Panel 2 - Identification and Elucidation of the Biology of Adverse Events: The Challenges of Safety Assessment and Translational Medicine

Kenneth W. Turteltaub, PhD
Exec. Director, Center for Fundamental & Applied Systems Toxicology
Battelle Memorial Institute
Goals

• Define whether systems biology offers major improvements in the safety evaluation of new chemical entities with indications in oncology

• Discuss where it adds value, how it could be implemented, what its limitations are

• Determine whether guidance documentation is needed to help accelerate the adoption of systems biology for regulatory science
Systems Biology

• Elucidation of the complex interactions of a biological system and how it gives rise to the function or loss of function of a system

 ➢ Holistic rather than reductionist

 ➢ Combines biological, pharmacological, molecular and biochemical properties of a system

 ➢ Moves away from one target, one outcome

 ➢ Defines the interactions of the system components
Technologies making systems biology a reality

• High density arrays
 – Genomics, transcriptomics…

• Mass spectrometry and NMR
 – Metab(an)olomics, glycomics, lipidomics..

• Computational and bioinformatics
 – Pattern recognition and differential analysis defines interactions within a system

• Imaging technologies (MRI, PET)

• 3D tissue culture & other models
Premises

• New drugs are approved upon establishment of appropriate benefit risk determination for a specific indication

• Current animal testing methods are useful, necessary, but not sufficient to address the future safety needs of new therapeutics
 – REMS- vs. REMS+

• Preclinical safety assessments of new chemical entities have been dramatically affected by emergence of new techniques which enable quantification of molecular changes related to organ system damage
Premises (cont)

• Systems level understanding of the biology of adverse events can significantly improve the detection, measurement & monitoring of potential liabilities and characterize the risk to humans
 – Most relevant toxicology outcomes involve differential molecular expression signaling changes and/or metabolism

• Guidance on the application of systems biology will help in its adoption and consequent demonstration in drug development
Systems Biology can measure molecular effects relevant to adverse events

Genomics
Transcriptomics
Proteomics
Metabolomics
Lipidomics
Glycomics
PTM’s

Informatics/computational methods
Mechanisms of action
Secondary pathways of effect
Targets for drug interaction
Relevant polymorphisms
Biomarkers of adverse events
Human relevance
Specific hypothesis testing
Toxicity Testing in the Twenty-first Century: A Vision and a Strategy *

“Toxicity testing is approaching ...a scientific pivot point. It is poised to take advantage of the revolutions in biology and biotechnology. Advances in toxicogenomics, bioinformatics, systems biology, epigenetics, and computational toxicology could transform toxicity testing from a system based on whole animal testing to one founded primarily on in vitro methods that evaluate changes in biologic processes using cells, cell lines, or cellular components, preferably of human origin.”
Application of these principles are already happening, we need to increase adoption
Questions for the Panel

• Are current animal testing methods insufficient?

• Are the issues correctly defined and phased?

• What changes to the current testing paradigm will have the biggest impact?

• Is systems biology sufficiently developed to add value?

• Has understanding the MOA helped? Does it influence regulatory decision making?

• What needs to be done to implement incorporation?

• How can industry, academia and govt work together to define principles of application and foster implementation?
Agenda

• Adam Clark, Ph.D.
 – Director, Scientific and Federal Affairs, FasterCures
 – Definition of the Problem

• Leigh Ann Burns-Nass, Ph.D.
 – DSRD Therapeutic Area Leader-Oncology Pfizer Inc
 – Case Study 1. Drug-Induced vascular injury & how systems biology helped elucidate phosodiesterase inhibitor pathophysiology in animals and define potential biomarkers for humans
Agenda

- Myrtle Davis, DVM, Ph.D.
 - Chief, Toxicology and Pharmacology Branch, Division of Cancer Treatment and Diagnosis, NCI/NIH
 - Case Study 2. Anticancer kinase Inhibitors & importance of defining MOA and establishing selectivity and off-target effects

- John K. Leighton, Ph.D.
 - Assoc. Director, Pharmacology/Toxicology, FDA/OODP
 - Status and Perspective on Current & Emerging Approaches to Safety Assessment
Innovative and Efficient Pre-Clinical Testing

