

Brookings Roundtable on Active Medical Product Surveillance

An Overview of the Design and Implementation of FDA's Prospective Routine Observational Monitoring Program Tools for Safety Surveillance

Jennifer Nelson, Group Health Research Institute and University of Washington

Elizabeth Chrischilles, University of Iowa Department of Epidemiology

Monday, September 16, 2013

Mini-Sentinel's Distributed Database

1- User creates and submits query (a computer program) 2- Data partners retrieve query **3**- Data partners review and run query against their local data **4**- Data partners review results **5**- Data partners return results via secure network 6- Results are

Source: Mini-Sentinel

3

aggregated

Mini-Sentinel Analyses

Modular Programs

- Rapid assessments
- Near real-time
- Executed by each data partner behind their firewall
- For additional information, please see the Mini-Sentinel Presentation on <u>Modular Programs</u>

Protocol-Based Assessments

- Formal and detailed evaluations
- Customized study designs and protocols
- More resource- and time- intensive than modular programs
- For examples of past Mini-Sentinel Protocol-Based Assessments, please see <u>here</u> or <u>here</u>

Prospective Routine Observational Monitoring Program Tools (PROMPT)

- Relatively standardized
- Semi-automated
- Routine prospective surveillance program
- Can examine a number of products simultaneously

B

Housekeeping

- To minimize feedback, please confirm that the microphone on your telephone is muted.
- To mute your phone, press the mute button or '*6'. (To un-mute, press '*7')
- There will be opportunities for questions and discussion at the end of today's presentations. Please use the Q & A tab on the top of your screen to submit your questions into the queue at any point and we will call upon you to state your question.
- Call the Level 3 Conferencing at 1-888-447-1119 with technical problems.

Brookings Roundtable on Active Medical Product Surveillance

An Overview of the Design and Implementation of FDA's Prospective Routine Observational Monitoring Program Tools for Safety Surveillance

Jennifer Nelson, Group Health Research Institute and University of Washington

Elizabeth Chrischilles, University of Iowa Department of Epidemiology

Monday, September 16, 2013

PROMPT: Prospective Routine Observational Monitoring Program Tools

Elizabeth Chrischilles, U of Iowa Jennifer Nelson, Group Health and U of WA Mini-Sentinel Protocol Core and Methods Core

September 16, 2013

FDA's Vision for a Semi-Automated Surveillance System as Another Surveillance Tool

What constitutes a comprehensive safety surveillance system?

 Semi-automated routine surveillance, applying general tools with minor adaptations to address the specific product

But also

 Ability to bring specialized expertise to bear on specific issue(s) that may arise in product lifecycle

Complements other approaches

Other Mini Sentinel activities

- describe populations and treatment (e.g., uptake)
- one-time, retrospective customized protocol-based assessments for older products
- monitor impact of FDA actions (e.g., a label change)
- □ FDA activities beyond Mini Sentinel
 - surveillance based on spontaneous reports
 - untargeted surveillance (data mining) of healthcare data
 - customized protocol-based studies using healthcare data

Overview of Anticipated Procedures for Active Surveillance of New Medical Products Using the PROMPT System

Goal

- Relatively standardized
- Prospective
- □ A number of products simultaneously
- □ Signal *potential* excess risk for subsequent follow-up

Tools:

- Cohort and outcome library
- Core confounder definition
- Module selection tool
- Analysis modules
- User guides

PROMPT surveillance at a glance

PROMPT surveillance: who, what, when

Newly marketed product
· ·
Define exposures, outcomes, etc
Choose analysis approach
· · · · · · · · · · · · · · · · · · ·
Estimate the risk
+
Aggregate results over time
•
Apply alerting rules
*
Report to FDA
FDA reports to public when appropriate

PROMPT Outcome selection

- occurs in association with several other medical products of that type (e.g., acute liver injury for drugs; febrile seizures for vaccines) or another product in the class and is thus of general interest or
- reason to suspect that that product in particular might increase the risk of that HOI, for example because of a signal identified in pre-approval animal studies or clinical trials

