

# Do rural residential consumers cross-subsidize their urban counterparts?

Exploring the inequity in load shedding among metros, towns and villages

Santosh M. Harish and Rahul Tongia santosh.harish@povertyactionlab.org / rtongia@brookingsindia.org

Brookings India Working Paper 04-2014

Department of Engineering and Public Policy,
Carnegie Mellon University



#### **Research Questions**

- 1. How do load shedding schedules in metro, small town and rural feeders compare?
- 2. Are tariff differences an adequate explanation for the load shedding disparity?
- 3. Is uninterrupted, but current limited, supply viable?



# Why should we frame this in terms of cross-subsidies?

- Claim: Favorable treatment for the metros is necessary
  - Supply deficits exist
  - Costs of supply: higher in rural areas, than in urban
  - Revenues: lower in rural than in urban, because tariffs and consumption levels are lower
  - Distribution utility needs to be financially viable

Q: Does the relief provided by load shedding rural consumers more than compensate for tariff subsidies they receive?

- Claim: Tariff differences between rural and urban residential consumers introduced to reflect poorer supply
  - Tariffs are lower because the supply is poorer, not the other way round

Q: Do the tariff differences sufficiently account for the differences in supply?



#### Data source

- Karnataka Supervisory Control and Data Acquisition (SCADA) systems, courtesy KPTCL
- Nature of data
  - Minute-wise details on consumption and supply for every 11kV feeder
- Geographical region and dates
  - 9 days (3 each from Sep '12, Dec '12 and April '13) of data from Chitradurga- Tumkur zone, and NRS substation 'representative' from Bangalore Metropolitan zone
  - Entire BESCOM area for 3 days (1 each from Sep '12, Dec '12 and April '13)
  - Additional validation using HESCOM data from Sep '12 and Dec
     '12



# BESCOM zones and districts covered

#### **Chitradurga-Tumkur zone:**

Davanagere, Chitradurga, Tumkur

#### Bangalore rural zone:

Bangalore rural, Kolar, Chickballapura

### Bangalore metropolitan

zone: Bangalore urban



## The many kinds of subsidies

| Consumer category                | Number of consumers | Total cons. (MU)     | Average<br>monthly<br>cons. (kWh) | Revenue/<br>month/<br>consumer (Rs.) | Revenue<br>per unit<br>(Rs./kWh) |
|----------------------------------|---------------------|----------------------|-----------------------------------|--------------------------------------|----------------------------------|
| Rural- poorest Bhagyajyothi      | 0.7 million         | 110                  | 13#                               | 65*                                  | <b>5</b> *                       |
| Irrigation pump-<br>sets (<10HP) | 0.7 million         | 4,300                | 530#                              | 700*                                 | 1.3 *                            |
| Rural residential                | 1.6 million         | 550                  | 28                                | 92                                   | 3.4                              |
| Urban<br>residential             | 4.2 million         | 5,600                | 110                               | 470                                  | 4.3                              |
| LT Commercial                    | 0.8 million         | 1,800 (U)<br>100 (R) | 210 (U)<br>90 (R)                 | 1,600 (U)<br>660 (R)                 | 7.6 (U)<br>7.3 (R)               |
| HT Industrial                    | 4,900               | 5,800                | 100,000                           | 600,000                              | 6                                |
| HT Commercial                    | 4,800               | 3,900                | 68,000                            | 540,000                              | 8                                |

<sup>#-</sup> Not always metered, and hence presumptive

<sup>\*-</sup> Subsidized by Government of Karnataka



#### Supply availability in BESCOM feeders





#### Estimating the shed load



- Evenings only
  - Peak for both rural and urban domestic
- Interpolation to estimate load shed



- Only single phase consumption
  - No pump-sets

#### Estimated evening demands and load shed





### Framing the "cross-subsidy"

#### Tariff based transfers

- Consumptions are known
- Estimate common tariff structures which are revenue neutral, and account for the higher costs of supply in rural areas
- Function of consumption and difference between regular and common average tariffs

