Facilitating Antibacterial Drug Development: Bayesian vs Frequentist Methods

Scott S. Emerson, M.D., Ph.D.
Professor of Biostatistics
University of Washington

The Brookings Institution
May 9, 2010
First: Where Do We Want To Be?

• Describe some innovative experiment?

• Find a use for some proprietary drug / biologic / device?
 – “Obtain a significant p value”

• Find a new treatment that improves health of some individuals
 – “Efficacy”

• Find a new treatment that improves health of the population
 – “Effectiveness”
Overall Goal

• “Drug discovery”
 – More generally
 • a therapy / preventive strategy or diagnostic / prognostic procedure
 • for some disease
 • in some population of patients

• A series of experiments to establish
 – Safety of investigations / dose
 – Safety of therapy
 – Measures of efficacy
 • Treatment, population, and outcomes
 – Confirmation of efficacy
 – Confirmation of effectiveness
U. S. Regulation of Drugs / Biologics

• Wiley Act (1906)
 – Labeling

• Food, Drug, and Cosmetics Act of 1938
 – Safety

• Kefauver – Harris Amendment (1962)
 – Efficacy / effectiveness
 • "[If] there is a lack of substantial evidence that the drug will have the effect ... shall
 issue an order refusing to approve the application. "
 • "...The term 'substantial evidence' means evidence consisting of adequate and well-
 controlled investigations, including clinical investigations, by experts qualified by
 scientific training"

• FDA Amendments Act (2007)
 – Registration of RCTs, Pediatrics, Risk Evaluation and Mitigation
 Strategies (REMS)
U.S. Regulation of Medical Devices

- Medical Devices Regulation Act of 1976
 - Class I: General controls for lowest risk
 - Class II: Special controls for medium risk - 510(k)
 - Class III: Pre marketing approval (PMA) for highest risk
 - "...valid scientific evidence for the purpose of determining the safety or effectiveness of a particular device ... adequate to support a determination that there is reasonable assurance that the device is safe and effective for its conditions of use..."
 - "Valid scientific evidence is evidence from well-controlled investigations, partially controlled studies, studies and objective trials without matched controls, well-documented case histories conducted by qualified experts, and reports of significant human experience with a marketed device, from which it can fairly and responsibly be concluded by qualified experts that there is reasonable assurance of the safety and effectiveness..."

- Safe Medical Devices Act of 1990
 - Tightened requirements for Class 3 devices
Topic for Today: Optimizing the Process

- How do we maximize the number of drugs adopted while
 - Ensuring effectiveness of adopted drugs
 - Ensuring availability of information needed to use drugs wisely
 - Minimizing the use of resources
 - Patient volunteers
 - Sponsor finances
 - Calendar time

- The primary tool at our disposal: Sequential testing
 - Decrease average sample size = Maximize number of new drugs

- Distinctions without differences:
 - Every frequentist RCT design has a Bayesian interpretation
 - Every Bayesian RCT design has a frequentist interpretation
Phases of Investigation

- A “piecewise continuous” process
- During any individual clinical trial
 - Sequential monitoring, adaptation addresses issues of that trial
- “White space” between trials
 - More detailed analyses
 - Evaluation of multiple endpoints; cost/benefit tradeoffs
 - Exploratory analyses
 - Integration of results from other studies
 - Management decisions
 - Regulatory and ethical review
- Next RCT: May address different question or indication
Phase 3 Confirmatory Trials

- The major goal of a “registrational trial” is to confirm a result observed in some early phase study
 - Selection of “promising” early phase results introduces bias
 - The smaller the early phase trial, the greater the bias

- Rigorous science: Well defined confirmatory studies
 - Eligibility criteria
 - Comparability of groups through randomization
 - Clearly defined treatment strategy
 - Clearly defined clinical outcomes (methods, timing, etc.)
 - Unbiased ascertainment of outcomes (blinding)
 - Prespecified primary analysis
 - Population analyzed as randomized
 - Summary measure of distribution (mean, proportion, etc.)
 - Adjustment for covariates
Ideal Results

