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A Ignorable and Nonignorable SDL

We formalize the role of SDL in economic analysis using the concept of ignorability. Our 
approach is a direct extension of the ignorability of missing data developed by Rubin
(1976). Little (1993) anticipated much of our analysis, including the use of hierarchi-
cal models that introduced SDL via generalized randomized response. We first define 
the economic process model that the econometrician is trying to learn. We then define 
the inclusion process that determines which parts of the economic process are actually 
observed. This gives rise to the well-known concept of ignorable missing data or, equiva-
lently, ignorable inclusion. Finally, we formally define the SDL model and define ignorable 
statistical disclosure limitation.

A.1 The Economic Process Model

We consider a population of N entities that is described by a complete-data matrix Y , N ×
K, a process-parameter vector θp, P × 1, and two probability distributions: the data model
pY (Y |θp ) and the process-parameter prior distribution pθp (θp).

The econometrician seeks to conduct estimation and inference concerning finite-population 
estimands, functions of Y only, and super-population estimands, functions of the param-
eters θp. We distinguish between these two estimand types because the statistical agencies 
that collect and disseminate the data we are discussing in this paper consider themselves
to be engaged in producing finite-population estimands whereas the economists who an-
alyze these data are primarily conducting super-population estimation and inference.9

A.2 The Data Inclusion Model and Ignorable Inclusion

Next, we define the tools necessary to understand the properties of published (released) 
data from conventional surveys, censuses, and administrative record systems. The pop-
ulation inclusion matrix, R, N × K, indicates that an entity i has data for the associated

9Many SDL methods, as well as methods from the newer data-privacy literature in computer science, ex-
plicitly consider the properties of these methods for finite-population estimands whereas econometricians 
tend to focus on parametric (or semi-parametric) modeling focused on θp. The concept of ignorability was 
invented to allow a clean characterization of how the data collection process affects both types of modeling.
We are not trying to be overly philosophical, just to provide a direct link between the way the data collec-
tors think about the methods they use and the way data analysts trained in economics and econometrics
use those data.
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variable, rij = 1, or not, rij = 0. If you think that this is needlessly complex, remem-
ber that we have not said that N is known nor how the statistician came to observe any
element of Y . That is the role of the inclusion model: the distribution of R given Y is
pR|Y (R |Y, θD ). θD, is the design parameter vector, so named because it characterizes how
Y is observed, or the design of the survey or experiment. The design-parameter prior dis-
tribution is pθD|θp (θD |θp ) allows for potential dependence of the design on the process
parameters. The complete-data likelihood function10 is then

£θ (θp, θD |Y,R) = pY (Y |θp ) pR|Y (R |Y, θD ) = pY R (Y,R |θp, θD ) . (A.1)

The term “complete data” means that this likelihood function applies to estimation and
inference on the process and design parameters given a realization of Y,R from the super-
population.

The observed data matrix, in the absence of SDL, is Y (obs), N ×P , contains a data item in
y

(obs)
ij , if and only if rij = 1. The complement to the observed data matrix, in the absence

of SDL is Y (mis), which contains the unobserved data items corresponding to rij = 0. The
observed data likelihood function, in the absence of SDL is

£
(obs)
θ

(
θp, θD

∣∣Y (obs), R
)

= pY (obs)R

(
Y (obs), R |θp, θD

)
(A.2)

=

∫
pY R (Y,R |θp, θD ) dY (mis). (A.3)

The term “observed data” derives from the application of these modeling concepts to
sampling, experimental design, and unintentionally missing data (missing survey records
or responses, unreported administrative records, etc.). In the standard analysis of ignor-
ability (e.g., Gelman et al. 2013), the published data would be Y (obs). The notation may
seem awkward for the application to SDL, but it seems better to us to use this conven-
tional notation. Wherever the term Y (obs) occurs, think: the actual confidential data col-
lected by the statistical agency.

Inference and estimation, in the absence of SDL, are based on the joint posterior dis-
tribution of (θp, θD), given the observed data, which we assemble from the pieces defined
above as

pθpθD|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)
∝ pθD|θp (θD |θp ) pθp (θp) pY (obs)R

(
Y (obs), R |θp, θD

)
= pθD|θp (θD |θp ) pθp (θp)£

(obs)
θ

(
θp, θD

∣∣Y (obs), R
)
. (A.4)

In general, we focus interest on the posterior distribution of θp which, in the absence of

10The Rubin formulation includes the notion of fully observed covariates–variables that are never missing
in the population and never have to be collected. In a known, finite population, these consist of variables on
the frames used for sampling. Since these variables are also subjected to SDL when the data are published,
we include them in the population data matrix Y .
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SDL, is

pθP |Y (obs)R

(
θp
∣∣Y (obs), R

)
=

∫
pθ|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)
dθD (A.5)

∝
∫ ∫

pY (Y |θp ) pR|Y (R |Y, θD ) pθD|θp (θD |θp ) pθp (θp) dY
(mis)dθD

The data inclusion model is ignorable if

pθP |Y (obs)R

(
θp
∣∣Y (obs), R

)
≡ pθP |Y (obs)

(
θp
∣∣Y (obs)

)
. (A.6)

For reasons that will be clear shortly, we call this ignorable inclusion (or ignorable sampling,
or ignorable missing data, if the context of the inclusion model is clear).

Our definition of ignorability is general enough to cover observational data, survey
designs, experiments, and unintentional missing data models. It says that inference and
estimation about the super-population parameters is ignorable if it does not depend on
the unobserved data, Y (mis). It is not general enough to cover SDL because Y (obs) under-
goes an additional transformation before being published.

A.3 The SDL Model and Ignorable SDL

We characterize the SDL probabilistically using the same tools as we have used for the
data model, the inclusion model, and their parameters. The published data Z, N ×K, are
generated by the SDL model pZ|Y,R (Z |Y,R, θS ) with SDL-parameter vector θS . The SDL-
parameter prior distribution is pθS |θDθp (θS |θD, θp ). The likelihood function for the published
data is

£
(pub)
θ (θp, θD, θS |Z,R) =

∫
pZ|Y R (Z |Y,R, θS ) pY R (Y,R |θp, θD ) dY (A.7)

=

∫
pZ|Y R (Z |Y,R, θS ) pR|Y (R |Y, θD ) pY (Y |θp ) dY

Once again, estimation and inference are based on the posterior distribution of the
process parameters, which is derived from the joint posterior distribution of the model,
inclusion, and publication parameters given the published data and the inclusion matrix

pθ|ZR (θp, θD, θS |Z,R) ∝
∫
pZ|Y R (Z |Y,R, θS ) pY R (Y,R |θp, θD ) pθ (θ) dY

= pθ (θ)£
(pub)
θ (θp, θD, θS |Z,R) ,

where pθ (θ) = pθS |θDθp (θS |θD, θp ) pθD|θp (θD |θp ) pθp (θp). So that the posterior distribution
of the process parameters is

pθP |ZR (θp |Z,R) =

∫ ∫
pθ|ZR (θp, θD, θS |Z,R) dθDdθS. (A.8)
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The relation between equations (A.5) and (A.8) is

pθP |ZR (θp |Z,R) =

∫
pθP |Y (obs)R

(
θp
∣∣Y (obs), R

)
pY (obs)|ZR

(
Y (obs) |Z,R

)
dY (obs). (A.9)

That is, the posterior distribution of the process parameters θp given the published data
and inclusion matrix is the expectation of the posterior distribution of the process pa-
rameters given the observed data (the actual confidential data used by the agency) and
inclusion matrix with the expectation taken over the posterior predictive distribution of
the observed data given the published data and inclusion matrix. This formulation as-
sumes that the agency also publishes R, which is not innocuous but we will usually be
analyzing models in which we assume ignorable inclusion.