#### Load shedding based transfers

- Load shedding levels known
- Estimate unrecovered costs if rural and non Bangalore urban consumers are load shed at the Bangalore urban level
- Function of loads shed, procurement costs at peak and marginal tariffs



#### Calculating tariff subsidies

|                                 |                                                                          | Rural     | Urban     |  |
|---------------------------------|--------------------------------------------------------------------------|-----------|-----------|--|
| Number of consur                | 1.6                                                                      | 4.2       |           |  |
| Average monthly                 | Average monthly consumption (kWh)                                        |           |           |  |
| Monthly fixed                   | For the first kW                                                         | 15        | 25        |  |
| charges (Rs.)                   | Every additional kW                                                      | 25        | 35        |  |
|                                 | 0- 30 kWh                                                                | 2.4       | 2.5       |  |
| Variable charges                | 31-100 kWh                                                               | 3.4       | 3.7       |  |
| (Rs./kWh)                       | 101-200 kWh                                                              | 4.55      | 4.85      |  |
|                                 | >200 kWh                                                                 | 5.35      | 5.85      |  |
|                                 | At approved tariffs for 2012-13                                          | 3.5 (R)   | 4.2 (U)   |  |
| Average                         | Average Step 1: If rural households paid urban tariffs                   | 4.1       | и         |  |
| revenue<br>per unit<br>Rs./kWh# | Step 2: Adjusting the common tariffs so that total revenue is unchanged* | 4.0 (R')  | 4.1 (U')  |  |
| 113.7 114411                    | Step 3: Accounting for higher distribution losses in rural feeders       | 4.2 (R'') | 4.1 (U'') |  |

Tariff subsidies <u>to</u> rural consumers = R'' - R = Rs. 0.7 / kWhTariff subsidies <u>from</u> urban consumer = U - U'' = Rs. 0.1 / kWh Approved tariffs for 2012-13

<sup>#-</sup> All calculations based on D21 sheet of BESCOM's filings to KERC and inputs therein

<sup>\*-</sup> Both revenues from fixed and variable charges are kept unchanged



#### Calculating load shedding transfers



Total number of domestic consumers in the feeder category (i.e. R/BU/NBU)

- \*Non-domestic consumers here include Bhagyajyothi households and commercial consumers
  - This is calculated for the 9 days for which we have data
  - Annual estimates are then made by mapping all the days in the year into one of these 9-day types based on state level demand and load shedding as per KPTCL





# Rural-urban transfers for the 9 days

|                    |                                       | Sep '12        | Dec '12      | April '13    |
|--------------------|---------------------------------------|----------------|--------------|--------------|
|                    | Load shed (%)                         | 37-45          | 8-9          | 13-21        |
| Rural              | Tariff transfer<br>(Rs./consumer-day) | -0.2 to -0.3   | -0.4         | -0.2 to -0.3 |
|                    | Load shed transfer (Rs./consumer-day) | +2.6 to +3.8   | +0.5 to +0.6 | +0.2 to +0.4 |
|                    | Load shed (%)                         | 26-36          | 7-11         | 16-21        |
| Non-<br>Bangalore  | Tariff transfer<br>(Rs./consumer-day) | +0.05 to +0.06 | +0.06        | +0.05        |
| urban              | Load shed transfer (Rs./consumer-day) | +1.2 to +2.3   | +0.4 to +0.6 | +0.3 to +0.5 |
|                    | Load shed (%)                         | 16-22          | 4-7          | 10-13        |
| Bangalore<br>urban | Tariff transfer<br>(Rs./consumer-day) | +0.05          | +0.04        | +0.04        |
|                    | Load shed transfer (Rs./consumer-day) | -1.4 to -2.1   | -0.3 to -0.4 | -0.1 to -0.3 |

