

Distributed Data Networks for Active Medical Product Surveillance: Expert Think Tank

Jeffrey Brown, PhD

November 23, 2009

Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute

Our experience has taught us...

- Little or no exchange of person-level data is needed to answer many safety, effectiveness, and quality questions
- A relatively small subset of items in electronic health data systems can answer most safety, effectiveness, and quality questions
- Data holders do not like having their data outside their control
- Concentrate analytics in a single team
- Minimize impact on health plan operations

Jeff_brown@hphc.org

Implication of those experiences

- Data holders maintain physical possession of their person level data
- Data holders control the uses of their data
- Computer programs should run at multiple sites without modification

Data Sources to Meet Needs

- Enrollment: dates and type of coverage
- Demographics
- Claims inpatient, outpatient
- Pharmacy dispensing
- Electronic medical records
- Access to full text inpatient and outpatient records
- Linkage to selected external registries, e.g., birth, death certificates, immunization

Jeff_brown@hphc.org

4

2

Jeff_brown@hphc.org

HMO Research Network (HMORN)

- 15 health plans across the US and Israel
- Different delivery systems
 Insurers, medical groups, integrated delivery systems
- Different data systems
 Claims, EMR, labs, upgrade schedules
- Different corporate SOPs, IRBs, beliefs
- Collaborate to conduct public health research

Jeff_brown@hphc.org

Data Standardization: Virtual Data Warehouse

- Created a common data model covering 10 priority data areas
- Uses existing coding standards (ICD-9, NDC, HCPCS)
- Relevant items transformed to common data model for entire population (Extract-Transform-Load [ETL])
 Stored as SAS datasets
- Data remain at sites; no centralized data
- Checking of data quality and completeness via distributed programs
 Within- and across-sites

within- and across-s

Jeff_brown@hphc.org

5

Data Completeness

- Enrollment data allows identification of defined populations at risk during specific periods
 Able to identify inception cohorts
- Exposure granularity
 - All care settings: NDCs, HCPCS, and ICD-9 procedure codes
 Within EMR: vital signs, test results, lot numbers, etc.
- Claims allow ascertainment of all care, regardless of setting
- The absence of a claim implies no event occurred
 Ability to review medical charts

Jeff_brown@hphc.org

Data Areas and Plans

- Enrollment
- Demographic
- Utilization
- Pharmacy
- Census
- Cancer registry
- Death date/causeVital signs
- Laboratory results
- Provider characteristics

Jeff_brown@hphc.org

- Planned:
 Infusion
 - Prescribing
 - Radiology findings
 - Pathology findings
 - Inpatient details
 - NLP clinical note extraction

6

. .

HMORN DRN F	Portal Screenshot	
pher description of gavey and the parpose,	eg. reasoning query in preparation for a grant submit	ssnorp.
Find the number of members who receive	d a flumist or relenza in 2007	
	×	
Please provide your email address so hea	ith plans can contact you with any questions:	
Jeff_brown@hphc.org		
Select up to 10 drugs to view, then select to return results stratified by age group and s	e observation period (year or quarters), the specific ex for each period selected.	periods to extract, and cli
Please selectione or more drugs:	Years	
ZALCITABINE	2000	-
ZALEPLON	2001	
ZANAMIVIR	2002	
ZIDOVUDINE	2003	
ZILEUTON	2004	
ZIPRASIDONE HOL	2005	
ZOLMITRIPTAN	2006	
ZOLPIDEM TARTRATE	₽ 2007	
ZONIBAMIDE	2008	-
Please select at least two data marts to wr	ach this query will be sent.	
Keallb Plan 2 (Leak-auto2)		
Health Plan 3 (Testing, no response)		
F Health Plan 4 (LPeak-Manual)		
Health Plan 5 (HPHC)		
Health Plan 6 (OHC)		
Health Plan 7 (Geisinger)		