We define ignorable statistical disclosure limitation as

pθP |Y (obs)R

(
θp
∣∣Y (obs) = Z,R

)
≡ pθP |ZR (θp |Z,R) (A.10)

for all Y (obs), Z, and R.
The definition is subtle, so we repeat it in words. The SDL is ignorable if and only if

analyzing the posterior distribution of the process parameters given the published data
is equivalent to analyzing the posterior distribution of process parameters given the ob-
served data and assuming that the published data are identical to the (confidential) ob-
served data.

If the model possesses both ignorable inclusion and ignorable SDL then

pθP |Y (obs)

(
θp
∣∣Y (obs) = Z

)
≡ pθP |Z (θp |Z ) (A.11)

for all Y (obs) and Z. Equation (A.11) summarizes both the sampling (or inclusion) and
SDL assumptions that are embodied in any economic analysis that treats the published
data as if they had been produced by an ignorable inclusion process without SDL; that is,
without explicitly modeling the sample design and SDL.

A.4 Implementing SDL-aware Data Analysis

Since equation (A.9) is an identity, it is, in principle, possible to do any data analysis
using methods that account for the SDL. In practice, we must confront whether or not the
SDL process is known, and if it is known, whether the components required to compute
pθP |ZR (θp |Z,R) can be assembled. We will define an SDL method as fully discoverable if
pθP |ZR (θp |Z,R) can be computed. If the SDL process is not fully discoverable, then we
will consider some diagnostic methods that can be used to approximate pθP |ZR (θp |Z,R)
or to detect failures of equation (A.10).

At the heart of the implementation is the computation of pY (obs)|ZR
(
Y (obs) |Z,R

)
, which

is the posterior predictive distribution of the data that would have been published in the
absence of SDL, given the published data and the inclusion matrix. In the absence of
any ignorability assumptions the computations can be done using Markov Chain Monte

4
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Carlo sampling from the conditional distributions

pθpθD|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)

pθS |ZRθpθD (θS |Z,R, θp, θD )

pY (obs)|ZRθpθDθS

(
Y (obs) |Z,R, θp, θD, θS

)
starting from arbitrary initial values of Y (obs), and (θp, θD, θS).

In many ways, implementing SDL-aware data analysis is similar to implementing
ignorable and nonignorable missing data models. Since there are many excellent dis-
cussions of missing data issues and in order to focus our contribution more clearly, we
consider next implementing SDL-aware analysis when the inclusion model is provably
ignorable. A leading case is the inclusion model in which data are missing at random in
the sense of Rubin (1987); then, inclusion model can be ignored because

pR|Y (R |Y, θD ) = pR|Y
(
R
∣∣Y (obs), θD

)
and

pθ (θ) = pθS |θpθD (θS |θp, θD ) pθD (θD) pθp (θp)

To further simplify, simple random sampling implies that the inclusion model does not
depend upon any unknown parameters nor on the population data; hence pR|Y (R |Y, θD ) =
pR (R), which allows R and θD to be eliminated altogether from the analysis of the pub-
lished data.

It is enlightening to study the SDL-aware data analysis equations under the assump-
tion that the inclusion model is ignorable and known. Then,

pθP |ZR (θp |Z,R) = pθP |Z (θp |Z )

=

∫
pθP |Y (obs)

(
θp
∣∣Y (obs)

)
pY (obs)|Z

(
Y (obs) |Z

)
dY (obs) (A.12)

pθpθD|Y (obs)R

(
θp, θD

∣∣Y (obs), R
)

= pθp|Y (obs)

(
θp
∣∣Y (obs)

)
(A.13)

pθS |ZRθpθD (θS |Z,R, θp, θD ) = pθS |Zθp (θS |Z, θp ) (A.14)

and

pY (obs)|ZRθpθDθS

(
Y (obs) |Z,R, θp, θD, θS

)
= pY (obs)|ZθpθS

(
Y (obs) |Z, θp, θS

)
. (A.15)

Estimation and inference using the SDL-aware system described by equations (A.12)-
(A.15) can be applied to many common SDL methods, including those introduced in the
data-privacy literature in CS.

Although we largely limit our attention in this paper to SDL-aware analyses that as-
sume that the inclusion model is known and ignorable, we do not mean to endorse these
assumptions universally. In particular, we have chosen many examples where the inclu-
sion model’s properties are well understood or provably ignorable.
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A.5 Using Conditional Probability Models to Discover Nonignorable
SDL

Consider the data model in which yi contains K variables with yi1 binary and the remain-
ing variables either continuous or discrete. Although the formal data model remains
py|θP

(
Y (obs) |θP

)
, interest focuses on estimation and inference for the conditional proba-

bilities
Pr [yi1 = 1 |yi2, β ]

where β is the process parameter vector of interest (linear probability model coefficients,
logit coefficients, probit coefficients, etc.). The remaining process parameters are nuisance
parameters in an analysis with access to Y (obs). We consider here the use of conditional
probability models as diagnostic tools for discovering nonignorable SDL.

If the analyst is completely ignorant of the process generating yi the SDL is not discov-
erable unless its details are published by the agency or it is generated by a formal privacy
model with public parameters. The intuitive notion that information in related data can
be used to discover SDL properties lies at the heart of the Alexander et al. (2010) analysis
of the 2000 Census and ACS Public-Use Microdata Samples (PUMS). In those examples
yi1 is the individual’s sex and yi2 is the individual’s birth date (or age). They (implicitly)
use an informative prior on β based on the population summary files for the 2000 Census
(which are based on all records, not just the PUMS records) and the published tabulations
for the ACS (which are based on the full ACS sample, not just the records in the PUMS)
to estimate the effects of SDL on analyses using the PUMS files. In their case, the infor-
mative prior distribution was sufficient to estimate β accurately because β was actually
a finite-population estimand (the proportion of the age cohort that is in each sex for the
U.S. population at a point in time). In addition, because they used a finite-population esti-
mand where the variability of β in the prior distribution was negligible, they could assess
the probability that the differences were due to chance from the posterior variability in
the PUMS files alone. In general, this won’t be the case, but the intuition underlying their
method is more broadly applicable for discovering nonignorable SDL.

