as well, implying weak convergence of πt to ρ.

Proof of Proposition 3

Proof. First we describe the expected utility at location x in the long-run co-existent

outcome ρ. Suppose x < 0 (x is in the West). Expected utility at x is a weighted sum of
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three terms:

U1 ≡ pW πA(α,A,A) + (1− pW )πA(β,A,A) (7)

U2 ≡ pWπB(α,B,B) + (1− pW )πB(β, B, B) (8)

U3 ≡ pWπA(α,A,B) + (1− pW )πB(β,A, B) (9)

with corresponding weights (1) the probability that x is in the interior of a region of A’s,

(2) the probability that x is in the interior of a region of B’s, and (3) the probability that

x is at a boundary. These probabilities can be explicitly computed from Proposition 1.

The expected utility for a location in the East can be obtained in a similar manner. With

enforced procedure guidelines the expected utility at x < −1 (interior West) is a weighted
sum of

V1 ≡ pW πA(α,A,A) + (1− pW )πB(β,A,A) (10)

V2 ≡ pWπA(α,B,B) + (1− pW )πB(β,B,B) (11)

V3 ≡ pWπA(α,A,B) + (1− pW )πB(β,A,B) (12)

with weights (1) p2W , (2) (1−pW )2, and (3) 2pW (1−pW ) respectively. In the interior East
the weights are p2E, (1−pE)2, and 2pE(1−pE) respectively. At x ∈ {−1, 0}, one neighbor
is in the East and one is in the West so that the weights are pEpW , (1 − pE)(1 − pW ),

and pE(1 − pW ) + pW (1 − pE) respectively. In the interior West, from the returns to

scale assumption, U1 > V1, U2 > V2, and U3 = V3. Procedure guidelines can do better if

U1 − V1 and U2 − V2 are small, U3 = V3 is larger than U1 and U2 and has much greater

weight under procedure guidelines than at the long-run outcome. These conditions can

be satisfied by non-pathological technologies, e.g.

πA(α,B,B) = 0.1 πA(β,B,B) = 0

πA(α,A,B) = 0.4 πA(β,A,B) = 0.1

πA(α,A,A) = 0.5 πA(β, A,A) = 0.11
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and similarly, for B,

πB(α,B,B) = 0.11 πB(β,B,B) = 0.5

πB(α,A,B) = 0.1 πB(β,A,B) = 0.4

πB(α,A,A) = 0 πB(β,A,A) = 0.1,

when pE and pW are close to 1/2.17 For expected utility at the long-run outcome, the

weight of the term U3 becomes small as pE and pW become close to 1/2. For procedure

guidelines the weight of V3 becomes close to 1/2, and so guidelines do better. This

argument applies to the interior East with appropriate change of notation. For the case

of x ∈ −1, 0, assuming pW and pE are both close to 1/2, expected utility under the

guidelines is approximately equal to the expected utility in either the interior East or the

interior West under guidelines. Therefore the long-run outcome ρ is dominated by the

policy of procedure guidelines.

The Assortativity Index

We measure the extent of assortative selection based on physician residency for each

of eleven Florida districts and for each year between 1993 and 2000 by means of an

assortativity coefficient (Newman 2002). Given the set of physicians practicing in a

given district, any two physicians are said to have a link between them if they have

practiced at the same hospital in the observed year. If a given pair of physicians have

two hospitals in common we only count one link between them. There are two kinds

of links: links between two doctors who completed residency at the same hospital (in

which case the doctors are said to be of the same type), and links between those who

did not. The assortativity coefficient tells us whether, and to what extent, the observed

proportion of links between matching types exceeds that which we would get on average

by randomly assigning links within the same set of physicians. The value of the coefficient

is normalized to vary from a minimum of −1 (perfect disassortativity) to a maximum
of 1 (perfect assortativity). A value of zero indicates an apparently random network
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structure.

Consider a simple example. There is a population of individuals, 50% of type A, and

50% of type B. If A types have links only with other A types, and B types only with

other B’s, the assortativity coefficient for the population will be 1, provided also that

there is at least one link between two A types and one link between two B’s. If on the

other hand every link pairs a type A with a type B, the coefficient will take the value

−1.
The explicit computation can be described as follows. Each physician can be one of

N types, where N is the total number of distinct types represented in the district. Let

m represent a symmetric NxN matrix, the ij-th entry of which indicates the number

of links between a physician of type i and a physician of type j. However, if i 6= j, we

divide this number by two to avoid double counting across the ij-th and ji-th entries.