Adam M. Clark, Ph.D.
Director, Scientific and Federal Affairs

FasterCures
Safety Testing: From Science Fiction to Science

- Genomics
- Proteomics
- Metabolomics
- Bioinformatics
- Stem cells

Cancer Cell 17, 98-110 (Jan 19, 2010)
FDA Drug Approvals

Need for Improved Models of Toxicity and Patient Benefit

• Animal Models of Carcinogenicity
 – 19/28 compounds tested in coffee are rodent carcinogens
 – Half of natural plant pesticides are rodent carcinogens

• Thalidomide and Clinical Applications
 – Well known teratogen
 – “On May 26, 2006, the U.S. Food and Drug Administration granted accelerated approval for thalidomide (Thalomid, Celgene Corporation) in combination with dexamethasone for the treatment of newly diagnosed multiple myeloma (MM) patients”
 (www.cancer.gov)
Imperfections with Animal Models of Toxicity

November 23, 1977:

Congress passes the Saccharin Study and Labeling Act to stop the FDA from banning the chemical sweetener. The legislation instead requires a warning on the label of products containing saccharin stating, "Use of this product may be hazardous to your health. This product contains saccharin which has been determined to cause cancer in laboratory animals."

In 2000, the National Toxicology Program determined that saccharin should no longer be listed as a potential cancer-causing agent.
Creating Opportunity in the “Valley of Death”

- VoD is the gulf between discovering a promising new drug and demonstrating its effectiveness in humans.
- Preclinical drug discovery accounts for 32% of the costs of developing a drug.
- 8% of NMEs will make it from preclinical selection to launch. Therefore, 12 products are needed in the preclinical development phase for one successful NME launch.
- Preclinical development prior to Phase I trials costs about $5 million per product.

Pharmaceutical Value Equation

\[P = \frac{WIP \times p(TS) \times V}{CT \times C} \]

- **P** = R&D Productivity
- **WIP** = Work in Progress (NMEs in the pipeline)
- **p(TS)** = Probability of a Technical Success
- **V** = Value
- **CT** = Cycle Time
- **C** = Cost

Systems Toxicology in Preclinical Testing and the Value Equation

- WIP - Effective safety screening could increase a company’s product line portfolio
- $p(TS)$ – Effective screening of targeted drugs could increase the probability of success in sub-populations
- V – Effective screening of “true” toxicities could elucidate health outcomes and the benefit:risk ratio
- CT – Efficient screening could reduce cycle time for products to move to clinical testing

$$P_{\alpha} \frac{WIP \times p(TS) \times V}{CT \times C}$$
State of New Drug Delivery to Patients

- Developments of new therapies is in decline
- Cost of bringing drugs to market is rising
- Era of personalized medicine is pressuring a changing dynamic in the desire for more tailored treatments and identifying responder sub-populations
- Effective and efficient safety screening serves to benefit drug developers and patients by increasing the potential for promising new therapeutics to make it to the clinic
Innovative and Efficient Pre-Clinical Testing

Leigh Ann Burns Naas, PhD, DABT, Fellow ATS
Senior Director, Drug Safety Research & Development
Pfizer
Drug-Induced Vascular Injury (DIVI) Challenges for Risk Management and Regulatory Policy

- Vasculitis is not a single disease entity in humans or animals

- Drug-induced vascular injury in non-clinical models differs from human clinical syndromes
 - Drug-induced in animals not immune mediated

- Inadequate methods to differentiate spontaneous vasculitis from drug-induced in animals

- Lack of specific and sensitive clinical biomarkers
Nonclinical DIVI

- Lesions develop acutely, within hours to days and is characterized histologically by one or more of the following: inflammation, necrosis, hemorrhage, medial thickening

- Caused by several types of drugs (PDEi, dopamine agonists, endothelin receptor antagonists, etc.) with differences between species (rat mesenteric arteries vs. canine coronary arteries)

- Lesions can only be detected by histopathology; there are no diagnostic or predictive circulating biomarkers