Conditional probability models analyzed using SDL-aware procedures with informa-
tive priors can render the SDL discoverable in both our formal sense and the intuitive
sense used by Alexander et al. To develop this point formally, we can no longer assume
that the inclusion process, in this case the sampling model, is ignorable because this pro-
cess contributes to the posterior distribution of the process parameters and to an infor-
mative prior distribution on those parameters, but not necessarily in the same manner. In
addition, we will need to be precise in making assumptions about the SDL. SDL processes
used in related data publications may share parameters, random noise, and conditioning
variables. We will have to be formal about conditioning on or integrating out these SDL
components in the informative prior as well as in posterior of interest. The payoff is that
we can get probability models that provide a formal basis for what Alexander et al. did
and are more generally applicable. In our empirical examples, we are careful to select
published data files where the dependencies in the SDL have been documented by the
suppliers.
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B Details of Estimating Population Proportions with Noise
Infusion

Suppose the confidential data, yi, contain K variables with yi1 binary and the remaining
variables either continuous or discrete. We are interested in estimation and inference for
the conditional probabilities Pr [yi1 = 1 |yi2, β ], where β is the parameter of interest. The
problem arises from using Pr [zi1 = 1 |zi2, β, θS ] where the zi variables are the published
versions of yi and θS are the parameters of the SDL.

To facilitate the exposition, consider just one outcome zi1, which can be either zero
or one. For example, the observed zi1 could be an indicator that the respondent is male
and the conditioning set, zi2 could be age 65. With probability ρ, the published data come
from the same conditioning set as in the confidential data; that is, zi2 = yi2. For example, if
the stratification is on age, then with probability ρ, the observed outcome comes from the
true age category; that is, zi1 = yi1 for yi2 = 1 [true age = 65]. With the complementary
probability, the observed outcome is a binary random variable with expected value µ 6= β,
for example, the average value of proportion male over all age categories at risk to be
changed by the SDL model.

Under these conditions and using E [zi1 = 1 |zi2, β, ρ, µ ] the consistent estimator for the
process parameter of interest, β, is

β̂ =
z̄1 − (1− ρ)µ

ρ
(B.16)

where z̄1 is the estimated sample proportion of ones (i.e., males). The estimator for the
conditional proportion of interest β̂ is confounded by the two SDL parameters, except in
the special case that ρ = 1, which implies that none of the published age data has been
infused with noise. If all of observations have been subjected to this noise infusion, then
β̂ is undefined, and the expected value of z̄1 is just µ. In the starkest possible terms, the
estimator in equation (B.16) is hopelessly underidentified in the absence of information
about ρ and µ.

If ρ and µ are not known, they may still be discoverable if the analyst has access to
estimates of conditional probabilities like β from an alternative source. Here is an example
based on the analysis in ADS. Comparing the sex proportions estimated from the Census
2000 PUMS to the published Census 2000 data, and treating the published Census 2000
estimates as the true values, we have

E [z̄j1 − ȳj1 |ȳj1 ] = ρj ȳj1 +
(
1− ρj

)
µj − ȳj1 (B.17)

for j = ages 65, 66, 67, . . . 89.
The SDL process is still underidentified if we consider only a single outcome like sex,

but there are quite a few other binary outcomes that could also be studied, conditional
on age, for example, marital status, race and ethnicity. The differences between Census
2000 estimates of the proportion married at ages 65 and greater and their comparable
Census 2000 PUMS estimates have exactly the same functional form as equation (B.17)
with exactly the same SDL parameters. Since these proportions condition on the same

7



age variable, all of the other outcomes that also have an official Census 2000 published
proportion can be used to estimate ρj and µj . The identifying assumptions are: (1) all
proportions are all conditioned on the same noisy age variable, and (2) the noisy age
variable can be reasonably modeled as randomized-response noise.

B.1 History of the Census Bureau’s Correction to Census 2000 and ACS
PUMS Files

The original announcement that the PUMS files would not be corrected can be found in
Census 2000 Public Use Microdata Sample Data Note 12 (October 2010) and the reversal in
Data Note 13 (October 2010) http://www.census.gov/prod/cen2000/doc/pums.
pdf. The original announcement that the ACS PUMS files would not be corrected can be
found in Errata 47 (February 18, 2010) and 50 (December 18, 2009). The reversal is in Erra-
tum 65 (January 25, 2012). See also User note 3. Cited documents http://www.census.
gov/acs/www/data_documentation/errata/#Err47, http://www.census.gov/
acs/www/data_documentation/errata/#Err50, http://www.census.gov/acs/
www/data_documentation/errata/index.php#Err65, and http://www.census.
gov/acs/www/data_documentation/user_notes/index.php#n03(cited March 19,
2015).

C Details of Estimating Regression Models with SDL

C.1 Bias due to SDL in the Dependent Variable

For the case in which SDL is applied to the dependent variable, our derivation of the bias
formula is a direct extension of the analysis in Sections 1.1, 1.2, and 1.3 in the Appendix to
Bollinger and Hirsch (2006). Our only modification is to the equation characterizing the
distribution of imputed data. In the Bollinger and Hirsch Appendix, equation (1) states

fI (yi, zi|xi) = fO (yi|xi) fM(zi|xi),

where fI (yi, zi|xi) is the joint distribution of y and z in the imputed data, fO (yi|xi) is
the distribution of the dependent variable, y, given the matching variables, x, among
the observed data, and fM(zi|xi) is the distribution of the regressors, z, conditional on x,
among the missing data.

In our application, y is sometimes missing, not because it was not reported, but be-
cause it is suppressed. That means the imputed values can be drawn from the distribu-
tion of the suppressed data. Formally, this just amounts to changing the above equation
to

fI (yi, zi|xi) = fM (yi|xi) fM(zi|xi).

This change does not affect the remaining derivations in sections 1.1–1.3 of the Bollinger
and Hirsch Appendix; the bias formula remains the same. This is just a change of in-
terpretation. Specifically, whereas Bollinger and Hirsch must make an assumption on
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the missing data process (namely, that the data are conditionally missing at random), we
require no such assumption on the suppression process.