**<sup>&#</sup>x27;+'** transfer **from** category

Net transfer **from** category

Net transfer **to** category

<sup>&#</sup>x27;-' transfer **to** category



#### Annually, who subsidizes whom?

| Classification criteria for weighting                          |       | l load shed<br>sidential co<br>year)<br>Non Bang |       |       | nual net tra<br>esidential co<br>year)<br>Non Bang |       |
|----------------------------------------------------------------|-------|--------------------------------------------------|-------|-------|----------------------------------------------------|-------|
|                                                                | Rural | Urban                                            | urban | Rural | Urban                                              | urban |
| Unscheduled and scheduled evening load shed                    | +240  | +200                                             | -140  | +120  | +220                                               | -120  |
| Total unscheduled and scheduled load shed in 24h               | +230  | +200                                             | -140  | +120  | +220                                               | -120  |
| Unscheduled and scheduled load shed <u>and</u> demand- evening | +320  | +260                                             | -190  | +190  | +280                                               | -170  |
| Total load shed and demand in the evening                      | +510  | +350                                             | -290  | +380  | +370                                               | -270  |

- + transfer **from** category
- transfer **to** category

The results vary depending on the criteria used to categorize the days of the year, but the conclusion remains the same :

Net positive transfer from rural and non Bangalore urban, net negative from Bangalore urban



# Results are sensitive to procurement costs

#### - but the direction of net transfers is robust



- + transfer **from** category
- transfer **to** category

The results vary depending on the criteria used to categorize the days of the year, but the conclusion remains the same :

Net positive transfer from rural and non Bangalore urban, net negative from Bangalore urban



#### Putting the transfers in perspective

- Annual load shedding transfers of Rs. 240-510/ rural consumer
  - On average, 20-44% of annual electricity expenditure
- Net transfers in terms of annual electricity expenditure
  - 20-60% for the poorest three rural deciles
  - 10-36% for the richest three rural deciles
- Not just rural-urban disparity, but the load shedding is regressive and impacts rural poor disproportionately
- Kerosene expenditure for the poorest 30% of the population is on average equal to 85% of their electricity expenditure



# And in aggregate...

| Classification criteria for                                    | _     | Annual load shed relief (Rs. in crores) |       | Annual net "subsidy" transfer (Rs. in crores) |       |           |
|----------------------------------------------------------------|-------|-----------------------------------------|-------|-----------------------------------------------|-------|-----------|
| "similarity"                                                   |       | Non Bang                                |       |                                               | •     | Bangalore |
|                                                                | Rural | Urban                                   | urban | Rural                                         | Urban | urban     |
| Unscheduled and scheduled evening load shed                    | +40   | +11                                     | -51   | +20                                           | +12   | -45       |
| Total unscheduled and scheduled load shed in 24h               | +38   | +11                                     | -49   | +20                                           | +12   | -44       |
| Unscheduled and scheduled load shed <u>and</u> demand- evening | +54   | +14                                     | -68   | +32                                           | +15   | -62       |
| Total load shed and demand in the evening                      | +85   | +19                                     | -104  | +64                                           | +21   | -98       |

- + transfer **from** category
- transfer **to** category

Aggregate net transfers do not sum to zero, as the tariff subsidies considered here are restricted to consumption in the evenings



#### Rural-urban welfare transfers nationally

The load shedding difference between rural and urban feeders is likely to be a function of peak load shedding in each state, and the fraction of state peak demand from rural domestic consumers. Based on this, we can get national estimates

|                 | Load shed relief<br>Rs. Crores/ year | Net transfer (Rs. Crores/ year) |
|-----------------|--------------------------------------|---------------------------------|
| BESCOM          | 40-80                                | 20-60                           |
| Nationally- 30x | 1200-2400                            | 600-1800                        |
| Nationally- 50x | 2000-4000                            | 1000-3000                       |

- This is assuming that the tariff subsidies (urban-rural) are similar across the country
- In terms of welfare transfers, this is in addition to large fractions of rural households not being electrified in many states
  - -Unelectrified: Bihar- 90%, Uttar Pradesh- 76%, Assam- 72%, West Bengal- 60% (Census 2011)



#### Reducing the inequity in load shedding

Load shed all
consumers

"uniformly"

Explore the continuum
between these extremes

Meet demand by
procuring
additional power
(i.e. no load
shedding)

- Procure some additional power and limit outages to an intermediate "optimal" level
- Procure some additional power and provide uninterrupted, but current limited, supply (using e.g. smart meters)



