Brookings Roundtable on Active Medical Product Surveillance:

Developing a Taxonomy of Surveillance Methods for Medical Product Safety

• Joshua Gagne, Brigham and Women's Hospital and Harvard Medical School

• Meghan Baker, Harvard Medical School, Harvard Pilgrim Healthcare Institute, and Brigham and Women’s Hospital

December 7, 2012
Taxonomy for monitoring methods within a medical product safety surveillance system

Joshua J Gagne
on behalf of the Taxonomy Work Group

Brookings Roundtable on Active Medical Product Surveillance
December 7, 2012
Overview

- Background
- Objectives
- Scenario characteristics
- Decision points and methods options
- Worked example
- Conclusions and future
Background
Background

- Many design and analytic methods are available for active medical product safety surveillance.
- Each method requires certain assumptions that may be tenable in some scenarios but not others.

 Note: I define “scenario” as a single exposure/outcome pair.
- No single method will perform well in all scenarios.
- Pre-thinking which methods are most suitable for which situations promotes collaborative, transparent, intelligible, and timely decision-making.
Overall project objectives

• Identify scenario characteristics that have implications for methodological decisions
• Characterize analytic methods suitable for signal refinement
• Map combinations of scenario characteristics to appropriate methods using structure decision table
• Evaluate the framework using FDA-relevant examples
• Develop interface and implementation guide
Scenario-method mapping

Characteristics defined by stakeholders
Exposure characteristics
Outcome characteristics
Characteristics of the link between exposure and outcome

Design options
Analysis options
Scenario-method mapping

Characteristics defined by stakeholders
Exposure characteristics
Outcome characteristics
Characteristics of the link between exposure and outcome

Design options
Analysis options
Scenario characteristics

- Characteristics defined by stakeholders

<table>
<thead>
<tr>
<th>Effect measure of interest</th>
<th>Number of comparison groups</th>
<th>Comparison exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference measure</td>
<td>One</td>
<td>Active comparator</td>
</tr>
<tr>
<td>Relative measure</td>
<td>Multiple</td>
<td>Truly unexposed</td>
</tr>
</tbody>
</table>
Scenario characteristics

- **Exposure characteristics**
 - Background frequency of use in population
 - Utilization trend in population
 - Use pattern

- **Health outcomes of interest (HOI) characteristics**
 - Background frequency
 - Expected degree of onset misclassification

- **Characteristics of the (potential) exposure-HOI link**
 - Onset of exposure risk window
 - Duration of exposure risk window
 - Strength of confounding (within- and between-person)
Scenario-method mapping

Characteristics defined by stakeholders
Exposure characteristics
Outcome characteristics
Characteristics of the link between exposure and outcome

Design options
Analysis options
Key design and analytic decision points

- Contrast

- Methods to address exposure time trend

- Methods to address confounding
 - Confounder summarization
 - Incorporation into estimation

- Estimation
Contrast

- Analyses always boil down to observed (counts, rates, etc) vs. expected comparisons (counts, rates, etc)

- Expected numbers can be estimated from the same individual or from other individuals
 - Within-person
 - i.e., self-controlled case series, case-crossover, and their variants
 - Between-person
 - i.e., cohort and related sampling strategies (case-control, case-cohort, etc.)
Methods to address exposure time trend

- Self-controlled approaches can sometimes be biased in the presence of a background trend in exposure
 - e.g., rapid increase in use of a new drug, seasonal variation in use of antibiotics

- Options:
 - Self-controlled case series
 - Case-time-control
 - Case-case-time-control
Methods to address baseline confounding

Confounder summary scores

- Safety surveillance often involves rare events and/or infrequent exposures
- Traditional adjustment approaches (e.g., covariate stratification and multivariable regression) are limited in these settings
- Confounder summary scores can incorporate many more covariates:
 - Propensity scores
 - Disease risk scores
Methods to address baseline confounding

Incorporation into estimation

- Confounder summary scores can be used in the same ways as multiple individual covariates

- Options
 - Stratification
 - Matching
 - Independent variable in outcome regression model
 - Weighting
Estimation

- Multiple models can be applied regardless of how covariates are summarized (or not) and incorporated into the analysis:
 - No outcome model (e.g., simple comparison of cumulative incidences or rates, stratified approaches such as Mantel-Haenszel)
 - Generalized linear models (e.g., logistic or Poisson regression)
 - Survival models (e.g., Cox proportional hazards model)
Example 5: Rosuvastatin and rhabdomyolysis

Characteristics determined by stakeholders/investigators

| Effect measure(s) of interest | Both difference and ratio measures |
| Comparator(s) | Other statins (excluding cerivastatin) |

Exposure characteristics

Background frequency of use:	More frequent
Utilization trend in population:	Changing (increasing)
Use pattern	Long-term