- Corresponding findings not reported in humans

- Significant challenge for pharmaceutical companies; many compounds terminated from development because of DIVI and the inability to monitor in the clinic
There is a clear need for translatable biomarkers to detect and monitor DIVI.
Using Systems Biology…

• the pathophysiology of a well-known, but enigmatic phenomenon of chemically induced vascular injury has been elucidated

• approach essential to the characterization of the signals and pathways of these events, but long-sought-after candidate biomarkers were also identified
PDE4i Toxicity
Mesenteric Vascular Injury & Inflammation in Rats

Lesion Development Begins <24 hours

Primary site: Mesentery*

Focal Inflammatory Infiltrates
Arterial wall hemorrhage
Arterial wall necrosis
Arterial/Periarterial Inflammation

Molecular Pathways? Molecular Mechanisms?

*Other sites: liver, epididymis, intestine
Experimental Approach

Perform in-life studies

Generate pathology and ‘omic data

Collaborate with Genstruct to build vasculitis model and generate hypotheses/biomarkers

Review, prioritize, test hypotheses/biomarkers
In Vivo Panomic Profiling

- Used to identify candidate mechanisms and biomarkers of vascular injury with multiple compounds
 - RNA profiling of mesenteric artery tissue
 - Serum proteomics
 - Urine metabolite analysis
 - Serum ELISA assays for specific proteins
 - Serum & urine metabolite analysis
Modeling Approach

Knowledge Assembly

Literature and Databases

Computable Representation

Reverse Causal Analysis

Forward Causal Analysis

Phosphorylation
Transcriptional Control
Dimerization
Gene Expression

X → Y

ENO2 → TNFRSF6 → BCL2L1 → SOCS1

MYC → EGR1

STAT3 → IFNG → CD28

STAT3 → STAT3 → STAT3

CD28 → IFNG → STAT3

Conference on Cancer Research

30
Evidence for Ischemia Reperfusion
Proposed Pathogenesis of PDE4i-Induced Vascular Injury

1. Ischemia Reperfusion Injury
 - Innate Immune Response
 - Innate Immune Mediators
 - Complement Proteins Upregulated
 - Stress Response in EC
 - Oxidative Stress
 - Increased Vascular Permeability
 - Granulocyte Activation

2. Cpd 1 (4 hr)
 - Increased Granulocytes in Blood
 - Acute Phase Response Proteins in Blood
 - Blood Coagulation Proteins Upregulated

3. Cpd 2 (16-24 hr)
 - Immune cell recruitment, adhesion, & infiltration
 - Cell death, Necrosis
 - EC Activation

4. Cpd 3 (96 hr)
 - Complement Proteins Upregulated
 - Increased Granulocytes in Blood
 - Acute Phase Response Proteins in Blood
 - Blood Coagulation Proteins Upregulated
Ischemia Reperfusion Injury Hypothesis

• PDE4i can induce ischemia-reperfusion like injury
 – Continued systemic vasodilation in the face of local mesenteric vasoconstriction can induce vasospasms and non-occlusive mesenteric ischemia

• Hypothesis supported by markers of ischemia
 – C1QB, ENTPD2, CLU, EDNRB, P4HB

• Many downstream events of ischemia reperfusion injury observed
 – Increased XDH activity
 – Increased leukotriene and eicosanoid synthesis via arachidonate
 – Innate immunity mediator releases IL6, IL1β, TNF
 – Complement activation
When You Wish Upon A Star…

• Understanding the translation (or not) of nonclinical safety signals to the patient

• Onco-PLUS! Building a better drug

• Understanding the potential safety impact on individuals by understanding relationship to key personal omic signatures
Challenges

• Timelines
 – VWG established 2001
 • academia, industry, regulatory participation
 – First VGDS 2006
 – FDA/EMA consultation on clinical translational testing plan in October, 2010
 – Earliest proposed regulatory adoption of biomarker(s) – late 2014
Challenges

- Preclinical Modeling and Clinical Translation in the face of Confounding Factors
 - Contributions of disease state or secondary disease
 - Prior therapies
 - Evolving con-meds, some with related adverse effects with possible different mechanisms
Innovative and Efficient Preclinical Testing