The SDL is ignorable for estimation and inference of β if the solution to the least
squares projection of z1i on z2i yields estimates consistent for the parameters of the true
regression model: E [yi1 |yi2 ] = α + yi2β. The solution to the least squares projection is(
â, b̂
)

= arg mina,b E
[
(zi1 − a− z2ib)

2] .
We start with the case of a single right-hand side variable, where the intuition is sim-

pler. The regressor z2i = y2i and the conditioning variables xi are scalar. Allowing SDL to
be conditional on the suppression indicator, we follow the derivations in the unpublished
Appendix to Bollinger and Hirsch (2006) to obtain the following result:

plim b̂ = β − (1− ρ)µβ = (1− (1− ρ)µ)β. (C.18)

The bias term on the right hand side depends on two factors: the share of suppressed
observations, (1− ρ), and the error from using xi to impute the suppressed value instead
of z2i, measured by µ. The term µ may be derived as follows. First, compute the residual
from predicting the regressor with the conditioning variables: ei = z2i − E(z2i|xi, γi = 0).
Now µ is the slope parameter from the regression ei = ` + µz2i. That is, µ measures the
signal from the regressor z2i left in ei after conditioning on xi and γi = 0.

The same result holds for the more general case in which z2i and xi are vectors. Now

plim b̂ = β − (1− ρ)Mβ = (I − (1− ρ)M)β, (C.19)

Formally, M is derived analogously to µ. First, measure the vector of residuals from the
system ei = z2i − E(z2i|xi, γi = 0). Then, M is the parameter matrix from estimating of
ei = L+Mz2i.

The case of general zi is similar, but the derivations are complicated and provide little
intuition for the applications under consideration here. They are available upon request.

C.2 Bias Due to SDL in a Single Regressor

The case in which SDL is applied to a single regressor turns out to be identical to the
case of SDL applied to the dependent variable. That this is so may be intuitive when the
regression model includes only one regressor. It is less transparent in the case of multiple
regressors, so we present the relevant derivations here. For ease of presentation, we use
notation similar to Bollinger and Hirsch.

The data vector is (yi, zi, ti, xi, Ri). yi is the dependent variable, ti is the scalar vari-
able to which SDL is applied, zi is a vector of regressors that are not distorted, xi is
a vector of conditioning variables used to impute replacements for t when it is sup-
pressed, and Ri is a variable equal to 1 if ti is suppressed, and 0 otherwise. Define the
population distributions fO (yi, zi, ti, xi|Ri = 0) for observations with no suppression, and
fM (yi, zi, ti, xi|Ri = 1) for observations where t was suppressed and imputed. Also, let
p = Pr [Ri = 1].

We make the following assumptions on the data generating process:
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• Only ti is suppressed;

• the matching variables depend only on zi and ti, xi = h (zi, ti) ;

• the researcher has the correct model, and so x cannot provide any additional infor-
mation:

E [yi|zi, ti, xi] = E [yi|zi, ti] = α + zTi β + γti

• when Ri = 1, the published value ti is sampled from the distribution fM (t|xi).

The conditional distribution of the suppressed data is

fI (yi, zi, ti|xi) = fM(yi, zi|xi)fM (ti|xi) .

It follows the distribution of the published data is

fS (yi, zi, ti|xi) = (1− p) fO (yi, zi, ti|xi) + pfM(yi, zi|xi)fM (ti|xi) .

After some algebraic transformations, and taking expectations with respect to zi,ti, and
xi, we get the key moment equation characterizing the conditional expectation of yi given
(zi, ti, xi) in the published data:

ES [yi|zi, ti, xi] = (1− p)EO [yi|zi, ti, xi]
fO (zi, ti, xi)

fS (zi, ti, xi)

+pEM [yi|zi, xi]
fM(zi, xi)fM (ti|xi)

fS (zi, ti, xi)
.

Using the definition of EO [yi|zi, ti, xi] and adding and subtracting pγtfM (zi,xi)fM (ti|xi)
fS(zi,ti,xi)

,

ES [yi|zi, ti, xi] = α + zTi β + γti

−pγ [t− EM (ti|xi)]
fM(zi, xi)fM (ti|xi)

fS (zi, ti, xi)
.

We now show that the least-squares solution will not be consistent for the parameters
of interest and derive the bias correction. In the published data, the least-squares solution
to the regression of yi on zi and ti is

arg min
a,b,c

ES

[(
Es [yi|zi, ti, xi]−

(
a+ zTi b+ cti

))2
]

;

that is
arg min

a,b,c

∫ (
Es [yi|zi, ti, xi]−

(
a+ zTi b+ ct

))2
fs (zi, ti, xi) dzidtidxi.

The first-order conditions for a minimum are given by:

α + ES
(
zTi
)
β + γEs (ti)− γpEI (ti − EM (ti|xi))

−
(
a+ ES

(
zTi
)
b+ cEs (ti)

)
= 0
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from differentiating with respect to a,

αES (zi) + ES
(
ziz

T
i

)
β + γEs (ziti)− γpEI (zi (ti − EM (ti|xi)))

−
(
aES (zi) + ES

(
ziz

T
i

)
b+ cEs (ziti)

)
= 0

from differentiating with respect to b, and

αES (ti) + ES
(
tiz

T
i

)
β + γEs

(
t2i
)
− γpEI (ti (ti − EM (ti|xi)))

−
(
aES (ti) + ES

(
tiz

T
i

)
b+ cEs

(
t2i
))

= 0

from differentiating with respect to c.
In the case where ti is the only regressor (z is identically zero), it is easy to show

c = γ {1− p [EI [ti (ti − EM (ti|xi))]− EI [t− EM (ti|xi)]Es (ti)]} .

By inspection, this is identical to the formula for the case in which SDL is applied to the
dependent variable.

D Details of the RD Model

D.1 Generalized Randomized Response SDL

In our analysis of the effect of SDL on regression discontinuity designs, we consider the
case in which the following model of SDL was applied to the running variable. The
published data are

ωi = w∗i
zi3 sampled from pZ3|Y3 (zi3 |yi3, θS )

zi4 = 1 [zi3 ≥ τ ]

with pZ3|Y3 (zi3 |yi3, θS ) given by the following mixture model, which is a generalization
of randomized response. The randomization variable is γi ∼ Bin (ρ, 1). When γi = 1,
zi3 = yi3; otherwise zi3 = yi3 + εi with εi ∼ N

(
0, δ2

)
, (i.e., additive noise infusion).