A doctor is not counted as linked to herself, and if no link exists for a given type pair,

the relevant matrix entry (or entries) are zero. Define the normalized matrix e = m
||m|| ,

where ||m|| denotes the sum of the elements of m. The value of the coefficient is given

by (Newman 2002):

a =
Tr(e)− ||e2||
1− ||e2||

Our calculations do not indicate a high degree of assortativity within the districts.

The values for all years range from −0.12 to 0.05, averaging −0.016. Physicians simply
do not appear to locate with strong preferences regarding the residency cohort of their

potential peers.

31



References

[1] Becker, G. and K. M. Murphy (2001) Social Economics: Market Behavior in a Social

Environment. Cambridge: Belknap-Harvard University Press.

[2] Bernheim, D. (1994) “A Theory of Conformity,” Journal of Political Economy, 102

(5): 841-877.

[3] Bikhchandani, S., A. Chandra, D. Goldman, and I. Welch (2001), “The economics

of iatroepidemics and quackeries: physician learning, informational cascades, and

geographic variation in medical practice,” UCLA working paper.

[4] Birkmeyer, J.D. (2000), “High-risk surgery–follow the crowd,”Journal of the Amer-

ican Medical Association 283(9):1191—1193.

[5] Bramson, M. and D. Griffeath (1981), "On the Williams-Bjerknes Tumour Growth

Model I," The Annals of Probability,, 9, 173-185.

[6] Brock, W. and S. Durlauf (2001) “Discrete Choice with Social Interactions,” Review

of Economic Studies, 68 (2), 235-260.

[7] Center for Evaluative Clinical Sciences, Dartmouth Medical School (1999a), The

Dartmouth Atlas of Health Care, Hanover, NH.

[8] Center for Evaluative Clinical Sciences, Dartmouth Medical School (1999b), The

Dartmouth Atlas of Cardiovascular Care , Hanover, NH.

[9] Charlson, M.E., P. Pompei, K.L. Ales, and C.R. McKenzie (1987), “A new method

of classifying prognostic comorbidity in longitudinal studies: development and vali-

dation,” Journal of Chronic Disorders 40(5):373—383

[10] Cutler, M., and M. McClellan (1996), “The determinants of technological change in

heart attack treatment,” NBER Working Paper 5751.

[11] Durrett, R. (1988) Lecture Notes on Particle Systems and Percolation, Wadsworth.

[12] Eagle, K.A., et al. (1999), “ACC/AHA guidelines for coronary artery bypass graft

surgery: A report of the American College of Cardiology/American Heart Associa-

tion Task Force on Practice Guidelines (Committee to Revise the 1991 Guidelines

for Coronary Artery Bypass Graft Surgery),” Journal of the American College of

Cardiology 34(4):1262—1347.

[13] Elixhauser, et al. (1998), “Comorbidity measures for use with administrative data,”

Medical Care 36:8—27.

[14] Ellison, G. (1993), “Learning, local interaction, and coordination,” Econometrica

61:1047—1071.

32



[15] Ellison, G., and D. Fudenberg (1993), “Rules of thumb for social learning,” Journal

of Political Economy 101: 612—643.

[16] Goolsbee, Austan and Peter J. Klenow, (2002), "Evidence on Learning and Network

Externalities in the Diffusion of Home Computers," Journal of Law and Economics,

Volume XLV(October): 317-343.

[17] Garber, A., and N. Solomon (1999), “Cost-effectiveness of alternative test strategies

for the diagnosis of coronary artery disease,” Annals of Internal Medicine 130:719—

728.

[18] Glaeser, E. and J. Scheinkman (2002), “Non-market Interactions,” in: Advances in

Economics and Econometrics: Theory and Applications, Eighth World Congress,

M. Dewatripont, L.P. Hansen, and S. Turnovsky (eds.), Cambridge: Cambridge

University Press.

[19] Gunnar, R.M., P.D. Bourdillon, D.W. Dixon, et al. (1990), “ACC/AHA guidelines

for the early management of patients with acute myocardial infarction: A report for

the American College of Cardiology/American Heart Association Task Force on As-

sessment of Diagnostic and Therapeutic Cardiovascular Procedures (subcommittee

to develop guidelines for the early management of patients with acute myocardial

infarction),” Circulation 82:664-707.

[20] Health Care Financing Administration (2002), Clinical Classifications Software

(CCS), 2002 Software and User’s Guide.

