Brookings Roundtable on Active Medical Product Surveillance

Findings from a Mini-Sentinel Assessment: Rotavirus Vaccines and Risk of Intussusception

Michael Nguyen, Deputy Director, Division of Epidemiology, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration

Katherine Yih, Epidemiologist and Lecturer, Harvard Pilgrim Health Care Institute and Harvard Medical School

July 23, 2013
Background

- RotaShield, first vaccine for prevention of rotavirus infection in infants, licensed in 1998
- RotaShield voluntarily withdrawn from market in 1999 due to observation of elevated risk of intussusception, a form of bowel obstruction
- RotaShield risk ≈ 1 – 1.5 excess cases per 10,000 vaccine recipients
- For RotaTeq and Rotarix, risk of intussusception assessed in clinical trials of > 60,000 children each; no increased risk for intussusception observed for either vaccine
- But post-licensure studies in other countries later suggested increased risk of intussusception after both Rotarix and RotaTeq
- In 2010, FDA’s Center for Biologics Evaluation and Research (CBER) initiated this study to quantify the possible risk among U.S. infants
Risk of Intussusception after Rotavirus Vaccination: Results of a PRISM Study

W. Katherine Yih, PhD, MPH

Brookings Roundtable on Active Medical Product Surveillance

July 23, 2013
PRISM

- **Post-licensure** **Rapid** **Immunization** **Safety** **Monitoring** system
- Largest vaccine safety surveillance program in U.S.
- PRISM data partners are national health insurance companies, which provide claims data
- Part of FDA-sponsored Mini-Sentinel pilot program developed to conduct active surveillance for medical product safety
Risk ratio estimates and 95% CI for Dose 1, ~1-7 day post-RV risk window*

* Haber et al. used 3-6 d window
Velázquez et al. used 0-6 d window & 95.5% CIs
Outline

1. Claims data
2. Chart review
3. Dose counts
4. Study designs
5. Attributable risk (AR) estimates
6. Temporal scan statistics
7. Conclusions
8. PRISM results compared to other studies
Data partners and date range

- Included in this study:
 - Aetna
 - HealthCore (Wellpoint)
 - Humana
- Date range varies by data partner
- Maximum period in this study: 2004 – mid-2011
Identification of potential exposures and outcomes in electronic claims data

- Rotavirus vaccine exposure
 CPT-4 codes 90680 (RotaTeq) and 90681 (Rotarix)

- Intussusception
 First-ever of any of these in ED or inpatient setting:
 - ICD-9 code 560.0 (intussusception)
 - ICD-9 code 543.9 (unspecified diseases of appendix, including intussusception)
 - CPT-4 code 74283 (therapeutic enema, contrast or air, for reduction of intussusception or other intraluminal obstruction)
Chart review

- **Purposes**
 - To confirm **intussusception** diagnoses
 - To confirm **rotavirus vaccination** status (specific vaccine, dose number, age) of intussusception cases

- **Age range**: 5-36 weeks, to cover recommended vaccination ages (2, 4, 6 mo.) plus follow-up time

- Reviewed charts of ostensibly vaccinated as well as unvaccinated cases

- Adjudicators of intussusception charts blinded to vaccination status
Brighton Collaboration criteria*

- Level 1 (requires direct observation of invagination of intestine or of highly specific features on ultrasound)
 - Surgical criteria and/or
 - Radiological criteria (using air/liquid contrast enema or ultrasound) and/or
 - Autopsy criteria

- Level 2
 - Clinical criteria, including “major” (more specific) ones

- Level 3
 - Clinical criteria but only “minor” (less specific) ones

Intussusception confirmation

Algorithm-identified potential cases = 343

Those for whom chart obtained = 267 (78%)

Confirmed as intussusception, Brighton Level 1 = 124 (46%)

Classified as Brighton Level 2 = 20 (7%)

Potential cases are from whole population aged 5-36 weeks and include unexposed
Rotavirus vaccine doses in PRISM study
(for period for which charts reviewed, through 6/2011 maximum)

<table>
<thead>
<tr>
<th></th>
<th>1st doses</th>
<th>All doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>RotaTeq (3-dose series)</td>
<td>507,874</td>
<td>1,277,556</td>
</tr>
<tr>
<td>Rotarix (2-dose series)</td>
<td>53,638</td>
<td>103,098</td>
</tr>
</tbody>
</table>
Intussusception incidence by age

J Tate et al. Trends in IS hospitalizations... *Pediatrics* 2008;121(5):e1125-1132.
Intussusception incidence by age

J Tate et al. Trends in IS hospitalizations... *Pediatrics* 2008;121(5):e1125-1132.
Design and analysis approaches

Primary:
Self-controlled risk interval (vaccinated infants only)

Secondary:
Cohort (all infants)
Self-controlled risk interval design

- Uses just vaccinated cases with intussusception in either pre-specified risk or control window
- Each subject serves as own control; adjusts for fixed (non-time-varying) confounders

```
0 1 7 22 42 days after vaccination
```