Distribution: Minimal Automation Preferred Initial Approach

- Practical approach with our health plans' social, regulatory, and business environment
 - □ Lowers barriers to acceptance and implementation
 - □ Small IT footprint and limited risk
 - □ Focus on things we do well: data manipulation
 - Minimize need for extensive database expertise and ongoing maintenance/management of complex data structures
- Design allows automation of any step via role based access control
 - □ Ex.1: Require manual execution if submitted by a, b, or c
 - Ex. 2: Allow automated execution of all queries from x, y, and z
 Unless topic is mental health

Jeff_brown@hphc.org

13

Duery Execution Responsibilities Currently, HMORN plans may distribute programs to each other directly or via coordinating center Under planned architecture, queries distributed by an authorized user via portal Sites always control execution Potential for fine grained control of automation

Security and Privacy

- Plans have complete control over all uses of their data
- Plans ensure their own data sharing procedures are followed
- Plans approve all data transmissions
- Portal will use standard web security

Jeff_brown@hphc.org

15

Scalability

- Data sources
 - Common data model can be extended (e.g., genetic data)
 - □ For very large data sets, only subsets need be converted to common model
- Planned Network infrastructure
 - □ Small IT footprint at sites
 - Most software and development resources focused on the portal
 - Authorizations, access controls, query management, etc
 - A limited number of authorized users hundreds, not tens of thousands

16

Jeff_brown@hphc.org

Next steps

 Continue development and roll-out of new architecture

18

Extend model to new partners

Jeff_brown@hphc.org

Distributed Data Networks: Lessons from the HMO Research Network and Other National Health Plans

Distributed Data Networks for Active Medical Product Surveillance: Expert Think Tank

Jeffrey Brown, PhD

November 23, 2009 Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute

Overview of the Vaccine Safety Datalink (VSD) and its Distributed Data Model

November 23, 2009 James Baggs, PhD for the Vaccine Safety Datalink Project Immunization Safety Office Centers for Disease Control and Prevention

Q

CDC

Vaccine Safety Datalink (VSD): Background

- Established in 1990, the VSD is a collaborative project among CDC and 8 managed care organizations (MCOs)
- Collects medical care and vaccination data on more than 9.5 million members annually (3.1% of the US population)
- Allows for planned immunization safety studies as well as timely investigations arising from
 - hypotheses from medical literature and pre-licensure
 reports to the <u>Vaccine Adverse Event Reporting System</u>
 - (VAERS)
 - changes in immunization schedules, or the introduction of new vaccines
- Since 2006, conducts routine Rapid Cycle Analysis (RCA) of newly licensed and approved vaccines or modifications to existing vaccine recommendations

CDC

CDC

VSD: Strategic Priorities

- 1. Evaluate the safety of newly licensed vaccines
- 2. Evaluate the safety of new vaccine recommendations for existing vaccines
- 3. Evaluate clinical disorders following immunizations
- 4. Assess vaccine safety in special high risk populations
- Develop and evaluate methodologies for vaccine safety assessment

VSD Data

- Automated computerized data derived from electronic data sources and data warehouses at MCOs as well as additional outside data sources
- VSD data:
- Compiled annually to create "cycle files"
- Cycle files organized by a standardized data dictionary - Contains data on:

 - DemographicsHealth plan enrollment
 - Vaccinations (including lot #, manufacturer, location)
 Hospitalizations and emergency room visits

 - Outpatient clinic visits and urgent care visits
 Procedure codes

 - Mortality data
 Additional birth information (e.g. birth weight) when

available Stored as SAS datasets

R

CDC

VSD Studies

- Computerized data has limitations
- In addition to computerized data, VSD studies often employ additional data sources
 - Medical chart review
 - Survey
 - Additional computerized data sources such as pharmacy data, laboratory data, or radiology data