[21] Kandori, M., G. Mailath, and R. Rob (1993), “Learning, mutation, and long run

equilibria in games,” Econometrica 61:29—56.

[22] Liggett, Thomas M. (1999), Stochastic Interacting Systems: Contact, Voter and

Exclusion Processes. Heidelberg: Springer-Verlag.

[23] Manski, C.F. (1995), Identification Problems in the Social Sciences , Cambridge, MA:

Harvard University Press.

[24] Merton, R.K., G.G. Reader, and P. Kendall, eds. (1957), The Student Physician,

Cambridge, MA: Harvard University Press.

[25] Morris, S. (2000), “Contagion,” Review of Economic Studies 67(1):57-78.

[26] Newman, M.E.J. (2002), "Assortative mixing in networks," Phys. Rev. Lett. 89,

208701.

[27] Newman, M.E.J., D.J. Watts, and S.H. Strogatz (2002), “Random graph models of

social networks,” Proceedings of the National Academy of Sciences 99(suppl.1):2566—

2572.

33



[28] O’Connor, G., et al. (1999), “Geographic variation in the treatment of acute myocar-

dial infarction: The Cooperative Cardiovascular Project,” Journal of the American

Medical Association 281(7):627—633.

[29] Phelps, C. E. (2000), “Information diffusion and best practice adoption,” in A.J.

Culyer and J.P. Newhouse, eds., Handbook of Health Economics, Volume 1 , Elsevier

Science B.V., 223—264.

[30] Phelps, C.E., and C. Mooney (1993), “Variations in medical practice use: causes

and consequences,” in R.J. Arnould, R.F. Rich, and W. White, eds., Competitive

Approaches to Health Care Reform, Washington, DC: The Urban Institute Press.

[31] Phelps, C.E., C. Mooney, A.I. Mushlin, and N.A.K. Perkins (1992), “Doctors Have

Styles, and They Matter!” (Department of Community and Preventive Medicine,

University of Rochester, Rochester, NY).

[32] Pilote, L., et al. (1995), “Regional variation across the United States in the man-

agement of acute myocardial infarction,” The New England Journal of Medicine

333(9):565—572.

[33] Romano, P.S., L.L. Roos, and J. Jollis (1993), “Adapting a clinical comorbidity

index for use with ICD-9-CM administrative data: Differing perspectives,” Journal

of Clinical Epidemiology 46(10):1075—1079.

[34] Schelling, T.C. (1971), “Dynamic Models of Segregation," Journal of Mathematical

Sociology 1:143—186.

[35] Wennberg, J., and A. Gittelsohn (1973), "Small area variations in health care deliv-

ery," Science 182:1102—1108.

[36] Wilkes, M.S, I.D. Coulter, and E.L. Hurwitz (1998), “The relationship of specialty

and training site on residents’ attitudes toward a changing health care system,”

Research in the Sociology of Health Care 1998(15):129—144.

[37] Yedidia, M.J., C.A. Berry, and J.K. Barr (1996), “Changes in physicians’ attitudes

toward AIDS during residency training: a longitudinal study of medical school grad-

uates,” Journal of Health and Social Behavior 37(2):179—191.

[38] Young, H.P., and M.A. Burke (2001), “Competition and custom in economic con-

tracts: a case study of Illinois agriculture,” American Economic Review 91:559—573.

[39] Young, H. P. (1998), Individual Strategy and Social Structure: An Evolutionary

Theory of Institutions, Princeton, NJ: Princeton University Press.

[40] Young, H.P. (1996), “The economics of convention,” Journal of Economic Perspec-

tives 10:105—122.

[41] Young, H.P. (1993), “The evolution of conventions,” Econometrica 61:57—84.

34



Endnotes

1. The details of medical procedure choice are sufficiently different that a direct ap-

plication of their result seems not to be possible here. The necessary departure,

along lines suggested by Ellison (1993) and Morris (2000), introduces significant

conceptual and technical differences.

2. This is similar to the risk-dominance property in the theory of finite games (see

Ellison, 1993).

3. For formal definitions of these properties, see Norris, (1997).

4. While we deal with the much simpler one-dimensional case, in light of Bramson

and Griffeath our results should generalize to Z2 and higher dimensions).

5. The policy alternative of moving patients to regions based on their characteristics

is considered infeasible. We look for policies that seek to improve welfare without

relaxing the institutional constraints imposed in the model.

