In Africa, the majority of the population lives in rural areas and is largely dependent on traditional agriculture. Although the share of agriculture to GDP has been declining, the sector still accounts for about 30 percent and employs about 70 percent of the African labor force. Therefore, the performance of the sector is crucial to economic growth and even more so to the livelihoods of the poor, especially as it relates to food security. Unfortunately, agricultural production on the continent experiences wide swings as a result of exogenous shocks. The performance of the African economies in 2011 will be affected by such shocks and how well-prepared the countries are to deal with them.

One of the main features of African agriculture is that it remains primarily dependent on rainfall. As such, any disruption in the amounts and patterns of rainfall has detrimental impact on agricultural production, overall economic growth and food security. Furthermore, climate change is increasingly threatening Africa’s agricultural production. Thus, unless there are concerted efforts to shift radically from rain-fed agriculture, Africa will remain exposed to the vagaries of the climate. But the challenges asso-
associated with climate change are compounded by the fact that many African governments are unprepared to deal with such shocks. In 2011, weather patterns, and especially draughts, could derail economic growth in Africa.

POLICY OPTIONS

In the short run, African countries can reduce the negative production effects caused by draughts by investing in draught-resistant crop varieties. Such technologies that could be adapted to many of the countries are available but the rate of diffusion has been slow. In addition, African countries have not invested adequately in post-harvest technologies. During periods of good rains, surplus crops (e.g. grains-maize, wheat, beans) go to waste or are sold at throw-away prices because of the lack of storage facilities or opportunities to process the crops (into powder milk or canned fruits, for example), so that they can be stored for longer periods of time. Investing in such technologies will greatly reduce the negative impact of weather conditions.

Clearly, rain-fed agriculture has limits and cannot be relied on to feed burgeoning populations or be a source of sustainable economic growth. In addition, there is increasing competition for water for various uses—especially with rapid growth in urban populations. Thus, in the long term, African countries must increase their investment in irrigation infrastructure and also water-conserving technologies such as drip irrigation, dam construction and rain water harvesting. Unfortunately many irrigation projects built before and soon after independence have been neglected and gone to disuse.

In terms of development cooperation, African governments should seek collaboration with countries that have advanced agricultural technologies suitable for harsh climates. A good example is Israel—a country which has made major strides in this direction. In addition, there is need to deepen collaboration in areas of research on agricultural technologies and water conservation.

Climate change does make the impact of adverse weather even more serious. As such, Africa must focus on climate change mitigation strategies. Farmers should be provided appropriate incentives to undertake agro-forestry projects to enhance carbon sequestration. Distributing climate data regarding seasonal climate forecasts and early warning systems can help small farmers make informed decisions. Capacity building, education, training and public awareness on climate-related issues should be prioritized and appropriately coordinated. These strategies will be important in reducing Africa’s exposure to the risks associated with the weather and changing climate.