FDA's Mini-Sentinel Program to Evaluate the Safety of Marketed Medical Products

Progress and Direction

Richard Platt
Harvard Pilgrim Health Care Institute
Harvard Medical School
for the Mini-Sentinel Investigators

January 18, 2012
Mini-Sentinel

- Develop scientific operations for active medical product safety surveillance
- Create a coordinating center with continuous access to automated healthcare data systems, and the following capabilities:
 - Develop and evaluate scientific methods that might later be used in a fully-operational Sentinel System.
 - Offer FDA the opportunity to evaluate safety issues in existing automated healthcare data system(s) and learn more about barriers and challenges.
The annotated Mini-Sentinel

The U.S. Food and Drug Administration’s Mini-Sentinel program:

- Supplement to Pharmacoepidemiology and Drug Safety
- 34 peer reviewed articles; 297 pages
- Goals, organization, privacy policy, data systems, systematic reviews, stats/epi methods, record retrieval and review, protocols for drug/vaccine studies...
- Open access!
Welcome to Mini-Sentinel

Mini-Sentinel is a pilot project spearheaded by the U.S. Food and Drug Administration (FDA) to facilitate development of a fully operational active surveillance system, the Sentinel System, for monitoring the safety of FDA-regulated medical products.

Mini-Sentinel is one piece of the Sentinel Initiative, a multi-faceted effort by the FDA to develop a national electronic system that will complement existing methods of safety surveillance.

Mini-Sentinel Collaborators include Data and Academic Partners that provide access to health care data and ongoing scientific, technical, methodological, and organizational expertise.
Stages of postmarket surveillance

<table>
<thead>
<tr>
<th>Aim = Identify excess risk</th>
<th>All (suspected and unanticipated) adverse events (AEs), all products</th>
<th>Specific AE:product pairs of concern</th>
<th>A highly suspected AE:product pair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approach</td>
<td>Repeated assessment of accumulating experience or one-time expedited assessment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example</td>
<td>Active surveillance in Mini-Sentinel and VSD using coded electronic health information</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Signal Generation

Signal Refinement

Signal Evaluation

Aim = Identify excess risk

Active surveillance in Mini-Sentinel and VSD using coded electronic health information
Mini-Sentinel goals

- Develop a **consortium**
- Develop **policies and procedures**
- Create a **distributed data network**
- Evaluate/develop **methods** in safety science
- **Assess** FDA-identified topics
Active surveillance activities

- Characterize populations, treatments, and health events
- For older products, assess concerns arising from any source
- Assess impact of FDA actions
- For new products, monitor accumulating experience for pre-specified potential adverse outcomes
Mini-Sentinel goals

- Develop a **consortium** of data partners and other content experts
Leadership

- Planning board – principal investigators, FDA, public representative
- Operations center
- Cores: data, methods, protocols
- Policy committee
- Safety science committee
- Privacy board
- Workgroups
Mini-Sentinel goals

- Develop a consortium
- Develop policies and procedures
Governance principles/policies

- Public health practice, not research
- Minimize transfer of protected health information and proprietary data
- Public availability of “work product”
 - Tools, methods, protocols, computer programs
 - Findings
- Data partners participate voluntarily
- Maximize transparency
- Confidentiality
- Conflict of Interest
Mini-Sentinel goals

- Develop a consortium
- Develop policies and procedures
- Create a distributed data network with access to electronic health data and full text records
 - Develop secure communications capability
Activities

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Integrity</td>
<td>• Distribution and retrieval</td>
<td></td>
</tr>
<tr>
<td>– Common data model</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Data completeness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Data validity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Health Outcome of Interest detection and validation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Environments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Claims</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– EHRs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

- info@mini-sentinel.org
Mini-Sentinel’s Evolving Common Data Model

- Administrative data
 - Enrollment
 - Demographics
 - Outpatient pharmacy dispensing
 - Utilization (encounters, diagnoses, procedures)

- EHR data
 - Height, weight, blood pressure, temperature
 - Laboratory test results (selected tests)

- Registries
 - Immunization
 - Mortality (death and cause of death)
The Mini-Sentinel Distributed Database

- Populations with well-defined person-time for which medically-attended events are known
- 126 million individuals*
 - 345 million person-years of observation time (2000-2011)
 - 44 million individuals currently enrolled, accumulating new data
 - 27 million individuals have over 3 years of data

*As of 12 December 2011. The potential for double-counting exists if individuals moved between data partner health plans.
The Mini-Sentinel Distributed Database

- 3 billion dispensings
 - Accumulating 37 million dispensings per month
- 2.4 billion unique encounters
 - 40 million acute inpatient stays
 - Accumulating 41 million encounters per month including over 400,000 hospitalizations
- 13 million people with >1 laboratory test result

*As of 12 December 2011
Why a Distributed Database?