Standard outcome algorithms

GI bleeding **Pancreatitis** Premature delivery **Pulmonary Fibrosis** Hypertensive crisis Agranulocytosis **Aplastic Anemia Bronchospasm CVA** Venous Thromboembolism Hemorrhagic CVA Ischemic CVA Neutropenia Bell's Palsy Spontaneous abortion/Stillbirth Acute Respiratory Failure Sepsis Deafness Thrombotic thrombocytopenic purpura

Systemic lupus erythematosis Inflammatory Bowel Disease Juvenile RA **Tuberculosis** Erythema multiforme major Idiopathic thrombocytopenic purpura Thrombocytopenia Henoch Schonlein purpura Peripheral neuropathy Guillan-Barre syndrome Tendon rupture Seizure, febrile Suicide Valvulopathy Hip fracture Pulmonary hypertension Rhabdomyolysis Sudden cardiac death **Diabetes**

info@mini-sentinel.org

Standard Outcome Definitions:

Outcome	Algorithm	Rationale	Reference
<u>Acute</u>	Recommended Primary:	Some algorithms also included	22262598
<u>Ischemic</u>	434, 436 in first position	433.x1 and excluded 434.x0 (see	12105309
<u>Stroke</u>	of a hospital claim	Recommended Secondary), however 433.x1 may also have low PPV and the PPV for 434 (without exclusion) in first position is good (>85%). PPV diminishes slightly when any position, or when community vs tertiary care.	
	Recommended Secondary : 433.x1, 434 (excluding 434.x0), 436 in first position of a hospital claim	Algorithm that included 433.x1, 434 (excluding 434.x0), and 436 performed well. 433 (other than 433.x0) had very low PPV. One study found 433.x1 PPV=71%	22262598 12364739
	Also Observed (but not	433 had very low PPV . 433.x0 PPV was 2%,	9707200
	recommended): 433, 434, 436 in first	433.x1 PPV was only 20%	
info@mini-sent	pasition		17

PROMPT Cohort selection

- **Exclude prior history of event?**
- Separate cohorts for each product indication?
- Separate cohorts for individuals with major risk factors?
- High priority subgroups

Standard cohort algorithms

- Persons with coronary artery disease
- Persons with mood disorders
- Persons with end-stage renal disease
- Hypertensives
- Smokers
- Asthmatics
- Persons with dementia
- Persons who received fluoroquinolones for postexposure prophylaxis
- First responders

- Nursing home residents
- Pregnant women
- Live births
- Premature babies
- Persons at high risk for influenza complications
- Immunocompromised persons
- Type 1 diabetics
- Type 2 diabetics
- Obese persons

PROMPT Core confounder definitions

Demographics
Age
Sex
Calendar time*
Data Partner*
Healthcare utilization in baseline period
of visits to emergency departments
of ambulatory visits
of hospitalizations
of distinct drugs ordered/dispensed
of prescriptions ordered/dispensed
Lifestyle Factors
Smoking**, per algorithm developed by the "15 Cohorts" workgroup
Body mass index** ⁱ , if available in the common data model; otherwise, per algorithm developed by
the "15 Cohorts" workgroup
Combined Charlson-Elixhauser comorbidity index

* Requires special consideration given sequential analyses

** Discreetly-captured data field not currently in the Mini Sentinel Common Data Model, therefore alternate diagnosis-based algorithm suggested

PROMPT surveillance: how

What affects the choice? Exposure-outcome characteristics

Table 1. Scenario characteristics inherent to the specific exposure-outcome pair (i.e., scenario) that might affect design and analytic choice

			Characteri	istics of the				
Ехро	sure character	istics		HOI	HOI characteristics			
Background			Onset of	Duration of	Strength of confounding			
frequency of use in population	Utilization trend in population	Use pattern	exposure risk window	exposure risk window	Between person	Between Within person person		Expected degree of onset misclassification
More frequent	Uniform	Short-term (including intermittent)	Immediate	Short	Negligible	Negligible	Infrequent	Negligible (e.g., HOI is mortality captured by vital statistics)
Less Changing Lo frequent (increasing, decreasing, cyclical)		Long-term	Short	Long	Needs to be addressed	Needs to be addressed	Rare	Pertinent (e.g., cancer)