These assumptions imply

zi3 = γiyi3 + (1− γi) (yi3 + εi) ,

zi4 =

{
1 [yi3 ≥ τ ] if γi = 1

1 [yi3 + εi ≥ τ ] if γi = 0

and

pZ3Z4|Y3 (zi3, zi4 |yi3, θS ) = ρpY3Y4 (Z3, Z4 |θp ) + (1− ρ) p∗Y3Y4
(
Z3, Z4

∣∣θp, δ2
)
,

where p∗Y3Y4
(
Z3, Z4

∣∣θp, δ2
)

is the distribution function from the convolution of pY3Y4 (Y3, Y4 |θp )

and N
(
0, δ2

)
.
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D.2 SDL Aware Analysis of the RD Model

Using the posterior predictive distribution for yi3 given zi3 and assuming that the SDL
parameters are fixed at the known values ρ0 and δ0, we have

E [yi3 |zi3, ρ0, δ0 ] = E [zi3 − (1− γi) εi |zi3, ρ0, δ0 ] = zi3

and

E [yi4 |zi3, ρ0, δ0 ] = E [1 [yi3 ≥ τ ] |zi3, ρ0, δ0 ] (D.20)

= ρ0 1 [zi3 ≥ τ ] + (1− ρ0) Φ

(
zi3 − τ
δ0

)
where Φ () is the standard normal cumulative distribution function. The SDL-aware anal-
ysis has converted the original sharp RD into a fuzzy RD. To complete the analysis we
should use the posterior distribution of θRD given the published data Z and the SDL pa-
rameters, assumed known or with an informative prior given agency-provided data.

In the RD literature, functional form assumptions about f1 (yi3), f2 (yi3), and £
(obs)
θ

(
θp
∣∣Y (obs)

)
are minimized. Respecting this analysis style, without implying that it is the best way to
analyze a finite sample of size n from a superpopulation with size N , we analyze a few
posterior moments, making the assumption that those exist.

We want to estimate

E [θRD |Z, ρ0, δ0 ] = E

[
lim
yi3↓τ

E [yi2 |yi3 = τ ] |Z, ρ0, δ0

]
(D.21)

−E

[
lim
yi3↑τ

E [yi1 |yi3 = τ ] |Z, ρ0, δ0

]
(D.22)

= E

[
lim
yi3↓τ

f2 (yi3) |Z, ρ0, δ0

]
− E

[
lim
yi3↑τ

f1 (yi3) |Z, ρ0, δ0

]
= ρ0

{
E [limzi3↓τ f2 (zi3) |Z, γi = 1, δ0 ]
−E [limzi3↑τ f1 (zi3) |Z, γi = 1, δ0 ]

}
+ (1− ρ0)

{
E [limzi3↓τ f2 (zi3 − εi) |Z, γi = 0, δ0 ]
−E [limzi3↑τ f1 (zi3 − εi) |Z, γi = 0, δ0 ]

}
= ρ0

(
lim
zi3↓τ

f2 (τ)− lim
zi3↑τ

f1 (τ)

)
and

ρ0 = lim
zi3↓τ

[
ρ0 1 [zi3 ≥ τ ] + (1− ρ0) Φ

(
zi3 − τ
δ0

)]
− lim

zi3↑τ

[
ρ0 1 [zi3 ≥ τ ] + (1− ρ0) Φ

(
zi3 − τ
δ0

)]
The regime where γi = 1 is a conventional RD. The existence of the regime γi = 0

converts the problem to a fuzzy RD where E [yi4 |zi3, ρ0, δ0 ] = g (zi3) plays the role of the
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“compliance status” function. The term

(1− ρ0)

{
E

[
lim
zi3↓τ

f2 (zi3 − εi) |Z, γi = 0, δ0

]
− E

[
lim
zi3↑τ

f1 (zi3 − εi) |Z, γi = 0, δ0

]}
(D.23)

is zero because εi ∼ N
(
0, δ2

)
implies that in the regime γi = 0, there is no point mass at

εi = 0; hence there is no jump at τ–the continuous function f1 (zi3) transitions smoothly
to f2 (zi3) over the support of εi. The SDL noise needn’t be normal, but it must be drawn
from a continuous distribution.

D.2.1 Implications of SDL in the Running Variable for other RD Models

If generalized random response SDL is applied to the running variable, then the SDL is ig-
norable for parameter estimation when the true RD design is fuzzy. The FRD compliance
function, augmented with the contribution from SDL, becomes

h(zi) = E [ti |zi, ρ0, δ0 ] (D.24)

= ρ0pT |R (ti = 1|zi) + (1− ρ0)

∫
pT |R(ti = 1|ri)pR|Z(ri|zi)dr. (D.25)

It immediately follows

lim
zi↓τ

h (zi)− lim
zi↑τ

h (zi) = ρ0

[
lim
zi↓τ

pT |R (ti = 1|zi)− lim
zi1↑τ

pT |R (ti = 1|zi)
]
.

The second summand in the expression for h(zi) is zero. When the running variable is
distorted with normally distributed noise, there is no point mass anywhere, and hence no
discontinuity in the probability of treatment at τ . The claim that the SDL is ignorable for
consistent estimation of the treatment effect in the fuzzy RD design follows. Imbens and
Lemieux (2008) show that the IV estimator that uses the RD as an exclusion restriction is
formally equivalent to the fuzzy RD estimator, so the SDL is also ignorable for consistent
estimation in this case.

E Details for Tabular Methods

E.1 Swapped Household Data

This part of our discussion of tabular data that applies only to tabulations based on house-
hold data. The tables produced from the decennial censuses and the American Commu-
nity Survey are based on swapped input data. The effects of swapping can be assessed
using the methods we discussed in Technical Appendix Section B. The condition for dis-
coverable consequences of swapping, without the cooperation of the data provider, re-
quires getting at least two tabulations that cover the same subpopulation, have known
sampling variation, and use independent SDL models. The best general diagnostic we
can derive is to perform simulations under the assumption that the contribution to the
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posterior variance of a parameter of interest due to swapping is less than the contribution
due to edit and imputation. If an agency were to state in its published documentation
that this hypothesis was correct, then it might be worth unleashing the full posterior sim-
ulation technology.

E.2 Custom Tabulations

An agency’s officially tabulated estimates are those listed in the defined data products for
the agency’s publications. If the tabulation isn’t listed in the defined data products, then
an official estimate of that item is called a custom tabulation. All custom tabulations (also
called special tabulations) are done sequentially, then released to the general public. The
suppression rules applied to the official tabulations carry over to the first custom tabula-
tion, and then to all successive custom tabulations. The effects are order dependent and
cumulative. If an item was explicitly suppressed from any previous official or custom
tabulation, then it will be suppressed for all future tabulations as well. This statement ap-
plies to both primary and complementary suppressions. Some agencies will not produce
custom tabulations as a matter of policy. It is also worth pointing out that not all suppres-
sions are due to SDL. There are also minimum data quality standards that can result in
a suppression. These do not always cause additional complementary suppressions, but
they do always cumulate. The data quality cannot be improved by calling it a custom
tabulation.

E.3 Directly Tabulating Published Microdata

After data collection has ended, the raw survey, census or administrative-record data are
edited, imputed for missing data, weight-corrected, and subjected to SDL. Only then are
the publication tables generated. The statistical agencies consider any released public-
use microdata samples to also be publication tables. In general, if a researcher computes
an estimate of a moment or quantile from the public-use microdata, then compares that
estimate to its published equivalent in the tabular summaries, those two estimates will
not agree exactly. Assuming that the correct selection criteria and weights were used,
there remain three reasons why these calculations don’t match. The first possible cause
is differences in the computational formulas used. The second possible cause is sampling
variability.