Q

The Dynamic Data Files

- To meet the changing needs of the VSD:
 - Restructuring annual cycle files was undertaken in 2005
 - We enhanced the infrastructure to capture near real time VSD event data:
 - vaccinations, hospitalizations, emergency room visits, outpatient and clinic visits, MCO enrollment data, and certain demographic data
- The newly developed files are now referred to as the VSD "Dynamic Data Files (DDF)"

The Dynamic Data Files

- Each MCO captures event based VSD data in near real time
- The annual cycle data files continue to be created
- DDF data follows VSD data dictionary

1

 For studies using the DDF, data are accessed on a weekly basis by CDC for analysis and/or extraction of necessary data

CDC

CDC

1

How VSD uses the DDFs

- VSD Studies
- Monitoring uptake of vaccines
- Rapid Cycle Analysis Studies began in early 2006:

CDC

- Meningococcal Conjugate (Menactra[®])
- Rotavirus (Rotateq[®] and Rotarix[®])
- MMRV (Proquad[®])
- Tdap (ADACEL[®] and BOOSTRIX[®])
- HPV (Gardasil[®])
- Seasonal Influenza Vaccines
- H1N1 Influenza Vaccines
- DTaP-IPV (Kinrix[®])
- DTaP-IPV/Hib (Pentacel [®])

The VSD Uses a Distributed Data Model (DDM)

The Distributed Data Model (DDM) is a system that allows all individual level standardized VSD data (Cycle Files) to reside at the MCO, rather than be transferred to the CDC

The DDM:

- Maintains confidentiality and ownership of VSD sites data
- Utilizes encrypted and secure methods (SSH2/SAS Secure)
- Limits access to IRB approved data required for specific studies
- Allows for simultaneous multi-site processing
 All SAS programs are submitted through the DDM by CDC/VSD data analysts
- Timely research is possible because of rapid turn-around of submitted SAS programs

The VSD Research Process

Concept Sheet

- Feasibility Assessment
- Proposal
 - Development and revision
 - Formal review by VSD project
 Approval by CDC VSD team leader
- Request MCO participation
- IRB approvals and HIPAA data use agreements
- Data collection and statistical analysis
- Manuscript preparation and review by VSD project
- CDC and Site Clearance
- **Dissemination of results**
- Archival for data sharing program

CDC

VSD DM Processes

- Data Management workgroup
 - Meets 1-2 times per month via conference call
 - 1-2 meetings per year
 - Input gathered from investigators and project managers
 - Workgroup makes decisions regarding standardized data
- dictionary, DDM changes, other data issues • Site data managers approve SAS programs for all IRB approved
- studies
- Sites monitor DDM activity
- All programs submitted via CDC analysts
- Specific coding guidelines

CDC

Key Challenges and Next Steps

- Always updating the DDM
- Upload
- Additional standardized macros
- Continual updates to the standardized data dictionary
- Height/Weight data
 - Temperature
- Greater efficiency in SAS program approval process - Using the VSD website
- Managing increasing amounts of data
- Developing personnel infrastructure
 - DDM programmers

VSD At A Glance

- Has published over 100 articles
- Is currently conducting approximately 70 studies
- Over 19 million individuals included in VSD data files
- Over 85.5 million vaccine doses
- DDM fully operation since early 2004
- Since 2006, an average of 35 "jobs" per month per site submitted to the DDM
- Is in the process or has completed 10 active surveillance studies of new licensed vaccine in a post market setting
 - Several presentations to the Advisory Committee on Immunization Practices (ACIP)

CDC

CDC

The Summary of the VSD

- The VSD project uses a Distributed Data Model (DDM)
 The DDM is an innovative model that ideally meets the needs of the VSD to conduct secure multi site studies while maintaining patient confidentiality
- Cycle Files (core data files) are still created on an annual basis
- Parallel datasets called the Dynamic Data Files (DDF) have been created and are updated weekly
- Along with retrospective studies, VSD now conducts near real time surveillance of potential vaccine associated adverse events (RCA)

Q

	0	
10	-	
1111	Restored.	