Additional characteristics that might affect design and analytic choice

Effect measure of	Number of comparison	Comparison		
interest	groups	exposure		
Difference measure	One	Active comparator		
Relative measure	Multiple	Truly unexposed		

PROMPT Module Selection Tool

- MS Taxonomy project aimed at "pre-thinking" major design and analysis considerations
 - Outlined methodological decisions in routine monitoring
 - Identified methodological options at each decision node
 - Determined the scenarios characteristics that might influence the decisions
 - Mapped scenario characteristics to recommended options
- Developed interactive tool to expedite decisionmaking process for routine monitoring

PROMPT Analysis Modules

Overview: Modular approach to drug safety monitoring in a distributed database system

- Build pre-programmed modules that can be <u>quickly activated</u> to monitor the use and safety effects of new and existing drugs
- Construct an analytic dataset based on pre-specified inputs:
 - Population eligibility
 - Outcome, exposure/comparator, and confounder definitions
- Describe the population of exposed and comparators
- Estimate adjusted safety effects across data partners
- Modules can be run once as single analyses or conducted repeatedly over time as data are refreshed and uptake occurs using sequential testing methods and pre-specified inputs:
 - Overall Type 1 (false positive) error to control across multiple tests
 - Frequency of testing and shape of signaling threshold over time
 - Maximum sample size after which surveillance will stop if no signal

Some Details: Modular approach to drug safety monitoring in a distributed database system

- Validated programming code
- Can be run <u>asynchronously across data partners</u> as data get refreshed while preserving <u>data privacy</u>
- Methods involve <u>standard epidemiologic designs and statistical</u> <u>methods</u>
 - Confounding adjustment via a self-controlled design, PS matching, regression, or inverse weighting approaches
- □ Can estimate <u>difference and ratio measures</u> (rate or risk)
- Addresses heterogeneity across data partners
- Can flexibly employ a <u>variety of sequential designs</u> and analyses
 - Frequency of sequential analyses
 - Signaling rules for alerting a difference in risk between groups over time

Current Status: Modular approach to drug safety monitoring in a distributed database system

- Version 1 of code has been developed and tested in the MSDD
- Code development was conducted using several example pairs where association was deemed to be 'known':
 - True positive drug-event pair: ACEis and angioedema
 - True negative drug-event pair: clindamycin and AMI
 - True positive vaccine-event pair: MMRV and fever/seizure
- Version 1 of module user's manuals have been written
 - Includes needed module inputs and resulting standardized output
 - Describes the epidemiological design and statistical methods employed
- Version 1 of surveillance reports have been created
- Next steps: further testing and enhancement of code, manual and reports

PROMPT surveillance: estimate risk

Self-controlled design module (PROMPT 1)

- Variant of the self-controlled case series
- Utilizes cases (those who experience an adverse event) only
- Compares risk in exposed and comparator time windows within the same person
- Time-fixed confounders are implicitly controlled
- Future version will allow adjustment for time-varying confounders
- (Sequential) test is based on a LRT statistic comparing observed versus expected event counts
- Sequential boundaries extend maxSPRT method
 - Flat boundary; can delay 1st analysis, then continuous subsequent tests

	٠	•							•				
		CI	n	0	n	~ 1	- 1	מר	(TI	00	2	om	-
L		31		U	U				21	UC	:u	CIII	a
_				_					0				

Self-controlled group sequential analysis

Test no. 5

Report date: 1/31/2014

Last exposure: 7/31/2013

Cumulative exposed: 71,892

Sequential analysis history and results

Tracking		New events		Cumulative			Risk estimates		Hypothesis-testing statistics and results					
Test	Most	No. of	No. of	No. of	No. of	No. of	Expec-	Relative	Risk	Log	Target	Actual	No. of	H0
#	recent	new	new	exposed	events	events	ted no.	risk	differ-	likeli-	alphato	alpha	cases	rejected
	batch(es)	events	events	patients	in risk	in	of cases		ence	hood	spend	spent	needed	?
	included	in risk	in		interval	control				ratio			to reject	
		interval	control		("cases")	interval				test			H0 (CV)	
		("cases")	interval			("con-				statistic				
			("con-			trols")								
			trols")											
1														
2														
3														
4														
5														