6. The requirement that all patients be better off, in every state, is too stringent a

standard, and quite removed from public policy debates. We may think of expected

outcomes as the expected utility of a patient before she becomes aware of her

type (the probabilities pE and pW now correspond to the likelihood of developing

characteristic α in the East and West respectively).

7. The CCS Diagnosis Categories were used to identify the 56 ICD-9CM categories

relevant to these patients and to identify broad categories of comorbidities.

8. Charlson Index is computed according to a standard algorithm (Charlson et. al.

1987). Authors are grateful to Charles Burchill of the University of Manitoba for

supplying the macro to compute the Charlson index.

9. These thresholds distinguishing high volume from low volume hospitals are some-

times used in the medical literature. See, e.g. Birkmeyer, 2000.

10. For our purposes a ‘patient’s doctor’ means her attending physician, typically a

cardiologist, who is the party primarily responsible for the choice of treatment.

The frequency of a procedure (such as corrective surgery) for a given attending

physician represents the number of his patients who received heart surgery on his

recommendation, regardless of who performed the surgery.

11. This procedure is also frequently referred to as cardiac catheterization, although the

two are not technically the same thing. Coronary angiography consists of viewing

the coronary arteries with an X-ray technique called fluoroscopy. Catheterization

is the means by which the dyes required for angiography are delivered to the aorta.

We loosely use the general term angiography to refer specifically to coronary an-

giography.
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12. Results for a separate sample from the year 2000 are reported in the appendix, Table

A2. These results are qualitatitively identical with respect to the focal variables.

13. The regressions creating the IV for the network rates yielded adjusted r-squares of

.68 and .65 for angiography and surgery, respectively.

14. In deriving the predicted probabilities we hold individual patient characteristics

fixed at the statewide means, but use district-specific means for demographic vari-

ables and for physician network rates of angiography and surgery, respectively.

15. The model is specified with the same regressors as in Table 2, except for the omission

of physician network rate of surgery. The sample includes only individuals who

receive surgery and the network effects are thus predetermined.

16. Results for a separate sample from the year 2000 are reported in the appendix,

Table A4. Again, these results are qualitatitively similar with respect to the focal

variables.

17. In contrast, for the technology given in section II-A, the long-run outcome is always

superior to enforced procedure guidelines.
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Table 1 Patterns of Regional Variation

1994 Sample
Proportion Receiving Angiography Proportion Receiving Surgery

Districts Mean Age All ages age<55 age>74 All ages age<55 age > 74
1 66 0.49 0.63 0.42 0.60 0.74 0.50
2 65 0.63 0.61 0.47 0.80 0.89 0.56
3 69 0.30 0.39 0.20 0.44 0.53 0.29
4 67 0.50 0.58 0.36 0.77 0.87 0.56
5 70 0.25 0.43 0.16 0.54 0.70 0.41
6 68 0.45 0.49 0.32 0.65 0.69 0.47
7 67 0.53 0.58 0.44 0.67 0.67 0.55
8 70 0.36 0.49 0.24 0.54 0.64 0.36
9 71 0.29 0.46 0.20 0.32 0.50 0.22

10 71 0.36 0.44 0.26 0.48 0.61 0.33
11 70 0.28 0.43 0.16 0.39 0.56 0.22

Statewide 69 0.39 0.50 0.26 0.56 0.69 0.39
Observations 19192 19192 2369 6208 19192 2369 6208

2000 Sample
Proportion Receiving Angiography Proportion Receiving Surgery

Districts Mean Age All ages age<55 age>74 All ages age<55 age > 74
1 68 0.65 0.73 0.52 0.73 0.75 0.60
2 66 0.66 0.66 0.61 0.87 0.87 0.76
3 69 0.45 0.57 0.37 0.74 0.77 0.66
4 67 0.63 0.70 0.56 0.87 0.90 0.80
5 71 0.50 0.56 0.43 0.86 0.89 0.79
6 70 0.60 0.70 0.47 0.71 0.81 0.57
7 68 0.43 0.50 0.38 0.67 0.70 0.59
8 70 0.56 0.61 0.43 0.62 0.67 0.45
9 70 0.36 0.31 0.32 0.52 0.41 0.48

10 72 0.36 0.41 0.28 0.64 0.68 0.50
11 69 0.56 0.70 0.45 0.68 0.82 0.53

Statewide 69 0.52 0.60 0.43 0.74 0.77 0.62
Observations 15251 15251 1914 5427 15251 1914 5427



Table 2. Treatment Choice Models, 1994
Instrumental Variables Probit, second stage estimates