• Avoids many concerns about inappropriate use of confidential personal data
• Data Partners maintain physical control of their data
• Data Partners understand their data best
 – Valid use / interpretation requires their input
• Eliminates the need to create, secure, maintain, and manage access to a complex, central data warehouse
Mini-Sentinel Distributed Analysis

1. User creates and submits query (a computer program)
2. Data partners retrieve query
3. Data partners review and run query against their local data
4. Data partners review results
5. Data partners return results via secure network
6. Results are aggregated
Mini-Sentinel Query Tool

- Enhanced version of PopMedNet™ software application
- Queries summary counts of each table in the local implementation of the common data model.
 - Summary tables reside with the Data Partners
 - Software securely transmits queries
- Data Partners can choose to evaluate queries before execution or queries can be run automatically.
Mini-Sentinel Modular Programs

1. Drug exposure for a specific period
 – Incident and prevalent use combined

2. Drug exposure with a specific condition
 – Incident and prevalent use combined
 – Condition can precede and/or follow

3. Outcomes following first drug exposure
 – May restrict to people with pre-existing diagnoses
 – Outcomes defined by diagnoses and/or procedures

4. Concomitant exposure to multiple drugs
 – Incident and prevalent use combined
 – May restrict to people with pre-existing conditions
Detecting and Validating Health Outcomes

- Detecting potential cases using administrative data
 - 20 systematic reviews: algorithms to detect health outcomes of interest

- Validating cases using full text records
 - Acute myocardial infarction
 - 93% of charts retrieved (143/153)
 - 86% of cases confirmed by expert panel
Blood Safety Continuous Active-Surveillance Network (Blood-SCAN)

- Strengthen FDA’s hemovigilance capabilities
 - Initial focus on recipient safety
 - Emphasis on non-infectious complications

- Create and characterize a Blood-SCAN distributed database
 - Develop an active surveillance system for regulated blood and blood-derived product use
 - Harmonize Blood-SCAN with existing US biovigilance efforts

info@mini-sentinel.org
Blood-SCAN Proposed Activities

Assess current ability to evaluate blood product exposures and outcomes

- Identify additional data in Mini-Sentinel EHRs
- Characterize enhanced database ability to capture key exposures and outcomes
- Assess risk of thromboembolism after immunoglobulin

Identify other linkable sources of blood product exposure
Data development in progress

• Expand base population
• Incorporate data from immunization registries
• Develop capacity to assess blood products
• Completion of data checking of vital signs and laboratory data
• Outcome detection: 18 systematic reviews focused on outcomes of special interest for vaccine safety
• Outcome validation: Acute liver injury, acute renal failure, anaphylaxis, intussusception, venous thromboembolism
Data development: On the Horizon

• Additional data
 – Electronic Health Records
 – State birth registries

• Enhance/expand library of modular programs and summary tables
 – More kinds of pre-compiled data
 – More flexible exposure and outcome options
 – Automated confounder adjustment
 – Self-control designs
Mini-Sentinel goals

- Develop a consortium
- Develop policies and procedures
- Create a distributed data network
- Evaluate extant methods in safety science
 - Develop new epidemiological and statistical methods as needed
Activities

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Integrity</td>
<td>• Distribution and retrieval</td>
<td>• Design & validity</td>
</tr>
<tr>
<td>– Common data model</td>
<td></td>
<td>– Study design choice</td>
</tr>
<tr>
<td>– Data completeness</td>
<td></td>
<td>– Automated confounding adjustment</td>
</tr>
<tr>
<td>– Data validity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– HOI validation</td>
<td></td>
<td>• Performance of</td>
</tr>
<tr>
<td>• Environments</td>
<td></td>
<td>– Sequential testing</td>
</tr>
<tr>
<td>– Claims</td>
<td></td>
<td>– Data mining</td>
</tr>
<tr>
<td>– EHRs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ambulatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Inpatient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Registries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Other (blood banks, genetic data, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