The third possible cause is SDL. The Census Bureau, for example, applies additional
swapping and noise infusion to the publication-ready ACS records before selecting the
PUMS. Public-use files produced by the Statistics of Income Division of the IRS are also
subjected to extensive SDL beyond what is used for the tabular summaries.

By far, the most important SDL explanation for a discrepancy is that the equivalent
tabular estimate is suppressed. A researcher can calculate some estimate of interest from
the public-use microdata file, but the agency didn’t release an official tabulation of the
same item for several reasons. Some researchers may not consider suppressions in official
tabulations to be a discrepancy with respect to estimates produced from the public-use
microdata files, but there is an important sense in which they are. The microdata files
are produced so that researchers can perform analyses that are not possible using the
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aggregated tabulations. If there were no microdata files, as we will see is usually the
case for the aggregated business data discussed in Section 5.2.2, then any research design
would require a strategy for handling the missing data caused by the suppression.

Even when public-use microdata are available, suppression is still a problem. If a
substantial proportion of the estimates a researcher computes from the microdata files
correspond to suppressed official tabulations, it is a warning sign that the inputs to the
researcher’s statistical model may be of poor quality. Household tabular estimates are
suppressed most often when the number of households in the cell is below the publica-
tion threshold. The statistical agency considers that item to be poorly estimated in the
underlying confidential data. Furthermore, these are exactly the cells most likely to con-
tain edit, imputation, and SDL-induced noise. A good research strategy is to consider
pooling those estimates, for example by using a shrinkage estimator that averages a spe-
cific moment with a pooled estimate of the same moment.

E.4 Tabular Regression Models with Nonignorable SDL

The noise infusion in QWI may be nonignorable. Univariate regression of a variable, say
from another dataset, onto a QWI aggregate, provides a simple illustration. Suppose the
part of the process model of interest is:

E
[
Y(k)t

∣∣W(k)t

]
= α + βW(k)t (E.26)

where W(k)t is the quarterly payroll in county k and Y(k)t is any outcome of interest col-
lected from a different data source. Y(k)t can also be subject to SDL, but we will assume
that it is statistically independent of the SDL applied to the QWI data. The published
aggregate data are [Y(k)t,W

∗
(k)t]. The undistorted values, W(k)t are confidential.

The probability limit of the OLS estimator for β based using the published data is

p lim β̂OLS =
Cov

[
Y(k)t,W(k)t

]
Var [δj] E

[
W 2

(k)tH
W
(k)t

]
+ Var

[
W(k)t

] (E.27)

The term E
[
W 2

(k)tH
W
(k)t

]
is the expected Herfindahl index for payroll within aggregate k,

as derived in the Data Appendix E.5. The noise infusion is clearly nonignorable in this
setting. Algebraic manipulation reveals the bias to be

p lim
β̂OLS
β

=
Var

[
W(k)t

]
Var [δj] E

[
W 2

(k)tH
W
(k)t

]
+ Var

[
W(k)t

] . (E.28)

The bias factor lies between 0 and 1.
One option is to correct the bias analytically. If Var [δj] is known, or can be estimated,

the bias can be corrected directly. An unbiased estimate for E[W(k)t]
2 is available from

E[W ∗
(k)t]

2 once Var [δj] is known, after which it only remains to recover Var
[
W(k)t

]
from

the definition of Var
[
W ∗

(k)t

]
.
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The second possibility is to find instruments. Any instrument, Z(k)t, correlated with
W(k)t and uncorrelated with the SDL noise infusion process will work, since

p lim β̂IV =
Cov

[
α + βW(k)t + ε(k)t, Z(k)t

]
Cov

[
W ∗

(k)t, Z(k)t

] (E.29)

=
β Cov

[
W(k)t, Z(k)t

]
Cov

[
W(k)t, Z(k)t

] = β.

E.5 Details of Estimating the Variance Contribution of SDL for the
QWI

It is possible to recover the variance of the noise factor Var [δj], which is needed to correct
directly for bias in the univariate and multivariate regression examples using the QWI.
The noise in a magnitude estimate from a particular cell and the confidential magnitude
value are independent by construction. By design, there is no bias:

E
[
W ∗

(k)t −W(k)t

∣∣W(k)t

]
= E

 ∑
j∈Ω(k)t

Wjt (δj − 1)
∣∣W(k)t

 = 0, (E.30)

where the last equality results from the independence of Wjt and δj for all t. This is a
common feature of noise-infusion SDL. The designers eliminated the bias in published
tabulations. However, this was accomplished by inflating the variance of the published
aggregate. The exact formula for the variance in the difference between noisy and noise-
free estimates of is

V
[
W ∗

(k)t −W(k)t

∣∣W(k)t

]
= V [δ]

∑
j∈Ω(k)t

W 2
jt. (E.31)

Our leverage in this analysis comes from the fact that QWI and QCEW use identical
frames (QCEW establishments). Hence, we can use W (QCEW )

(k)t as the noise-free estimate of
W(k)t, as long as it has not been suppressed too often.

Although the data come from a different administrative record system, the concepts
underlying the CBP payroll variable are very similar to both the QWI and QCEW inputs.
The SDL system used for CBP data is very similar to the one used for QWI but the random
noise in CBP is independent of the random noise in QWI. The formulas for recovering
both systems SDL parameters are in the Data Appendix Section H.
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F Variables from the QWI, QCEW, and CBP

We work with several variables from the QWI data:

• Bjt ≡ employment at establishment j at the beginning of quarter t (record-linkage
definition; first calendar day of the quarter)

• Wjt ≡ total quarterly payroll for all statutory employees during the quarter (state
unemployment insurance system definition)

From the QCEW, we use the following variables, which are analogous to the employ-
ment and payroll variables reported in the QWI.

• E(QCEW,1)
jt ≡ month 1 employment (on the payroll for the pay period covering the

12th day of the first month of the quarter)

• E(QCEW,3)
jt ≡ month 3 employment (on the payroll for the pay period covering the

12th day of the third month of the quarter)

• W (QCEW )
jt ≡ total quarterly payroll for all statutory employees during the quarter

(state unemployment insurance system definition)

From the CBP, we use the following variables, which are analogous to the employment
and payroll variables in the QWI.

• Ljt ≡ employment (on the payroll for the pay period covering the March 12th)

• Pjt ≡ total first-quarter payroll for all statutory employees (Federal Insurance Con-
tributions Act (FICA) definition)

G Statistical Disclosure Limitation Methods

G.1 QWI

The QWI SDL system is based on multiplicative input noise infusion applied to all vari-
ables used to compute tabular magnitude estimates. These include employment and
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payroll, of course, but also hires, separations, job creations, job destructions, and simi-
lar statistics for stocks and flows based on stable employment definitions.