Dependent  Variable: Angiography Surgery
Estimated Marginal Estimated Marginal

coefficient* Std. Err. Effects coefficient* Std. Err. Effects
i.v., network rate 2.490 a 0.164 0.890 2.933 a 0.138 1.147

scale economies, angiography 0.632 a 0.031 0.222
scale economies, bipass surgery 0.350 a 0.038 0.135

scale economies, angioplasty 0.611 a 0.041 0.235
Regional Characteristics

district1 -1.937 a 0.168 -0.336 -2.082 a 0.212 -0.574
district2 -0.723 a 0.103 -0.207 -0.761 a 0.142 -0.293
district3 -0.753 a 0.095 -0.221 -0.947 a 0.115 -0.359
district4 -0.913 a 0.097 -0.259 -1.497 a 0.138 -0.517
district5 -0.658 a 0.093 -0.202 -0.788 a 0.123 -0.305
district6 -0.350 a 0.076 -0.116 -0.367 a 0.105 -0.145
district7 -0.930 a 0.111 -0.256 -1.187 a 0.147 -0.432
district8 -1.355 a 0.109 -0.336 -1.823 a 0.144 -0.588
district9 -0.530 a 0.119 -0.164 -0.467 a 0.153 -0.185

district10 -0.554 a 0.127 -0.173 -0.605 a 0.175 -0.237
population 65 and over -0.001 a 0.000 -0.001 -0.003 a 0.001 -0.001

income per capita -0.001  0.005 0.000 0.008  0.006 0.003
population growth 0.010 a 0.002 0.004 0.005 a 0.002 0.002

mds per capita -0.033 c 0.018 -0.012 -0.168 a 0.025 -0.066
high school graduation rate 0.047 a 0.005 0.017 0.066 a 0.006 0.026

Patient Characteristics
emergency room admission -0.162 a 0.023 -0.058 -1.789 a 0.038 -0.570

transferred to another facility -1.209 a 0.092 -0.295 -1.329 a 0.091 -0.466
male 0.102 a 0.023 0.036 0.242 a 0.028 0.095
black -0.364 a 0.063 -0.118 -0.465 a 0.074 -0.184

hispanic -0.048  0.057 -0.017 -0.026  0.069 -0.010
other race -0.204 b 0.082 -0.069 0.216 b 0.110 0.082

age -0.022 a 0.002 -0.008 -0.034 a 0.002 -0.013
patient insured by medicare 0.025  0.032 0.009 -0.038  0.041 -0.015

index of risk of mortality 0.075 a 0.017 0.027 0.134 a 0.021 0.052
deficiency anemias -0.088  0.063 -0.031 -0.288 a 0.075 -0.114

chronic pulmonary disease -0.210 a 0.035 -0.072 -0.273 a 0.043 -0.108
coagulopthy 0.290 a 0.089 0.109 0.885 a 0.137 0.283

depression -0.499 a 0.126 -0.154 -0.884 a 0.140 -0.333
diabetes -0.101 a 0.034 -0.036 -0.161 a 0.043 -0.064

diabetes w/ chronic complications -0.344 a 0.079 -0.112 -0.406 a 0.093 -0.161
hypertension -0.031  0.024 -0.011 -0.035  0.030 -0.014

hypothyroidism -0.087  0.062 -0.030 -0.175 b 0.073 -0.069
fluid and electrolyte disorders 0.059 c 0.035 0.021 0.168 a 0.043 0.065

other neurological disorders -0.181 b 0.090 -0.062 -0.237 b 0.104 -0.094
obesity 0.083  0.072 0.030 -0.164 b 0.084 -0.065

peripheral vascular disease -0.093 c 0.052 -0.033 -0.253 a 0.063 -0.100
renal failure -0.323 a 0.077 -0.106 -0.327 a 0.091 -0.130

solid tumor w/out metastasis -0.280 a 0.071 -0.093 -0.357 a 0.082 -0.142
peptic ulcer disease x bleeding -0.049  0.103 -0.017 -0.346 a 0.119 -0.137

intercept -3.233 a 0.251 -2.243 a 0.310
Observed Proportion 0.385  0.564
Predicted Proportion 0.319  (at x-bar) 0.579 (at x-bar)