<table>
<thead>
<tr>
<th>Applications</th>
</tr>
</thead>
</table>

info@mini-sentinel.org
Design and validity

- **Taxonomy:**
 - Expedited choice of design and analytic monitoring approach
 - Identified generic attributes of exposure, outcomes, and relationships developed a decision table (Gagne et al, PDS supplement)

- **Self-controlled designs:**
 - Developed guidance on (Maclure, PDS supplement)
 - Strength/limitations, practicability in a monitoring setting
 - Tested a multivariate approach
Decision Table:
64 drug-outcome pair scenarios are linked to two basic designs strategies

<table>
<thead>
<tr>
<th>Exposure persistence (transient, sustained)</th>
<th>Characteristics of the (potential) exposure-HOI link</th>
<th>Monitoring scenario characteristics with implication for design choicea</th>
<th>Monitoring scenario characteristics with implication for analytic choicea</th>
<th>Analytic choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transient (e.g. vaccine, initiation of a drug; including episodic drug use [e.g. triptans] to the extent that the question pertains to its transient nature)</td>
<td>Onset of exposure risk window (Immediate, delayed)</td>
<td>Duration of exposure risk window (short, long)</td>
<td>Strength of confounding</td>
<td>HOI onset (abrupt, insidious)</td>
</tr>
<tr>
<td>Immediate</td>
<td>Short</td>
<td>Negligible</td>
<td>Abrupt</td>
<td>Negligible</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Needs to be addressed</td>
<td>Insidious</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

info@mini-sentinel.org
Design and Validity

- Automated covariate adjustment
 - A comprehensive approach to automated covariate adjustment is being developed for Propensity Score and Disease Risk Score methods (Rassen & Schneeweiss, PDS supplement)

- Simulation studies indicate theoretical biases (M-Bias and z-Bias) are not usually a problem (Myers et al. AJE 2011;174:1213)
Performance of signal alerting algorithms

- Sequential testing
 - Reviewed methods ‘state-of-the-art’
 - Developed guidance on sequential designs customized for observational safety settings (Nelson et al, PDS supplement)
 - Simulation to compare performance (Cook et al, PDS supplement)
 - Type 1 error rate, power, time-to-signal detection
 - Varying outcome prevalence, exposure & confounder complexity
Methods development:
In progress / Future directions

- Sequential monitoring using inverse probability weighting
- Semi-automated or automated confounding control using propensity and disease risk scores
- Simulation framework for evaluating alerting algorithms
- Anonymous linkage across data sources
- Analytic approaches in a distributed data setting
Mini-Sentinel goals

- Develop a consortium
- Develop policies and procedures
- Create a distributed data network
- Evaluate/develop methods in safety science
- Evaluate FDA-identified topics
Activities

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Integrity</td>
<td>• Distribution and retrieval</td>
<td>• Design & validity</td>
</tr>
<tr>
<td>– Common data model</td>
<td>• Anonymous linkage across sources</td>
<td>– Expedited design choice</td>
</tr>
<tr>
<td>– Data completeness</td>
<td>• Analytic approaches in a distributed data setting</td>
<td>– Automated confounding adjustment</td>
</tr>
<tr>
<td>– Data validity</td>
<td></td>
<td>• Performance of</td>
</tr>
<tr>
<td>– HOI validation</td>
<td></td>
<td>– Sequential testing</td>
</tr>
<tr>
<td>• Environments</td>
<td></td>
<td>– Non test-based</td>
</tr>
<tr>
<td>– Claims</td>
<td></td>
<td>– Decision analytic approaches</td>
</tr>
<tr>
<td>– EHRs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ambulatory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Inpatient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Registries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Other (blood banks, genetic data, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