Statistical control (VSD transmission) Control For Disease Control, VSD transmission Publianna Gee, MPH Publianna Gee, MPH Publianna Gee, MPH Publianna Gee, MPH Rest For Mananation of No. California (NCK), California Modernia, MPH Mainer Commantic of No. California (NCK), California Modernia, MPH Mainer Commantic of No. California (NCK), California Modernia, MPH Proper Bases, MD Proper Bases, MD Proper Bases, MD, Notory Kaler, MD, PhD Proper Bases, MD, Notory Kaler, MD, Notory Kaler, MD, PhD Proper Bases, MD, Notory Kaler, MD, PhD Proper Bases, MD, Notory Kaler, MD, PhD Proper Bases, MD, Notory Modernia, MD, PhD Proper Bases, MD, Notory Modernia, MD, PhD Proper Bases, MD, MPH Proper Bases, MD, MPH Proper Later, MD, MPH

Goals of this introductionNational context Overview of DARTNet Clinical context Safety, CER and QI Limitations Next steps

National context

- Health care value assessment critical
- Improved methods for CER and safety monitoring of therapeutic activities
- New models of data acquisition
- Systems that combine claims data with clinical data and data directly collected from patients will add value
- Systems that can drive quality while providing new approaches to CER will be acceptable to clinicians

What is DARTNet?

- DARTNet is a federated network of electronic health record data from multiple organizations
 - Supports bi-directional electronic communication with these practices/ providers and patients
 - •Facilitates data collection/ aggregation using multiple constructs
 - Point of care from office staff/providers/patients
 Ancillary data to the PCMH fulfillment data, claims data, patient entered data

GARTHet

DARTHEL

DARTNet's Mission

 DARTNet's Mission is to explore how currently available EHR data can be used to supplement data from other datasets and sources to answer questions concerning the safety and effectiveness of medications and medical devices while improving the quality of the care provided by member organizations

DARTNet's Aims

- Support the Concept of the Patient Centered Medical Home
- Enhance the State of the Art in Effectiveness
 Research
- Advance practice-based research capabilities
- Enhance HIT capabilities within ambulatory care

How does DARTNet work?
 Step 1 - Capture,

- code, & standardize data (ETL) • Step 2 – Database
- for query/ research secure Web-portal • Step 3 – Knowledge
- generated to inform and fuel clinical quality improvement

ARTHE

Data management overview

- Data stays locally
- Standardized locally with retention of original format for both:
 Quality checks
 Recoding in future
- Each organization retains control of patient level data
- Local processing allows expansion

CARTHEL

Technical overview

- True distributed database
- EHR independent
- Data standardization middle layer tied to clinical decision support

PARTNet

- Distributed queries using Globus tools
- Exploring alternative data collection approaches
- Exploring multiple data sources

Security

- OGSA-DAI to Gateway connection
 oIP to IP specific
- DNS registry reverse hand shake
- Three factor security at login
- User functions limited by role
- Query functions limited by type
 Aggregate will return to system
 Patient level requires local activation

PARTNEL

Data Standardization

- Original data location and label retained as well as value where applicable
- Each data element then mapped to a data concept and specific data label
- SNOMED-CT used for labs, history, procedures, allergies, vital signs
- RxNorm used for drugs with NDC retained
- Fulfillment data can batch be attained?
- ICD-9 CM used for diagnoses

CARTHE

Point of Care Data

- Algorithm driven
- Current models Dx driven
- Could be drug driven, lab driven, reason for visit driven
- Pilot identified order of magnitude greater number of hypoglycemic events
- Many associated with OTC supplement use
- CA-MRSA study tracking clinical decision making from EHR triggers

Multi-faceted Research

- Data mining for traditional OCER
 Drug fulfillment data critical
- Enhanced clinical data for OCER
- Information to inform studies
 Eligibility criteria
 Incidence and prevalence data
- Best practices research
- PBRN interventional trials

DARTHEL

Learning Community

- Learning Community Activities
 Benchmarking reports
 - Practice facilitation
 - oLinkages (self-initiated and facilitated)
 - Website, Listserv, E-newsletter
 - Webinars
 - Best practices, case studies, how-to-workshops • Periodic face-to-face conference

......