Number of Observations 19192 19192
Log Likelihood -10034  -6137.438

*Significance Level: a=1%,b=5% c=10%



Table 3 Estimated Regional Variations*
Treatment Outcomes

           Angiography      Surgery        Length of Stay a

District 1994 2000 1994 2000 1994 2000
1 0.40 0.66 0.63 0.84 1.84 1.03

2 0.58 0.72 0.80 0.92 1.64 1.33

3 0.21 0.58 0.36 0.80 1.88 1.44

4 0.42 0.66 0.61 0.94 1.77 1.42

5 0.19 0.58 0.40 0.91 1.66 1.07

6 0.40 0.65 0.67 0.87 1.81 1.28

7 0.51 0.69 0.79 0.79 1.59 1.32

8 0.29 0.61 0.49 0.81 1.54 1.42

9 0.21 0.58 0.33 0.65 1.86 1.26

10 0.34 0.63 0.57 0.76 1.63 1.52

11 0.23 0.59 0.39 0.75 1.57 1.36

coef. Var. 0.38 0.24 0.31 0.10 0.07 0.12
* Predicted values from each model, holding individual covariates at statewide means
a Expressed in natural logarithms



Table 4. Treatment Choice Models in Low Volume Hospitals, 1994
Instrumental Variables Probit, second stage estimates

Dependent  Variable: Angiography Surgery
Estimated Marginal Estimated Marginal

coefficient* Std. Err. Effects coefficient* Std. Err. Effects
i.v., network rate 2.322 a 0.237 0.424 3.115 a 0.183 0.537

Regional Characteristics
district1 -4.358 a 0.338 -0.123 -4.109 a 0.346 -0.128
district2 -1.086 a 0.175 -0.100 -1.398 a 0.211 -0.104
district3 -2.096 a 0.174 -0.201 -1.936 a 0.196 -0.170
district4 -1.666 a 0.175 -0.127 -1.951 a 0.218 -0.116
district5 -1.486 a 0.199 -0.140 -1.852 a 0.262 -0.145
district6 -0.973 a 0.158 -0.100 -0.830 a 0.183 -0.087
district7 -2.452 a 0.226 -0.153 -2.511 a 0.264 -0.143
district8 -3.035 a 0.218 -0.195 -3.065 a 0.250 -0.177
district9 -1.793 a 0.236 -0.126 -1.556 a 0.333 -0.114

district10 -2.163 a 0.257 -0.141 -2.499 a 0.342 -0.140
population 65 and over -0.003 a 0.001 -0.001 -0.001 0.001 0.000

income per capita 0.001  0.007 0.000 -0.008 0.008 -0.001
population growth 0.013 a 0.003 0.002 0.020 a 0.003 0.004

mds per capita -0.069 b 0.028 -0.013 -0.220 a 0.036 -0.038
high school graduation rate 0.108 a 0.009 0.020 0.139 a 0.010 0.024

Patient Characteristics
emergency room admission -0.177 a 0.043 -0.034 -1.782 a 0.064 -0.520

transferred to another facility -1.151 a 0.122 -0.126 -1.246 a 0.115 -0.125
male 0.117 a 0.039 0.021 0.306 a 0.049 0.052
black -0.535 a 0.101 -0.071 -0.526 a 0.114 -0.066

hispanic 0.106  0.090 0.020 0.376 a 0.110 0.079
other race -0.042  0.179 -0.008 0.245 0.198 0.049

age -0.026 a 0.003 -0.005 -0.030 a 0.003 -0.005
patient insured by medicare 0.047 a 0.055 0.008 -0.096 0.069 -0.017

index of risk of mortality 0.084 a 0.029 0.015 0.153 a 0.036 0.026
deficiency anemias -0.047  0.106 -0.008 -0.206 c 0.124 -0.031

chronic pulmonary disease -0.149 b 0.061 -0.025 -0.290 a 0.072 -0.044
coagulopthy 0.284 c 0.171 0.061 0.690 a 0.225 0.174

depression -0.412 b 0.203 -0.058 -0.622 b 0.259 -0.071
diabetes -0.052  0.059 -0.009 -0.074 0.076 -0.012

diabetes w/ chronic complications -0.346 b 0.147 -0.051 -0.338 b 0.158 -0.047
hypertension -0.030  0.041 -0.005 0.014 0.051 0.002

hypothyroidism -0.114  0.115 -0.019 -0.081 0.132 -0.013
fluid and electrolyte disorders 0.076  0.061 0.014 0.265 a 0.074 0.052

other neurological disorders -0.271 c 0.159 -0.042 -0.349 c 0.182 -0.048
obesity -0.035  0.120 -0.006 0.046 0.134 0.008

peripheral vascular disease -0.223 b 0.091 -0.036 -0.336 a 0.107 -0.047
renal failure -0.471 a 0.144 -0.064 -0.497 a 0.164 -0.062

solid tumor w/out metastasis -0.351 a 0.133 -0.052 -0.409 a 0.151 -0.055
peptic ulcer disease x bleeding -0.157  0.168 -0.026 -0.274 0.176 -0.040

intercept -6.427 a 0.512 -7.094 a 0.574
Observed Proportion 0.209 0.267
Predicted Proportion 0.106 (at x-bar) 0.098 (at x-bar)