- Analysis by logistic regression
 - Adjust for age using age-specific incidence in offset term
Cohort design

- Uses exposed and unexposed infant-time from cohort 5-36 weeks of age

Pt 1 __↓
Pt 2 ______________________
Pt 3 ______ RV________________↓
Pt 4 __RV______________________________
Pt 5 ________________________________RV__↓

- Analysis by Poisson regression
- Adjust for age using polynomial function in model
Complementarity of designs

<table>
<thead>
<tr>
<th>Design</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-controlled (SCRI)</td>
<td>Controls well for fixed risk factors</td>
<td>Requires accurate age-specific incidence for age adjustment</td>
</tr>
<tr>
<td>(pre-specified as primary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>Higher statistical power; extrinsic background rates not needed</td>
<td>Could be affected by residual confounding</td>
</tr>
</tbody>
</table>
Intussusception age-specific incidence from 11 years of U.S. HCUP data*

* J Tate et al.
Complementarity of designs

<table>
<thead>
<tr>
<th>Design</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-controlled (SCRI)</td>
<td>Controls well for fixed risk factors</td>
<td>Requires accurate age-specific incidence for age adjustment</td>
</tr>
<tr>
<td>(pre-specified as primary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cohort</td>
<td>Higher statistical power; extrinsic background rates not needed</td>
<td>Could be affected by residual confounding</td>
</tr>
</tbody>
</table>
Dose-risk window combinations for each vaccine

<table>
<thead>
<tr>
<th>Risk window →</th>
<th>1-7 days</th>
<th>1-21 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose ↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>SCRI (primary)</td>
<td>SCRI Cohort</td>
</tr>
<tr>
<td>2, 3</td>
<td>SCRI</td>
<td>SCRI Cohort</td>
</tr>
</tbody>
</table>
RotaTeq attributable risks by dose number, study design, and risk window
Rotarix attributable risks by dose number, study design, and risk window
Temporal scan statistics

- Evaluated all potential risk windows...
 - starting 1-14 days after vaccination
 - ending 1-21 days after vaccination
- Adjusted for multiple testing (203 intervals considered)
- Adjusted for age using the age-specific incidence curve from Tate et al. and a randomization method
- Analyses conducted using SaTScan
Confirmed IS onsets by day after RotaTeq

Dose 1

All doses
Confirmed IS onsets by day after RotaTeq

5 out of 11 cases, RR=9.7, p=0.008

10 out of 30 cases, RR=4.5, p=0.004
Confirmed IS onsets by day after **Rotarix**

Dose 1

All doses
Confirmed IS onsets by day after Rotarix

Dose 1

3 out of 6 cases, RR=48, p=0.0008

All doses
Conclusions: **RotaTeq**

- Dose 1 associated with increased risk of intussusception in the 1-7 & 1-21 days after vaccination
- Statistically significant cluster found on Days 3-7 after vaccination (Dose 1 and all doses combined)
- All Dose 1 AR* point estimates in range of 1.1-1.5
- Lower and upper bounds of 95% CI of ARs*:
 - 0.2 excess cases/100,000 first-dose vaccinees (≈1/520,000)
 - 3.2 excess cases/100,000 first-dose vaccinees (≈1/30,000)

* attributable risk
Conclusions: Rotarix

- Low statistical power—103,098 total doses, 53,638 first doses, only 1 case in 1-42 d after first dose
- Statistically significant cluster found on Day 4 after vaccination (all doses combined)
- Other results also suggest increased risk but are inconclusive
Risk ratio estimates and 95% CI for Dose 1, ~1-7 day post-RV risk window*

* Haber et al. used 3-6 d window
Velázquez et al. used 0-6 d window & 95.5% CIs
Risk ratio estimates and 95% CI for Dose 1, ~1-7 day post-RV risk window*

* Haber et al. used 3-6 d window
Velázquez et al. used 0-6 d window & 95.5% CIs
Acknowledgments

FDA/CBER

Robert Ball
David Martin
Michael Nguyen

Data partners

Aetna: Cheryl McMahill-Walraven, Carolyn Jevit, Carolyn Neff, Yihai Liu
HealthCore: Nandini Selvam, Chunfu Liu, Tosmai Puenpatom, Marcus Wilson, Amanda Rodriguez
Humana: Mano Selvan, Vinit Nair, Tom Stacey, Qianli Ma

M-S/PRISM team

Carolyn Balsbaugh, David Cole, Claudia Coronel-Moreno, Martin Kulldorff, Grace Lee, Lingling Li, Tracy Lieu, Richard Platt, Linda Pointon, Megan Reidy, Robert Rosofsky, Diana Santiago, Ruihua Yin

Others

Ed Belongia
Michael Silverman
Jacqueline Tate
Discussion