Date of last analysis: 5/21/2013

PS matching module (PROMPT 2)

- □ First (of three) cohort approaches (e.g., new user design)
- Utilize individual-level data that remain at each data partner to
 - Estimate a PS (based on pre-specified confounders or using hd-PS)
 - Match exposed to unexposed patients using the PS (fixed matching ratio)
 - Evaluate diagnostics
- Minimal data combined for central analysis at MSOC
- Can compute HR, RR, RD comparing exposed and comparators, stratified by data partner
- Future version will allow disease risk score matching
- (Sequential) test is based on a LRT statistic comparing observed versus expected event counts
- Sequential boundaries extend maxSPRT method
 - Flat boundary; can delay 1st analysis, then continuous subsequent tests

PS Matching Dataset Creation Capabilities

- Substantial flexibility in defining exposures and outcomes, exposure windows, washout period, minimum exposures, blackout periods, etc.
 - Use enrollment data to reconcile overlaps and gaps; define continuous enrollment periods
 - Create continuous exposure periods, incorporating stockpiling
 - Identify incident exposure episodes and outcomes
 - Can restrict cohort based on eligibility criteria
 - Identifies and defines a wide range of core confounders (demographics, healthcare utilization, and comorbid conditions)

Inputs for Prospective Routine Observational Monitoring Program Tool: cohort matching program

ELIGIBILITY INFORMATION

- **Enrollment gap**: specifies the number of days bridged between two consecutive enrollment periods to create a single continuous enrollment period.
- <u>Inclusion/exclusion conditions</u>: defined by creating a SAS dataset with codes defining the inclusion or exclusion of conditions(s) of interest.

EXPOSURE INFORMATION

- <u>Medical product of interest</u>: defined by creating a SAS dataset with codes (i.e., NDCs or CPTs) to identify the product of interest.
- <u>**Comparator of interest:**</u> defined by creating a SAS dataset with codes (i.e., NDCs or CPTs) to identify the comparator product of interest.

PS Matching Module in detail

Diagnostics: Balance before/after matching

PS Module Results over time

info@mini-sentinel.org

Regression module (PROMPT 3)

- □ A second cohort data approach (e.g., new user design)
- Individual-level data remain at each data partner
- De-identified data are then combined for central analysis at MSOC
- Can fit any generalized linear model of interest
 - Logistic regression to estimate an OR
 - Poisson regression to estimate a RR (and incorporate person-time data)
 - Linear regression to estimate a RD
- □ (Sequential) test is based on a score statistic
- Signaling boundaries leverage and extend RCT group sequential methods (unifying family by Kittleson et al.)
 - Allows flexible boundary shape specification (O'Brien-Fleming, Pocock, etc.)
 - Can customize testing plan (any continuous or group sequential plan)
 - Uses exact method boundary formulation (vs large sample assumptions)

Example Individual-level Dataset that remains at each Data Partner

StudyID	Age	Sex	Smoker	Weight	Height	Flu Vaccine	•••
1	28	F	Current	135	5'6"	Yes	
2	45	М	Quit	190	6'0"	No	
100,000	51	Μ	Never	180	5'10"	Yes	

Example of combined aggregated data sent to MSOC: event counts by strata

Site	Age Cat	Sex	Flu Vaccine	Events	Ν
А	25-30	F	Yes	10	1000
А	25-30	F	No	15	600
А	25-30	Μ	Л Yes 4		2000
А	25-30	Μ	No	10	1000
•••					
А	60-65	Μ	No	55	5000
В	25-30	F	Yes	25	10000
В	25-30	F	No	88	8000

IPTW regression module (PROMPT 4)