Number of Observations 9273 8717
Log Likelihood -3431.074 -2237.908

*significance level a=1%,b=5% c=10%



Appendix: Results for 2000 sample

Table A2. Treatment Choice Models, 2000
Instrumental Variables Probit, second stage estimates

Dependent  Variable: Angiography Surgery
Estimated Marginal Estimated Marginal

coefficient* Std. Err. Effects coefficient* Std. Err. Effects
i.v., network angiography rate 2.631 a 0.184 1.050 2.286 a 0.188 0.545
scale economies, angiography 0.815 a 0.036 0.308

scale economies, bipass surgery 0.150 a 0.044 0.036
scale economies, angioplasty 1.282 a 0.067 0.405

Regional Characteristics
district1 0.690 a 0.199 0.259 -0.875 a 0.280 -0.283
district2 0.535 a 0.103 0.206 -0.644 a 0.153 -0.195
district3 0.634 a 0.129 0.243 -0.377 b 0.148 -0.102
district4 0.503 a 0.115 0.196 -0.414 a 0.156 -0.114
district5 0.372 a 0.109 0.146 -0.142  0.148 -0.036
district6 0.225 a 0.076 0.089 -0.323 a 0.106 -0.087
district7 0.527 a 0.159 0.203 -0.696 a 0.193 -0.215
district8 0.391 a 0.139 0.153 -0.222  0.194 -0.058
district9 0.099  0.115 0.039 0.403 a 0.137 0.080

district10 0.018  0.136 0.007 0.019  0.165 0.005
population 65 and over 0.002 a 0.000 0.001 -0.001 c 0.001 0.000

income per capita 0.000  0.004 0.000 -0.032 a 0.006 -0.008
population growth 0.007 a 0.002 0.003 0.008 a 0.003 0.002

mds per capita 0.060 a 0.016 0.024 -0.110 a 0.022 -0.026
high school graduation rate -0.033 a 0.006 -0.013 0.044 a 0.008 0.011

Patient Characteristics
emergency room admission 0.075 a 0.025 0.030 -1.594 a 0.042 -0.380

transferred to another facility -1.260 a 0.108 -0.406 -1.394 a 0.129 -0.482
male 0.034  0.024 0.014 0.154 a 0.034 0.037
black -0.103 c 0.054 -0.041 -0.285 a 0.070 -0.077

hispanic -0.057  0.058 -0.023 -0.134 c 0.078 -0.034
other race 0.078  0.077 0.031 0.053  0.119 0.012

age -0.018 a 0.002 -0.007 -0.031 a 0.002 -0.007
patient insured by medicare 0.011  0.035 0.004 -0.088 c 0.052 -0.021

index of risk of mortality 0.019  0.017 0.007 0.105 a 0.024 0.025
deficiency anemias 0.018  0.059 0.007 0.065  0.082 0.015

chronic pulmonary disease -0.187 a 0.036 -0.074 -0.237 a 0.050 -0.061
coagulopthy 0.235 a 0.071 0.093 0.666 a 0.118 0.111

depression -0.277 a 0.094 -0.109 -0.475 a 0.110 -0.139
diabetes -0.098 a 0.033 -0.039 -0.208 a 0.047 -0.053

diabetes w/ chronic complications -0.171 b 0.080 -0.068 -0.436 a 0.107 -0.125
hypertension -0.066 a 0.023 -0.026 -0.027  0.034 -0.007

hypothyroidism 0.017  0.054 0.007 -0.147 b 0.069 -0.037
fluid and electrolyte disorders -0.137 a 0.048 -0.055 -0.174 a 0.061 -0.045

other neurological disorders -0.307 a 0.111 -0.120 -0.264 b 0.131 -0.071
obesity 0.034  0.056 0.013 0.062  0.082 0.014

peripheral vascular disease 0.017  0.047 0.007 -0.117 c 0.065 -0.029
renal failure 0.027  0.072 0.011 -0.007  0.094 -0.002

solid tumor w/out metastasis -0.090  0.061 -0.036 -0.208 b 0.083 -0.055
peptic ulcer disease x bleeding 0.035  0.119 0.014 -0.178  0.147 -0.046

intercept 0.555 c 0.320 -0.908 c 0.479
Observed Proportion 0.522  0.737
Predicted Proportion 0.494  (at x-bar) 0.845 (at x-bar)