A random fuzz factor, δj , is drawn for each establishment, j, from a double-ramp
distribution with the following probability distribution function:

p (δj) =


0, δ < 1− b

(1 + b+ δ − 2) / (b− a)2 , δ ∈ [1− b, 1− a]
0, δ ∈ (1− a, 1 + a)

(1 + b− δ) / (b− a)2 , δ ∈ [1 + a, 1 + b]
0, δ > 1 + b

(G.32)

and associated density

F (δj) =


0, δ < 1− b

(δ + b− 1)2 /
[
2 (b− a)2] , δ ∈ [1− b, 1− a]

0.5, δ ∈ (1− a, 1 + a)

0.5 +
[
(b− a)2 − (1 + b− δ)2] / [2 (b− a)2] , δ ∈ [1 + a, 1 + b]

1, δ > 1 + b

(G.33)

The values 0 < a < b < 1 are parameters chosen such that each establishment’s value of
the statistic is distorted by a minimum of 100a percent and a maximum of 100b percent.11

Thus δj has the following properties:

E [δj] = 1

and
V [δj] = a2 +

1

6
(b− a)2 +

2

3
a (b− a) .

The probability distribution of δj is plotted in Figure H.1a on page 67 and the cumulative
distribution is plotted in Figure H.1b on page 67 for the values a = 0.05, b = 0.3, which
were chosen for illustrative purposes only. Note, the distribution of δj is independent of
all other variables. The SDL system is implemented so that an establishment is assigned
a value of δj at the time it first enters the database. The establishment retains the assigned
value until it disappears from the data permanently.

G.2 SDL for the QCEW

The QCEW data use a primary/complementary suppression system for SDL. The only
public information about this system appears in Statistical Policy Working Paper 22:

“For example, the Quarterly Census of Employment and Wages (QCEW), a census of
monthly employment and quarterly wage information from Unemployment Insurance
filings, uses a threshold rule and the p percent rule for calendar year (CY) 2002 data and
beyond. Prior to CY 2002, QCEW used a threshold rule and a concentration rule of (n, k) .
In a few cases, a two-step rule is used–an (n, k) rule for a single establishment is followed

11The exact percentage distortions are Census Bureau confidential.

18



by an (n, k) rule for two establishments.” (Harris-Kojetin et al. (2005), page 47)
The BLS quantifies the amount of suppression with the following statement:
“The finest level of geographic detail is the county-industry level, as aggregates of

establishments classified to varying degrees of industry detail. While the input data are
coded with meaningful address locations, the data are generally unavailable at greater
detail. The QCEW program is constrained by the need to protect the confidentiality of
data provided by employers, and richer geographic detail would threaten that confiden-
tiality. Even the county by industry data cited above is at the margin of being disclosable-
approximately 60 percent of the most detailed level data are suppressed for confidential-
ity reasons.” (http://www.bls.gov/cew/cewfaq.htm)

The only public detail of the complementary suppression algorithm is that it does not
include table margins (unless the margin itself fails the primary suppression rule):

“However, published totals of higher-level aggregations, when disclosed, include the
suppressed lower-level data.” (http://www.bls.gov/cew/cewfaq.htm)

The public QCEW data are not rounded.

G.3 SDL for County Business Patterns

CBP uses noise infusion that is similar in the cross-section to the method used by QWI.
There are also primary suppressions when the number of establishments in a cell is
deemed too small to allow publication and when the value of the cell was distorted by
more than five percent. The official specification of the noise infusion system is quoted
here from the CBP documentation.

“County Business Patterns continues to apply the Noise Infusion method of data pro-
tection that began in 2007. Noise infusion is a method of disclosure avoidance in which
values for each establishment are perturbed prior to table creation by applying a ran-
dom noise multiplier to the magnitude data (i.e., characteristics such as first-quarter pay-
roll, annual payroll, and number of employees) for each company. Disclosure protec-
tion is accomplished in a manner that results in a relatively small change in the vast
majority of cell values. Each published cell value has an associated noise flag, indicat-
ing the relative amount of distortion in the cell value resulting from the perturbation of
the data for the contributors to the cell. The flag for ‘low noise’ (G) indicates the cell
value was changed by less than 2 percent with the application of noise, and the flag
for ‘moderate noise’ (H) indicates the value was changed by 2 percent or more but less
than 5 percent. Cells that have been changed by 5 percent or more are suppressed from
the published tables. Additionally, other cells in the table may be suppressed for addi-
tional protection from disclosure or because the quality of the data does not meet pub-
lication standards. Though some of these suppressed cells may be derived by subtrac-
tion, the results are not official and may differ substantially from the true estimate. The
number of establishments in a particular tabulation cell is not considered a disclosure;
therefore, this information may be released without the addition of protective noise.”
(http://www.census.gov/econ/cbp/methodology.htm, citing Evans et al. (1998)).

Tabular cell magnitudes for Ljt and Pjt in CBP are computed using a multiplicative
fuzz factor from a ramp distribution as in equations (G.32) and (G.33) with confidential
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parameters. The factor δ(CBP )
jt is drawn fresh for each establishment every year. The same

fuzz factor is applied to all values from an establishment. Census uses a “balancing”
algorithm to reduce the amount of noise in a particular cell of CBP. In this context, bal-
ancing means that the conditional distribution of δ(CBP )

jt is not independent of the values
of Ljt or Pjt (depending upon which variable has been used to balance, which is not dis-
closed). CBP also uses non-standard establishment level rounding to ensure the protec-
tion of noise infusion for cells with a small number of small establishments. Employment
size class distributions are tabulated from unfuzzed employment data.

The published CBP data on payroll are rounded to the nearest thousand dollars, which
is also an SDL. Published employment is not further rounded from the record-level edits.

H Discovery of SDL parameters in QWI data

It is the differences in data construction that give rise to our strategy for revealing features
of the SDL applied in each source. Therefore, it is necessary to discuss in some detail
how each data source constructs and reports aggregate summaries from the underlying
microdata.

QWI variable construction: Aggregates are formed over a classification k = 1, . . . , K
that partitions the universe of establishments Ωt into K mutually exclusive and exhaus-
tive subsets Ω(k)t. These partitions usually have detailed geographic and industrial di-
mensions. For all three data sources, geography is coded using FIPS county codes. In-
dustrial classifications are by NAICS sectors, sub-sectors, and industry groups.

The tabular magnitudes are computed by aggregating the values over the establish-
ments in the partition k. In the QWI, total private employment in a state is benchmarked
to the month-1 employment from QCEW using an establishment weight, ωjt. In the ab-
sence of SDL, the beginning-of-quarter employment in k would be estimated by

B(k)t =
∑

j∈Ω(k)t

ωjtBjt.