PARTNet

Future Challenges

- Grow to reasonable size
- Find adequate infrastructure to support learning community
- Integrate various approaches to POC data collection
- Improve claims and fulfillment data
- Include the patient's voice

Erasmus MC

Healthcare databases in the EU

Legal basis for combining data in EU

- Directive 95/46/EC regulates the processing of personal data and the free movement of personal data (including health care) -> implemented in all countries.
- Principle: personal data may not be processed
 - Scientific purposes are an exception
 - However transparency is required (except when this is impossible)
 Use of coded data in large databases is possible
- Each country may have different implementation of directive
 - Needs to be explored
 - Processing rules depend on country where the data are (also after they have been sent across borders)
- Each database has own ethical framework and procedures for Fragmus MC processing data, these need to be satisfied as well

Working models for combining data

Experience in EC Framework programme

FP-6 TEDDY:	local elaboration of data, with own statistical expertise according to common protocol CUMBERSOME
 FP 7 approaches: 	Distributed data networks Started with EU-ADR Now implemented in EU-ADR, SOS, ARITMO VAESCO
	Erasmus MC Zafoo

Databases			eu-adr
			general population all ages
	SIMG	1,600,000	medical record all Rx, all Dx, labs
	Pedianet	160,000	general population, children, medical record all Rx, all Dx, labs
	Lombardy	9,000,000	General population, all ages, all reimbursed dispensings, hospitalizations
	Tuscany	4,000,000	General population, all ages, all reimbursed dispensings, hospitalizations, deaths, exemptions
	IPCI	1,000,000	General population, all ages, all Rx, all Dx, labs
	PHARMO	3,000,000	Population based, all ages, all reimbursed dispensings, hospitalizations, in hospital
	Denmark	3,000,000	General population, all ages, all reimbursed dispensings, procedures, hospitalizations other registries
	QRESEARCH	11,2000,000	General population, all ages, all Rx, all Dx, labs

017181		Gastrointestinal Hemorrhage
CD10	K92.2	Gastrointestinal haemorrhage, unspecified
ICD9CM	578	Gastrointestinal haemorrhage
ICD9CM	578.9	GASTROINTEST HEMORR NOS
ICD9CM	578.9	Haemorrhage of gastrointestinal tract, unspecified
CPC2ICD10DUT	MTHU011567	blonding; gastro-intestinaal
CPC2ICD10DUT	MTHU011669	blording; maagdamkanaal
CPC2ICD10DUT	MTHU030509	gastro-intestinaal; bloeding
CPC2ICD10DUT	MTHU047008	maagdamikanaal; blooding
CPC2ICD10ENG	MTHU011567	haemorrhage; gastrointestinal
CPC2ICD10ENG	MTHU011669	haemorrhage; gastrointestinal tract
CPC2ICD10ENG	MTHU030509	gastrointestinal; hemorrhage
ICPC2ICD10ENG	MTHU030540	gastrostaxis
ICPC2ICD10ENG	MTHU047008	gastrointestinal tract; hemorrhage
ICPC2P	D15001	Bleeding:gastrointestinal
ICPC2P	D15001	gastrointestinal bleeding
RCD	J68.,	Gastrointestinal bleed
RCD	J68	Gastrointestinal haemorrhage