Number of Observations 15251 15251
Log Likelihood -8684.8224  -3920.485

*Significance Level: a=1%,b=5% c=10%



Appendix: Results for 2000 sample

Table A4. Treatment Choice Models in Low Volume Hospitals, 2000
Instrumental Variables Probit, second stage estimates

Dependent  Variable: Angiography Surgery
Estimated Marginal Estimated Marginal

coefficient* Std. Err. Effects coefficient* Std. Err. Effects
i.v., network rate 1.570 a 0.423 0.206 0.962 c 0.517 0.171

Regional Characteristics
district1 -0.790 0.885 -0.062 -4.292 a 1.392 -0.180
district2 0.473 0.392 0.081
district3 -0.757 0.647 -0.073
district4 0.038 0.569 0.005 -3.131 a 1.004 -0.141
district5 -0.216 0.560 -0.025 -2.225 b 0.928 -0.147
district7 -0.737 0.769 -0.060 -4.717 a 1.300 -0.192
district8 -0.367 0.730 -0.038 -3.402 a 1.233 -0.206
district9 -1.549 a 0.580 -0.106 -2.608 b 1.091 -0.247

district10 -1.054 0.743 -0.077 -3.238 b 1.259 -0.212
population 65 and over 0.003 0.002 0.000 0.002 0.004 0.000

income per capita -0.035 0.026 -0.005 -0.092 c 0.048 -0.016
population growth 0.028 a 0.007 0.004 0.036 a 0.011 0.006

mds per capita 0.175 a 0.058 0.023 -0.192 0.172 -0.034
high school graduation rate 0.031 0.030 0.004 0.186 a 0.049 0.033

Patient Characteristics
emergency room admission -0.285 a 0.075 -0.042 -1.794 a 0.160 -0.528

transferred to another facility -2.282 a 0.401 -0.146
male 0.133 c 0.069 0.017 0.324 a 0.112 0.057
black 0.087 0.120 0.012 -0.045 0.200 -0.008

hispanic -0.312 0.201 -0.033 -0.555 b 0.240 -0.073
other race 0.096 0.208 0.014 -0.126 0.365 -0.021

age -0.022 a 0.004 -0.003 -0.033 a 0.007 -0.006
patient insured by medicare -0.051 0.096 -0.007 0.035 0.160 0.006

index of risk of mortality 0.072 0.047 0.009 0.118 0.075 0.021
deficiency anemias -0.030 0.149 -0.004 0.107 0.266 0.020

chronic pulmonary disease -0.113 0.106 -0.014 -0.246 0.180 -0.040
coagulopthy 0.758 a 0.218 0.162 0.774 b 0.350 0.205

depression -0.486 0.315 -0.045 -0.879 0.762 -0.089
diabetes -0.046 0.092 -0.006 -0.142 0.148 -0.024

diabetes w/ chronic complications -0.247 0.249 -0.027 -0.175 0.386 -0.028
hypertension -0.102 0.067 -0.013 -0.082 0.113 -0.014

hypothyroidism 0.051 0.141 0.007 -0.242 0.261 -0.037
fluid and electrolyte disorders -0.069 0.130 -0.009 0.077 0.203 0.014

other neurological disorders -0.087 0.310 -0.011 -0.016 0.415 -0.003
obesity -0.087 0.170 -0.011 0.213 0.299 0.043

peripheral vascular disease -0.119 0.138 -0.014 -0.246 0.253 -0.038
renal failure -0.045 0.207 -0.006 -0.118 0.303 -0.019

solid tumor w/out metastasis 0.034 0.181 0.005 -0.113 0.318 -0.019
peptic ulcer disease x bleeding 0.047 0.328 0.006 -0.217 0.665 -0.033

intercept -2.488 b 1.133 -7.244 a 2.038
Observed Proportion 0.214  0.245
Predicted Proportion 0.068  (at x-bar) 0.101 (at x-bar)

Number of Observations 3314 1880
Log Likelihood -1095.569  -500.646

*significance level a=1%,b=5% c=10%