• **Characterize exposures and health events, monitor accumulating experience**

• **Assess impact of FDA regulatory action**
Active surveillance activities

- Characterize exposures and health events
Rapid Queries of Exposures – Examples

• Drugs
 • Analeptics, Analgesics, Antihypertensives, Antiarrhythmics, Antiretrovirals, Antidepressants, Antipsychotics, Antibiotics, Bronchodilators, Cancer chemotherapy agents, Growth factor inhibitors, Intravenous iron, Smoking cessation drugs, Steroids

• Vaccines
 • Measles/mumps/rubella, rotavirus, human papilloma virus

• Devices
 • Hip replacement, Negative pressure wound therapy devices
Rapid Queries of Health Events – Examples

- Cardiovascular: Acute myocardial infarction, Hyperlipidemia
- Neurologic: Parkinson’s disease, Progressive multi-focal leukoencephalopathy
- Gastrointestinal: Celiac disease, Ulcerative colitis, Crohn’s disease
- Allergic: Severe cutaneous conditions, Anaphylaxis, Angioedema, Milk allergy
- Other: Osteonecrosis of the jaw
Prasugrel and Prior Stroke/TIA

- Prasugrel indicated to prevent thrombotic cardiovascular events in selected patients with acute coronary syndrome who are to be managed with percutaneous coronary intervention.
- It is contraindicated in patients with a history of transient ischemic attack (TIA) or stroke.
- Prasugrel and clopidogrel users’ prior history compared.
Clopidogrel and Prasugrel: Prior Stroke or TIA

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel (153,191)*</th>
<th>25,820</th>
<th>11,815</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prasugrel (6,997)</td>
<td></td>
<td>540</td>
<td>134</td>
</tr>
</tbody>
</table>

* New users after ≥365 day washout
Conclusions / Limitations

- Some prasugrel users have a prior diagnosis of TIA or stroke
 - Fewer than for clopidogrel users
- ICD-9 codes used for TIA and stroke not validated in Mini-Sentinel
- Longest look back for event was 1 year, patients that had an event >1 year prior would be missed
Active surveillance activities

- Characterize population and treatments
- For older products, rapidly assess concerns arising from any source
Rapid Queries of Exposure-Outcome Pairs

- Angiotensin receptor blockers (ARBs) and celiac disease
- Drugs for smoking cessation and cardiac outcomes
- Drugs for Parkinson's disease and acute myocardial infarction or stroke
- Analeptics and severe cutaneous adverse reactions
- Oral hypoglycemics and hypersensitivity reactions
- Atypical antipsychotics and hypersensitivity reactions
- Vascular endothelial growth factor (VEGF) inhibitors and osteonecrosis of the jaw
- Direct thrombin inhibitors / warfarin and hemorrhage
- Aspirin antagonists and stroke or transient ischemic attack
ARBs and celiac disease

- Potential olmesartan signal identified in AERS database
- Review of cases inconclusive
ARBs and celiac disease

<table>
<thead>
<tr>
<th>ARB</th>
<th>Cases</th>
<th>New users</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOSARTAN</td>
<td>63</td>
<td>235,630</td>
</tr>
<tr>
<td>IRBESARTAN</td>
<td>10</td>
<td>40,071</td>
</tr>
<tr>
<td>OLMESARTAN</td>
<td>17</td>
<td>81,560</td>
</tr>
<tr>
<td>TELMISARTAN</td>
<td>5</td>
<td>24,596</td>
</tr>
<tr>
<td>VALSARTAN</td>
<td>50</td>
<td>153,159</td>
</tr>
</tbody>
</table>

ARBs: New users after ≥365 day washout; Celiac Disease: 1st dx code after >365 day without diagnosis.

info@mini-sentinel.org
Limitations

- Capture of relevant GI events may be incomplete
- Potential inclusion of irrelevant events
- Patients exposed to different agents may differ with respect to risk of GI symptoms
- Majority of exposures limited to a few months duration
- Observed risk doesn’t exclude excess
Modular Program Type: MP 3 - Drug Use – Incident Outcomes
(See online specification for details: http://www.mini-sentinel.org/data_activities/details.aspx?ID=111)

Date Posted:

Medical product exposures of interest:

This Modular Program execution included 7 unique exposures, all in the Angiotensin II Receptor Blocker (ARB) drug category. The exposures were defined using National Drug Codes (NDCs identified by FirstDataBank), limited to the oral formulations, identified in the Mini-Sentinel outpatient dispensing file. The 7 drugs included were:

- Candesartan
- Eprosartan
- Irbesartan
- Losartan
- Olmesartan
- Telmisartan
- Valsartan
One-Time Protocol-based Assessments

- Rotavirus Vaccines and Intussusception
- Influenza Vaccine and Febrile Seizures
- Influenza Vaccine and Pregnancy Outcomes
- HPV4 vaccine and Venous thromboembolism
- ACEIs/ARBs/aliskiren and Angioedema
- Aripiprazole and Venous thromboembolism
Rotavirus Vaccines and Intussusception*

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine doses in study</td>
<td>1.8 million</td>
</tr>
<tr>
<td>Individuals in study</td>
<td>465,000</td>
</tr>
<tr>
<td>Number of outcomes based on ICD9 codes</td>
<td>64 cases within 21d</td>
</tr>
<tr>
<td></td>
<td>after any vaccine dose</td>
</tr>
</tbody>
</table>

* Numbers are for RotaTeq. Estimates are based on actual numbers from the first two data partners and inference for the third data partner.
HPV4 vaccine and Venous Thromboembolism*

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaccine doses in study</td>
<td>2.4 million</td>
</tr>
<tr>
<td>Individuals in study</td>
<td>987,000</td>
</tr>
<tr>
<td>Number of outcomes based on ICD9 codes</td>
<td>119 cases within 28d after any vaccine dose</td>
</tr>
</tbody>
</table>

*HPV4 vaccine is Gardasil. Estimates are based on inferences from preliminary data characterization analyses.
Influenza Vaccines and Febrile Seizures*

<table>
<thead>
<tr>
<th>Vaccine doses in study</th>
<th>860,000 first doses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individuals in study</td>
<td>860,000</td>
</tr>
<tr>
<td>Number of outcomes</td>
<td>91 cases within 1d after a vaccine dose</td>
</tr>
<tr>
<td>based on ICD9 codes</td>
<td></td>
</tr>
</tbody>
</table>

* Estimates are for 6-59 mo olds, based on inferences from preliminary data characterization analyses.
Active surveillance activities

- Characterize population and treatments
- For older products, rapidly assess concerns arising from any source
- Monitor impact of FDA actions
Assessments of FDA’s Regulatory Actions

Long Acting Beta Agonists

Objective: Evaluate the impact of labeling change advising against long term use of LABAs as a single agent on changes in use and health outcomes of interest

Status: Workgroup developing protocol
Active surveillance activities

- Characterize population and treatments
- For older products, rapidly assess concerns arising from any source
- Monitor impact of FDA actions
- For new products, monitor accumulating experience for pre-specified potential adverse outcomes
Antidiabetic Drugs and Acute MI

- Repeated evaluation of acute MI risk in new users of saxagliptin vs. comparator antidiabetic drugs
- Case mix adjustment via disease risk scores and propensity scores
- 280,745 eligible new users Aug, 2009 – Dec, 2010:

<table>
<thead>
<tr>
<th>Antidiabetic drug</th>
<th>New users</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saxagliptin</td>
<td>5,877</td>
</tr>
<tr>
<td>Sitagliptin</td>
<td>31,425</td>
</tr>
<tr>
<td>Pioglitazone</td>
<td>55,134</td>
</tr>
<tr>
<td>Long-acting insulin</td>
<td>72,024</td>
</tr>
<tr>
<td>2nd generation sulfonylureas</td>
<td>116,285</td>
</tr>
</tbody>
</table>
Challenges

- Many different exposures
- Many different outcomes
- Many patient types
- Many and diverse data environments

- Need for timeliness in both detection and followup
- Need to avoid false alarms
- Need for multiple simultaneous activities
- Need for surge capacity
Developing the Sentinel System — A National Resource for Evidence Development

The Food and Drug Administration (FDA) now has the capacity to “query” the electronic health information of more than 60 million people, posing specific questions in order to monitor the safety of approved medical products. This information to answer additional convening an ongoing series of discussions among stakeholders to address the near- and long-term challenges inherent in implementing the Sentinel System. In 2009, the FDA gave the Harvard Pilgrim Health Care Institute the lead role...
Thank you!