Comparison and benchmarking of the rates			eu-adr 🧲	
		CRUDE IR per 100, 000 person-yrs		
COUNTRY	DATABASE	Not harmonized	Post -Terminology mapping	After consensus
	Pedianet	16.6	16.0 (<i>14.5</i>)	16.0 (<i>14.5</i>)
ΙΤΑ	Health Search	126.4	109.3 (<i>65.3</i>)	109.3 (<i>65.3</i>)
	Lombardy	45.2	84.0 (45.8)	52.5 (29.1)
	Tuscany	80.3	71.8 (32.2)	71.8 (32.2)
NL	IPCI	65.4	61.0 (44.2)	61.0 (44.2)
	PHARMO	48.3	39.0 (25.3)	39.0 (25 <i>.3</i>)
UK	Qresearch	85.6	83.4 (59.5)	83.4 (59.5)
DK	Aarhus UH	85.7	108.6 (66.9)	87.6 (54.5)
	TOTAL		66.9	66.9

Example 2 : VAESCO (vaccine safety)

- Background rates on outcomes: 9 countries (NO, SW, FI, DK, UK, NL, DE, IT, ES)
- Terminology mapping with UMLS (ICD-9, 10, ICPC, READ): free text: 12 conditions
- Common data model
- Jerboa for calculations, with/without censoring

Key challenges

- 1) Terminology mapping: how many events/conditions
- Defining output files from queries that are 'anonymous' according to all countries and are flexible enough for analysis
- 3) Lack of analytical capability in various databases
- 4) Databases from private and public sources
- 5) Disparity
- Differentiating between heterogeneity due to misclassification (lack of information) and true heterogeneity

Next steps

- Inclusion of vaccines
- · More databases being 'connected'
- · Validation of events

	Organizations (n=21)	Total population (m)
Centralized model: Provide your data externally to load into the Central Research Core IT environment	7	297
Federated model: Facilitate OMOP researchers access to execute queries directly (through firewall)	4	252
Distributed CDM Model: OMOP queries run locally by your research staff	17	470
Distributed protocol model: Develop and run your own queries locally	19	413

PARTNERS FOR INNOVATION, DISCOVERY, LIFE

Standardizing terminologies for drugs	ORGEPARTICINA METCOL OLTODARS OUTCOMES NATIONAL DEPARTMENT National Instance of Health
Top-level concepts (Level 4)	
Classifications (Level 3)	Manning
Ingredients (Level 2)	Existing De Novo Orived
Low-level drugs (Level 1)	
Source codes	
GPI NDC Multum HCPCS* CPT	4* ICD-9-Proc*
http://omop.fnih	.org/CDMandTerminologies
PARTNERS FOR INNOVATION, DISCOVERY, LIFE	Page 9

FOUNDATION

2

Tel aus

1

Research Investigators

The Principal Investigators (PIs) are the lead scientists for the OMOP project and guide and participate in the research across all four project phases

Marc Overhage, MD, PhD: Director, Medical Informatics and Research Scientist, Regenstrief Institute, Inc.; Regenstrief Professor of Medical Informatics, Indiana University School of Medicine, CEO; President of the Indiana Health Information Exchange

TIONA FOUNDATION

OBSERVATION/ MEDICAL OUTCOMES PAUTNETISTAR

Paul Stang, PhD, FISPE: Senior Director, Epidemiology, Johnson & Johnson Pharmaceutical Research and Development

Abraham G. Hartzema PharmD, MSPH, PhD, FISPE: Professor and Eminent Scholar, Pharmaceutical Outcomes & Policy, Perry A. Foote Chair in Health Outcomes Research, University of Florida College of Pharmacy

Judy Racoosin, MD, MPH: Sentinel Initiative Scientific Lead, US Food and Drug Administration

Patrick Ryan: Manager Drug Development Sciences, GlaxoSmithKline R&D OMOP Co-Investigator

PARTNERS FOR INNOVATION, DISCOVERY, LIFE

RS FOR INNOVATION, DISCOVERY, LIFE

Advisory Boards

A Scientific Advisory Board (SAB) will provide independent review of and expert input into the scientific aspects of OMOP's activities