#### When are installing current limiters viable?

| Rural<br>consumer                                        | Central<br>Government | Utility                                                       |   |                                                 |
|----------------------------------------------------------|-----------------------|---------------------------------------------------------------|---|-------------------------------------------------|
| Savings in                                               |                       | Load shed relief                                              |   |                                                 |
| expenditure on kerosene                                  | Savings in            | Less                                                          | > | Cost of installation of smart meter (amortized) |
| Avoided interruption costs even if load shed 'equitably' | osts even if load     | (Tariff subsidy<br>+<br>Unrecovered<br>cost of peak<br>power) |   | (diffortized)                                   |

- Backup is primarily kerosene for lighting in rural consumers
- Willingness to pay from rural consumers will likely be higher
- This is being calculated for the "average rural household" in the "average village (rural feeder)"
  - In principle, the analysis could be more granular



#### Economics of installing current limiters

Load-shedding is replaced by current limited supply, with the utility procuring additional power

|  |                                  |                                                | Low | Medium | High  |
|--|----------------------------------|------------------------------------------------|-----|--------|-------|
|  | Inputs                           | Annual evening load shedding %                 |     | 16%    | 19%   |
|  |                                  | Cost of peak power (Rs./kWh)                   | 12  | 8      | 6     |
|  | Components of willingness to pay | Savings in kerosene expenditure (C)            | 80  | 140    | 330   |
|  |                                  | Interruption costs (C)                         |     | 210    | 500   |
|  |                                  | Savings in kerosene subsidy (G)                | 120 | 120    | 390   |
|  |                                  | Net subsidy transfer (U/ urban consumers)      | 290 | 340    | 420   |
|  | 50W supply instead of            | (Less) Unrecovered costs of peak power (U)     | 110 | 75     | 60    |
|  |                                  | (Less) Increase in electricity expenditure (R) | 30  | 35     | 40    |
|  |                                  | Willingness to pay for current limiter         | 470 | 700    | 1,500 |

Rs./ year

- 1. These are *annual* willingness to pay numbers borne by rural consumers (C), central government/ PSUs (G), and utility (U)
- 2. Kerosene consumption has been estimated bottom-up and these are <u>very</u> conservative (annual consumption of 3-13 liters)



#### Current limiters are viable if...

Their installed costs are no more than

|                   | Low       | Medium    | High      |
|-------------------|-----------|-----------|-----------|
| With 100 W supply | Rs. 2,000 | Rs. 3,600 | Rs. 8,900 |
| With 50 W supply  | Rs. 2,900 | Rs. 4,300 | Rs. 9,500 |

- Smart meters costing in the range of Rs. 4000 are already available in the market
  - Single phase static meters cost Rs. 800-1200 today
- This is for the "average rural feeder"
  - Some feeders are much worse than average- here, WTP will be much higher
- Note on assumptions
  - Supply (availability, costs) remains similar over the medium term (say, 10 years)



## Summary

- High variances in supply availability among rural and urban feeders
  - Analysis of load shedding must be done at disaggregate levels and statelevel estimates are not very useful barometers
- Rural domestic consumers provide a net "cross-subsidy" to domestic consumers in Bangalore
  - Non-Bangalore urban consumers in the BESCOM region provide subsidies through tariffs and load shed relief
- Providing current limited supply instead of outages seems to be preferable at current levels of load shedding
  - Costs can be offset by savings on kerosene expenditure and subsidies
  - The case for these becomes stronger as load shedding is higher



## Acknowledgments

- This work was supported by academic and alumni funds at Carnegie Mellon University
- Karnataka Power Transmission Corporation Ltd. for sharing the data and insights
- M. R. Srinivasa Murthy, Chairman of the Karnataka Electricity Regulatory
  Commission; Pankaj Pandey, MD BESCOM; G. Kumar Naik, MD KPTCL, and multiple
  officers of KPTCL's SCADA/Load Despatch Center for valuable comments, feedback,
  and interpretations
- Subir Gokarn, M. Granger Morgan, B. N. Sharma, K. K. Mishra, Rangan Banerjee, and Eswaran Subrahmanian for comments and feedback

The authors are responsible for the content