- □ A third cohort approach (e.g., new user design)
- Utilizes individual-level data that remain at each data partner to
 - Estimate a PS based on pre-specified confounders
 - Estimate a RD using linear regression, inverse weighted by the PS
- Summary statistics are combined across data partners for analysis
- Acknowledges site heterogeneity by computing a stratified RD estimate that incorporates variability in propensity score models
- Gequential) test is based on a Wald test statistic
- Sequential boundaries leverage and extend RCT methods
 - Allows flexible boundary shape specification (O'Brien-Fleming, Pocock, etc.)
 - Can customize testing plan (any continuous or group sequential plan)
 - Uses exact method boundary formulation (vs. large sample assumptions)

IPTW regression module

Involves a stratified IPTW risk difference

- Construct site-specific propensity scores (logistic regression)
- Calculate site-specific IPTW risk difference Δ_S & variance $V(\Delta_S)$ (Lunceford & Davidian 2004); send with N_s to a central location

IPTW regression module

Uses a non-parametric permutation approach for rare events

- Fix outcomes and confounders and permute exposure w/in site
- Sites also send permuted datasets

$$\left\{ \left(\Delta_{s}^{(1)}, \mathbf{V}(\Delta_{s}^{(1)}) \right), \dots, \left(\Delta_{s}^{(P)}, \mathbf{V}(\Delta_{s}^{(P)}) \right) \right\}$$

Example IPTW module reports

Table 1: Demog	Table 1: Demographics of Population by Exposure Group									
	Total	MMR+V	MMRV							
Total, N(Row%)	34823(100.0)	17502(50.3)	17321 (49.7)							
Age, $N(Col\%)$										
11m-12m	17728(50.9)	10089 (57.6)	7639(44.1)							
13m-14m	7038(20.2)	3267(18.7)	3771(21.8)							
15m-16m	6171(17.7)	2434(13.9)	3737(21.6)							
17m-19m	2681(7.7)	1143 (6.5)	1538(8.9)							
20m-23m	1205 (3.5)	569(3.3)	636(3.7)							
Sex, $N(Col\%)$										
Male	17798(51.1)	9040(51.7)	8758(50.6)							
Female	17025(48.9)	8462 (48.3)	8563 (49.4)							
Site, N(Col%)										
4	5090(14.6)	4981 (28.5)	109(0.6)							
15	18353(52.7)	4175 (23.9)	14178 (81.9)							
16	11380(32.7)	8346 (47.7)	3034(17.5)							

Example IPTW module reports

Figure 1: Total uptake of MMRV and MMR+V over Time at Look 4

Example IPTW module reports

1a	ble 2:	Results	of adjusted	d sequential :	monitorin	ig using strati	fied GS	IPTW com	paring 1	MMR+V	to MMRV (on outcor	ne Seizure
							MMR+	V MMRV					
			MMR+V	MMR+V	MMRV	MMRV	Adj	Adj	Adj	IPTW		Error	
1	Look:	Days	Ν	Out(%Out)	Ν	Out(%Out)	%Out	%Out	RD^*	Test	Boundary	Spent	Signal
	1:	364	12652	5(0.040)	2796	5(0.179)	0.043	0.074	0.031	0.794	1.297	0.028	No
	2:	455	14633	7(0.048)	6970	10(0.143)	0.045	0.088	0.043	1.261	2.043	0.032	No
	3:	546	15968	7(0.044)	11577	14(0.121)	0.036	0.086	0.051	1.790	2.074	0.032	No
	4:	637	17502	7(0.040)	17321	18(0.104)	0.028	0.080	0.052	2.235	2.069	0.032	Yes

m 11 LOC IDTW MMD (M (

*Adjusted stratified risk difference model applied using GS IPTW with sequential monitoring boundaries based on permutations.

Covariates Included: Age, Sex, and indicator for each look within site strata.

Abbreviations: IPTW=Inverse Probability of Treatment Weighting, Out=Num. of outcomes, %Out=Incidence rate of outcome within look and covariate category, Adj=Adjusted, RD=Risk Difference, Adj %Out= Adjusted estimated %Out from stratified IPTW model for a given exposure group, Adj RD= MMRV Adj %Out - MMR+V Adj %Out = stratified IPTW adjusted RD per 100, IPTW Test = Adj RD/Standard Error(Adj RD), and Boundary = Sequential Boundary to compare the IPTW Test Estimate.