Characteristics of the potential exposure-HOI link

Onset of exposure risk window:	Immediate
Duration of exposure risk window:	Long
Strength of confounding	
Between-person	Negligible (when compared to other statins)
Within-person	Negligible

HOI Characteristics

Background frequency	Rare
Periodicity	Once
Expected degree of onset misclassification	Negligible (within days)
Example: rosuvastatin and rhabdo

<table>
<thead>
<tr>
<th>Characteristics of the (potential) exposure contour</th>
<th>Characteristics inherent to the specific exposure monitoring scenarios</th>
<th>Characteristics determined by stakeholder/investigator</th>
<th>Exposure characteristics</th>
<th>Use characteristics</th>
<th>Background frequency trend in population</th>
<th>One comparator exposure</th>
<th>Number of comparator exposure groups</th>
<th>Comparison of interest</th>
<th>Effect measure difference measure</th>
<th>Number of exposure groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short-term</td>
<td>Immediate Long</td>
<td>Short Long Short</td>
<td>Immediate Needs to be addressed Long Needs to be addressed</td>
<td>Needs to be addressed</td>
</tr>
<tr>
<td>Long</td>
<td>Needs to be addressed</td>
</tr>
</tbody>
</table>
Example: rosuvastatin and rhabdo

<table>
<thead>
<tr>
<th>Effect measure of interest</th>
<th>Number of comparison groups</th>
<th>Comparison exposure</th>
<th>Background frequency of use in population</th>
<th>Utilization trend in population</th>
<th>Use pattern</th>
<th>Onset of exposure risk window</th>
<th>Duration of exposure risk window</th>
<th>Strengh confound</th>
</tr>
</thead>
<tbody>
<tr>
<td>Difference measure</td>
<td>One</td>
<td>Active comparator</td>
<td>Infrequent</td>
<td>Changing (increasing, decreasing, cyclical)</td>
<td>Long-term</td>
<td>Immediate</td>
<td>Long</td>
<td>Needs to be addressed</td>
</tr>
</tbody>
</table>

Recommendation: Cohort design with or without confounder summarization via PS using a time-to-event model
Conclusion and future directions

- Many robust methods exist for surveillance activities and additional methods work is needed in key areas.
- Certain methodological decisions depend on factors outside of scenario characteristics (e.g., whether to match or stratify).
- Decisions often depend on nuanced clinical and epidemiologic input.
- Few combinations of methods can cover a majority of routine surveillance activities.
- Taxonomies for specific product types (e.g., devices, biologics, etc) can address additional nuance.
Key characteristics of monitoring setting Gagne et al PDS 2012

Module 1
Self-controlled case series
Parameters:
- Exposure time
- Trend adjustment
- ...

Maclure et al PDS 2012
Farrington et al...
Wang et al. Epidemiology 2011

Module 2
Cohort approach 1
Parameters:
- Score-based matching (PS, DRS)
- Fixed/variable ratio
- ...

Rassen et al AJE 2011, PDS 2012;
Schneeweiss et al. Epidemiol 2009; Glynn et al PDS 2012

Module 3
Cohort approach 2
Parameters:
- Minimally stratified
- Regression
- ...

Brown et al PDS 2009
Nelson et al PDS 2012;
Cook et al. PDS 2012

Aggregation of cumulating data over time
Schneeweiss et al. CPT 2011; Gagne et al. CPT 2012 in press

Applying alerting rules based on acceptable risk levels
Gagne et al. Epidemiology 2012
Framework evaluation

Taxonomy scenario characteristic selection table

Framework evaluation

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Outcome</th>
<th>Determined by stakeholder/investigator</th>
<th>Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Effect measure of interest</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of comparison groups</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comparison exposure</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Background frequency of use in population</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Utilization trend in population</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use pattern</td>
<td></td>
</tr>
</tbody>
</table>

Options:
- difference measure
- active comparator
- more frequent
- uniform
- short-term (including intermittent)
- intermittent
- multiple
- truly unexposed
- less frequent
- changing (increase, decreasing, cyclical)
- long-term
- short-term
Acknowledgements

Mini-Sentinel
• Meghan Baker, MD, ScD
• Kate Bykov, PharmD, MS
• Bruce Fireman, MS
• Grace Lee, MD, MPH
• Tobias Gerhard, PhD
• Malcolm Maclure, ScD
• Jennifer Nelson, PhD
• Jeremy Rassen, ScD
• Sebastian Schneeweiss, MD, ScD
• John Seeger, PharmD, DrPH
• Darren Toh, ScD

FDA
• Michael Nguyen, MD
• Marsha Reichman, PhD
• Azadeh Shoaibi, MS, MHS

OMOP
• Patrick Ryan, PhD