- Elizabeth Andrews, RTI Health Solutions
- Andrew Bate, Pfizer
- Jesse Berlin, Johnson & Johnson
- Robert Davis, Kaiser Permanente .
- . Steve Findlay, Consumer Union Sean Hennessy, University of Pennsylvania .
- Mike Katz, FDA patient representative .
- . Allen Mitchell, Boston University
- David Page, University of Wisconsin •
- Ken Rothman, RTI Health Solutions
- . Judy Staffa, FDA
- Alec Walker, WHISCON

FOUNDATION OBSERVATION MEDICAL OUTCOMES

A Health Informatics Advisory Board (HIAB) will A real an informatics Advisory Doal of (INAD) will provide independent review and expert input into the OMOP's technology governance and project requirements related to privacy and security, terminology and coding, data and data models. .

Col. Kevin Abbott Jeff Brown, Harvard Medical School

.

.

.

.

TNERS FOR INNOVATION, DISCOVERY, LIFE

- Stan Huff, Intermountain Healthcare
- Diane MacKinnon, IBM (retired)
- Ken Mandl, Harvard University Clem McDonald, National Library of
- Medicine
- David Memel, Klaipeda Consulting .
- Joy Pritts, Georgetown University Rob Thwaites, United BioSource Corporation

Research Collaborators: FOUNDATION ORSERVATION MEDICAL OUTCOMES Data and Infrastructure as of 11/12/09 Organization Team Leader Activity Computer Sciences Corporation Dan Foltz Research Lab Department of Veterans Affairs Center for Medication Safety Fran Cunningham, PharmD Distributed Partner Michael Lieberman, MD GE Healthcare Research Lab i3 Drug Safety Arnold Chan, M.D., Sc.D. Distributed Partner Indiana University - Regenstrief Institute J. Marc Overhage, MD, PhD Distributed Partner Partners HealthCare System Shawn Murphy, MD, PhD Distributed Partner ProSanos Corporation Stephanie Reisinger Simulated Data SDI Health Gregory Hess, MD, MBA, MSc Distributed Partner Stella Chang, MPH Thomson Reuters Research Lab University of Miami-Humana Health Services Research Center Vinit Nair, BS Pharm., MS, RPh Distributed Partner TNERS FOR INNOVATION, DISCOVERY, LIFE

Research Collaborators: Methods as of 11/12/09		GESERVATIONA MEEGA OLITOCOMES PARTNERSHEP National Institutes of Health
Organization	Team Leader	Activity
Columbia University	David Madigan, PhD	Methods Lead
Eli Lilly and Company	Karin L. Benoit	Methods Partner
GPRD Group of the MHRA	John Parkinson, BSc, PhD	Methods Partner
Harvard Pilgrim Health Care Institute	Lingling Li, PhD	Methods Partner
Indiana University - Regenstrief Institute	Siu L. Hui, PhD	Methods Partner
M Alan Brookhart, PhD and SAS Institute	M. Alan Brookhart, PhD	Methods Partner
Merck Research Laboratories	Dr. A. Lawrence Gould	Methods Partner
ProSanos Corporation	Stephanie Reisinger	Methods Partner
Risk Benefit Statistics LLC	Robert L. (Bob) Obenchain, PhD), FASA Methods Partner
RTI International	Suzanne L. West, MPH, PhD	HOI Library
Slone Epidemiology Center at Boston University	David Kaufman, ScD	Methods Partner
United BioSource Corporation	Matthew W. Reynolds, PhD	HOI Library
University of North Carolina at Chapel Hill	Stacie Dusetzina	HOI Library
University of Utah	Brian Sauer, PhD	Methods Partner
University of Wisconsin-Madison	David Page, PhD	Methods Partner
Uppsala Monitoring Center	Niklas Norén, PhD	Methods Partner
PARTNERS FOR 1	INNOVATION, DISCOVERY, LIFE	Page 25