The QCEW does not use weights. The comparable employment magnitudes for months
1 and 3 are

E
(QCEW,1)
(k)t =

∑
j∈Ω(k)t

E
(QCEW,1)
jt

and similarly for E(QCEW,3)
(k)t .

SDL through multiplicative noise infusion: Published aggregates from the QWI are
computed using the multiplicative noise factors δj . Beginning-of-quarter employment is
computed as

B∗(k)t =
∑

j∈Ω(k)t

δjωjtBjt,

where we have adopted the convention of tagging the post-SDL value with an asterisk.

20



Similarly, the unprotected and protected values of total payroll in QWI are computed as

W(k)t =
∑

j∈Ω(k)t

ωjtWjt

and
W ∗

(k)t =
∑

j∈Ω(k)t

δjωjtWjt.

Notice that the same weight and the same fuzz-factor are used to aggregate total payroll
and beginning-of-quarter employment (and, in fact, for all of the QWI).

QCEW variable construction: The total payroll variable in the QCEW is computed as

W
(QCEW )
(k)t =

∑
j∈Ω(k)t

W
(QCEW )
jt .

To implement the SDL system for the QCEW, order statistics for the employment and
payroll variables from the establishments in Ω(k)t are used to compute the p-percent pri-
mary suppression rule. The partition size,

∣∣Ω(k)t

∣∣ , is used to compute cell size thresholds,
when they are used for suppression. As noted above, the formulas for the complementary
suppressions have not been published.

Comparability of QWI and QCEW data: If the only partition is geography at the state
level, so k indexes states, then the QWI benchmarking ensures that

B(k)t = E
(QCEW,1)
(k)t . (H.34)

We note for clarity that equation (H.34) holds only for beginning-of-quarter employment
at the state level for all private employers, and not for any other variable or aggregation.
In addition, the benchmarking is performed using the confidential inputs before SDL;
hence, it does not hold exactly for the published values.

CBP data are not weighted. Hence, the published values are computed as

L∗(k)t =
∑

j∈Ω(k)t

δ
(CBP )
jt Ljt

and
P ∗(k)t =

∑
j∈Ω(k)t

δ
(CBP )
jt Pjt.

∣∣Ω(k)t

∣∣ is used to compute cell sizes for primary suppressions. The criteria for suppression
based on “data quality” have not been published. There are no complementary suppres-
sions. When computing the bins for the employment size distribution of establishments,
Ljt is used without fuzzing.12

12Some details of the CBP protections are taken from an non-confidential presentation by Richard Moore,
2010, available from the authors.
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H.1 Estimating the Variance Contribution of SDL for the QWI

In QWI, the variance in the difference between noisy (published) and noise-free estimates
of start-of-quarter employment, B(k)t, conditional on the noise-free estimates, is

V
[
B∗(k)t −B(k)t

∣∣B(k)t

]
= E

 ∑
j∈Ω(k)t

ωjt (Bjt (δj − 1))2
∣∣B(k)t

 (H.35)

= V [δ]
∑

j∈Ω(k)t

ωjtB
2
jt

with a similar formula for W(k)t.
If information about the properties of the size distribution of employment are avail-

able for the classification represented by Ω, then equation (H.35) can be re-expressed as

V
[
B∗(k)t −B(k)t

∣∣B(k)t

]
= V [δ]B2

(k)tH
(B)
(k)t

where H(B)
(k)t is the Herfindahl index of employment shares of establishments in category

k. It is straightforward to derive an equivalent equation for the variance of the difference
between the published and noise-free payroll totals, conditional on the noise-free level,
which depends on H(W )

(k)t , the Herfindahl index of payroll shares of establishments in cat-
egory k. Dividing both sides of Equation (H.35) by the square of the noise-free estimate
and taking positive square roots yields√√√√V

[
B∗(k)t −B(k)t

∣∣B(k)t

]
B2

(k)t

≡ CV
[
B∗(k)t −B(k)t

∣∣B(k)t

]
(H.36)

=

√√√√V [δ]

∑
j∈Ω(k)t

ωjtB2
jt

B2
(k)t

(H.37)

=
√

V [δ]H
(B)
(k)t

with a similar formula for W ∗
(k)t.

H.1.1 Empirical Specification

Taking logarithms of Equation (H.36) yields the estimating equation

ln CV
[
B∗(k)t −B(k)t

∣∣B(k)t

]
=

1

2
ln V [δ] + ln

√
H

(B)
(k)t. (H.38)

The dependent variable is defined in terms of the noise-free estimates, which are con-
fidential in the QWI system. Fortunately, we have access to noise-free variables from the
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published QCEW and CBP data. We assume

CV
[
B∗(k)t −B(k)t

∣∣B(k)t

]
= CV

[
B∗(k)t − E

(QCEW,1)
(k)t

∣∣∣E(QCEW,1)
(k)t

]
and

CV
[
W ∗

(k)t −W(k)t

∣∣W(k)t

]
= CV

[
W ∗

(k)t −W
(QCEW )
(k)t

∣∣∣W (QCEW )
(k)t

]
.

Both assumptions are justified by the fact that the noise factors in the QWI are completely
independent of the underlying data. Furthermore, all three sources use identical frames
and identical input data sources to measure the same variables in the same manner. The
concepts used to measureB(k)t in QWI were constructed to approximate as closely as pos-
sible first month employment in the QCEW. Furthermore, the QWI establishment weights
force the private state-level aggregate B(k)t to match exactly its QCEW counterpart.

The key explanatory variable in Equation H.38 is based on the Herfindahl index over
employment shares, H(B)

(k)t. This can be computed directly when size class information
about the distribution within B(k)t and W(k)t is available, as is the case in the CBP data.
Alternatively, we model this term as a power law (Cobb-Douglas) function of the number
of establishments used to form the cell k

H
(B)
(k)t =

∑
j∈Ω(k)t

ωjtB
2
jt

B2
(k)t

= α(k)N
β(k)

(k)t , (H.39)

where the scaling coefficient α(k) is a potential confounder for the estimation of V [δ].
When no size-class information is available, substitution of (H.39) gives the estimating

equation:

ln CV
[
B∗(k)t − E

(QCEW,1)
(k)t

∣∣∣E(QCEW,1)
(k)t

]
=

1

2
ln V [δ] + lnα(k) +

β(k)

2
lnN(k)t. (H.40)

Equation (H.40) is a smooth function of the logarithm of the number of establishments
used to form the table cell with estimates B∗(k)t and W ∗

(k)t. Data on the number of estab-
lishments in each cell is reported in the QCEW. The derivation of the estimating equation
for the coefficient of variation in payroll is identical.
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Figure H.1: Distribution of Establishment Noise for the Quarterly Workforce Indicators
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