• Goals of “drug discovery” are similar to those of diagnostic testing in clinical medicine

• We want a “drug discovery” process in which there is

 – A low probability of adopting ineffective drugs
 • High specificity (low type I error)

 – A high probability of adopting truly effective drugs
 • High sensitivity (low type II error; high power)

 – A high probability that adopted drugs are truly effective
 • High positive predictive value
 • Will depend on prevalence of “good ideas” among our ideas
Diagnostic Medicine: Evaluating a Test

• **We condition on diagnoses** (from gold standard)
 – Frequentist criteria: We condition on what is unknown in practice

• **Sensitivity: Do diseased people have positive test?**
 – Denominator: Diseased individuals
 – Numerator: Individuals with a positive test among denominator

• **Specificity: Do healthy people have negative test?**
 – Denominator: Healthy individuals
 – Numerator: Individuals with a negative test among denominator
Diagnostic Medicine: Using a Test

• **We condition on test results**
 – Bayesian criteria: We condition on what is known in practice

• **Pred Val Pos: Are positive people diseased?**
 – Denominator: Individuals with positive test result
 – Numerator: Individuals with disease among denominator

• **Pred Val Neg: Are negative people healthy?**
 – Denominator: Individuals with negative test result
 – Numerator: Individuals who are healthy among denominator
Points Meriting Special Emphasis

• Discover / evaluate tests using frequentist methods
 – Sensitivity, specificity

• Consider Bayesian methods when interpreting results for a given patient
 – Predictive value of positive, predictive value of negative

• Possible rationale for our practices
 – Ease of study: Efficiency of case-control sampling
 – Generalizability across patient populations
 • Belief that sensitivity and specificity might be
 • Knowledge that PPV and NPV are not
 – Ability to use sensitivity and specificity to get PPV and NPV
 • But not necessarily vice versa
Bayes’ Rule

- Allows computation of “reversed” conditional probability
- Can compute PPV and NPV from sensitivity, specificity
 - BUT: Must know prevalence of disease

\[PPV = \frac{\text{sensitivity} \times \text{prevalence}}{\text{sens} \times \text{prevalence} + (1 - \text{spec}) \times (1 - \text{prevalence})} \]

\[NPV = \frac{\text{specificity} \times (1 - \text{prevalence})}{\text{spec} \times (1 - \text{prevalence}) + (1 - \text{sens}) \times \text{prevalence}} \]
Application to Drug Discovery

• We consider a population of candidate drugs
• We use RCT to “diagnose” truly beneficial drugs
• Use both frequentist and Bayesian optimality criteria
• Sponsor:
 – High probability of adopting a beneficial drug (frequentist power)
• Regulatory:
 – Low probability of adopting ineffective drug (frequentist type 1 error)
 – High probability that adopted drugs work (posterior probability)
Slightly Different Setting

• Usually we are interested in some continuous parameter
 – E.g., proportion of infections cured is $0 < p < 1$

• “Prevalence” is replaced by a probability distribution
 – Prior (subjective) probability of selecting a drug to test that cures proportion p of the population

• Sum over two hypotheses replaced by weighted average (by some subjective prior) over all possibilities

\[
\Pr(p \mid \hat{p}) = \frac{\Pr(\hat{p} \mid p) \times \Pr(p)}{\int \Pr(\hat{p} \mid p) \times \Pr(p) \, dp}
\]

\[
= \frac{freq \ samp \ distn \times prior \ prob}{weighted \ average \ freq \ samp \ distn}
\]
Frequentist Inference

• Control type 1 error: False positive rate
 – Based on specificity of our methods

• Maximize statistical power: True positive rate
 – Sensitivity to detect specified effect

• Provide unbiased (or consistent) estimates of effect

• Standard errors: Estimate reproducibility of experiments

• Confidence intervals

• Criticism: Compute probability of data already observed
 – “A precise answer to the wrong question”
Bayesian Inference