Sequential P-Value at Signal: 0.0319

Mini-Sentir

What happens when we find something?

Prompt, pre-planned product-specific assessment of positive signal (or in the absence of signal)

- Examples of post-monitoring follow-up activities:
 - Data checks, analytic code checks
 - Subgroup analyses
 - Adjust for additional confounders
 - Test against other comparators
 - Vary population, O, or E definitions
 - Medical chart validation of cases
 - Quantitative bias analysis
 - Detailed epidemiologic investigation to assess causality

MINI-SENTINEL METHODS

Framework for Assessment of Signal Refinement Positive Results

Prepared by:

David L McClure¹, Marsha A Raebel^{2,3}, W Katherine Yih⁴, Azadeh Shoabi⁵, Jerry Mullersman⁶, Colin Anderson-Smits⁷, Rita Ouellet-Hellstrom⁵, Aloka Chakravarty⁵, Clara Kim⁵, Jason M Glanz²

Example report: demographics over time

	Look 1	Look 2	Look 3	Look 4
Total, Out(%Out)	10(0.065)	17(0.079)	21 (0.076)	25(0.072)
Age, Out(%Out)				
11m-12m	3(0.036)	6(0.053)	7(0.050)	9(0.051)
13m-14m	3(0.098)	4(0.094)	5(0.090)	5(0.071)
15m-16m	2(0.079)	2(0.054)	2(0.041)	3(0.049)
17m-19m	1(0.093)	3(0.192)	4(0.195)	4(0.149)
20m-23m	1(0.201)	2(0.275)	3(0.329)	4(0.332)
Sex, Out(%Out)				
Male	4(0.051)	8(0.072)	10(0.071)	12(0.067)
Female	6(0.080)	9(0.085)	11 (0.082)	13(0.076)
Site, Out(%Out)				
4	1(0.035)	1(0.028)	1(0.023)	1(0.020)
15	7(0.109)	10 (0.100)	13(0.095)	17(0.093)
16	2(0.032)	6(0.075)	7(0.073)	7(0.062)

Table A.1: Outcome Counts and Incidence Rates by Look and Covariate Strata

*Abbreviations: Out=Num. of outcomes and %Out=Incidence rate of outcome within look and covariate stratum.

Example report: surveillance results by site

Table	A.5: Curr	ent analysis	comparing	g MMR+V te	o MMRV	on outcon	ne Seizur	e by site
			MMR+V MMRV					
	MMR+V	MMR+V	MMRV	MMRV	Adj	Adj	Adj	IPTW
Site	Ν	Out(%Out)	Ν	Out(%Out)	% Out	%Out	RD^*	Test
4	4981	1(0.020)	109	0(0.000)	0.020	0.000	-0.020	-1.000
15	4175	2(0.048)	14178	15(0.106)	0.020	0.120	0.100	2.753
16	8346	4(0.048)	3034	3(0.099)	0.046	0.052	0.006	0.162

*Adjusted risk difference model applied using IPTW(no Sequential).

Covariates Included: Age, Sex, and indicator for each look within site strata.

Abbreviations: IPTW=Inverse Probability of Treatment Weighting, Out=Num. of outcomes, %Out=Incidence rate of outcome within look and covariate category, Adj=Adjusted, RD=Risk Difference, Adj %Out= Adjusted estimated %Out from stratified IPTW model for a given exposure group, Adj RD= MMRV Adj %Out - MMR+V Adj %Out = stratified IPTW adjusted RD per 100, and IPTW Test = Adj RD/Standard Error(Adj RD)

PROMPT surveillance: reporting

Information from Mini Sentinel's PROMPT is used to complement other FDA data to help inform regulatory action

Thank You!

<u>e-chrischilles@uiowa.edu</u> <u>nelson.jl@ghc.org</u>

Brookings Roundtable on Active Medical Product Surveillance

An Overview of the Design and Implementation of FDA's Prospective Routine Observational Monitoring Program Tools for Safety Surveillance

Jennifer Nelson, Group Health Research Institute and University of Washington

Elizabeth Chrischilles, University of Iowa Department of Epidemiology

Monday, September 16, 2013