Myrtle Davis, DVM, Ph.D.
Chief, Toxicology and Pharmacology Branch
Division of Cancer Treatment and Diagnosis,
The National Cancer Institute, NIH
“The views presented do not reflect an official position or policy of the National Cancer Institute or the U.S. Government.”
Cardiotoxicity associated with Anticancer Kinase Inhibitors

- Compound x (targets Bcr-Abl) induces LV dysfunction and CHF; Compound B a TKI that like Comp. x (targets Bcr-Abl) reports a 4% incidence of heart failure after only 6 to 12 months of therapy

- Binding to unintended targets = "off-target" effects
 - If one of these targets plays a critical role in the heart, off-target toxicity may include cardiotoxicity.
 - These targets may play a role in disease progression and inhibition may also lead to better anticancer efficacy.

 Note: Cardiotoxicity is not a class effect of kinase inhibitors
Mechanisms of Cardiotoxicity

- To identify mechanisms of compound x-induced cardiotoxicity, Investigators used rat cardiomyocytes in culture to demonstrate that incubation of cells with compound x, led to activation of the endoplasmic reticulum (ER) stress response.
- This included sustained activation of the IRE1 kinase arm of the response, culminating in activation of the ASK1/JNK pathway and cell death.
Target profiling

- There were several protein targets identified for compound x that could mediate cardiomyocyte death.
- Investigators used the Abl (T315I) point mutant that renders the kinase resistant to compound x to demonstrate rescue of cardiomyocyte death following gene transfer of T315I, but not wild-type Abl.
- The T315I mutant was used as a molecular tool to implicate compound x-mediated inhibition of c-Abl in mediating ER stress and driving cell death.

Note: c-Kit and Lck are not expressed in adult cardiomyocytes.
Impact of Redesigning a Molecule Based on Mechanism of Toxicity and Profiling Data

- Redesigned compound X to no longer inhibit Abl; **cardiotoxicity was not seen** with this agent in mouse models.
- The redesigned drug was also **ineffective in treating CML** (driven by Bcr-Abl), it was **equally effective** to Compound X in **treating GIST models** driven by c-Kit mutations.
- By knowing the mechanism of toxicity and redesigning the drug accordingly, one could theoretically reduce cardiotoxicity in GIST patients.
- If this is true, the on-target toxicity of compound x-mediated inhibition of Abl could be unavoidable in CML patient
Path Forward?

• What would the path forward look like for a redesigned compound x?

• What information can be harvested from mechanism of toxicity to inform clinical monitoring and enable biomarker exploration?

• Are time frames for mechanistic studies and drug development compatible?
 – Are groups publishing mechanistic data rapidly enough?
You Have the Power
To Make the Connections
Innovative and Efficient Preclinical Testing
John K Leighton
Associate Director for Pharmacology/Toxicology,
FDA/OODP
Disclaimer

This presentation is not an official FDA guidance or policy statement. No official support or endorsement by the FDA is intended or should be inferred.
Where we are: ICH S9

• ICH S9: Nonclinical Evaluation for Anticancer Pharmaceuticals
 – Published Federal Register March 2010
 – Describes nonclinical studies to support clinical trials in patients with advanced cancer
 – Applies to small molecules and biotechnology-derived products
Goals of Nonclinical Studies in Oncology

- Identify starting dose
- Identify organ toxicities
- Identify reversibility of toxicities, if needed
- Guide dosing regimens and escalation schemes
Nonclinical Studies Conducted to Support an Initial Clinical Trial

- Pharmacology/Pharmacodynamics
- Pharmacokinetics
- Safety Pharmacology
 - Includes cardiovascular safety assessment
- General Toxicology (GLP)
Perspective on Emerging Approaches to Safety Assessment

• Exploratory approaches
 – Genomics, metabolomics, proteomics, etc
 – Pathway analysis
 – Differentiated stem cells
 – Cardiac safety assessment

• Biomarkers
 – Cardiac troponins
 – Renal biomarkers