• Hypothesize prior prevalence of “good” ideas
 – Subjective probability

• Using prior prevalence and frequentist sampling distribution
 – Condition on observed data
 – Compute probability that some hypothesis is true
 • “Posterior probability”
 – Estimates based on summaries of posterior distribution

• Criticism: Which presumed prior distribution is relevant?
 – “A vague answer to the right question”
Frequentist vs Bayesian

- Frequentist and Bayesian inference truly complementary
 - Frequentist: Design an RCT so the same data is not likely to arise from both sets of hypotheses
 - Bayesian: Explore updated beliefs based on a range of priors

- Bayes rule tells us that we can parameterize the positive predictive value by the type I error and prevalence
 - Maximize new information by maximizing Bayes factor

\[
PPV = \frac{power \times prevalence}{power \times prevalence + type\ I\ err \times (1 - prevalence)}
\]

\[
\frac{PPV}{1 - PPV} = \frac{power}{type\ I\ err} \times \frac{prevalence}{1 - prevalence}
\]

posterior odds = Bayes Factor \times prior odds
Recommended Best Practices

• Phased investigation
• Optimize process to maximize new drugs found with available patient resources
• Sequential sampling at each phase
 – Phase 2:
 • Choose type I error, power to increase prevalence (to ~50%?)
 • Best choice will depend on prior prevalence of “good ideas”
 • (Power of entire process depends on power at phase 2)
 – Phase 3:
 • Low type I error to ensure meet objective standards
 • High power to detect drugs that are clinically important
 • (False discovery rate depends on type I error at phase 3)
Comparisons: 10% Prior Prevalence

<table>
<thead>
<tr>
<th></th>
<th>RCT</th>
<th>Eff</th>
<th>Not</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonadaptive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Only Phase 3</td>
<td>2,000</td>
<td>160</td>
<td>45</td>
<td>500</td>
</tr>
<tr>
<td>Homogeneous effect</td>
<td>2,047</td>
<td>165</td>
<td>5</td>
<td>1,181</td>
</tr>
<tr>
<td>Homogeneous, 10% misleading</td>
<td>1,812</td>
<td>147</td>
<td>8</td>
<td>1,181</td>
</tr>
<tr>
<td>Homogeneous, 20% misleading</td>
<td>1,627</td>
<td>132</td>
<td>12</td>
<td>1,181</td>
</tr>
<tr>
<td>Inhomogeneous effect</td>
<td>2,123</td>
<td>99</td>
<td>5</td>
<td>1,181</td>
</tr>
<tr>
<td>Adaptive subgroups: inflate error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous effect</td>
<td>1,485</td>
<td>134</td>
<td>11</td>
<td>1,181</td>
</tr>
<tr>
<td>Inhomogeneous effect</td>
<td>1,490</td>
<td>109</td>
<td>11</td>
<td>1,181</td>
</tr>
<tr>
<td>Adaptive subgroups: control error</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homogeneous effect</td>
<td>1,707</td>
<td>139</td>
<td>4</td>
<td>1,277</td>
</tr>
<tr>
<td>Inhomogeneous effect</td>
<td>1,720</td>
<td>105</td>
<td>4</td>
<td>1,277</td>
</tr>
</tbody>
</table>
Recommended Best Practices

- Examine scientific / statistical credibility using Bayesian analyses with a population of prior probabilities
 - Science is adversarial
 - Whom have we convinced?

- Priors should mainly consider beliefs before any testing
 - Update after studies
 - But consider bias introduced by selection of promising results
 - “Regression to the mean”
Final Comments

• Some aspects of RCT design can increase efficiency
 – Controlling / stratifying important factors, factorial designs, ...

• Sequential sampling plans decrease average N
 – Increase number of drugs identified with fixed number of patients
 – May increase number of patients for any single trial

• Bayesian vs frequentist is an issue for inference
 – Every RCT design should (and does) allow either
 – Frequentist inference is “sufficient statistic” to allow others to perform Bayesian analyses that are relevant to their prior beliefs

• Any claim for greater efficiency in Bayesian inference merely reflects a change in standards
 – Incorporating prior information vs prior bias