

Mini-Sentinel Methods: Accomplishments and lessons learned (with comments about the Vaccine Safety Datalink)

Jennifer Nelson, PhD
Sebastian Schneeweiss MD, ScD

June 3, 2011

Agenda

- Framework for post-marketing surveillance
- Vaccine Safety Datalink (VSD)
- Mini-Sentinel methods development to date
 - Data capacity
 - Distributed methods
 - Signal alerting strategies
- Needs and recommendations

Stages of post-marketing surveillance

Aim = Identify excess risk	All (suspected and unanticipated) adverse events (AEs), all products	Specific AE:product pairs of prior concern	A highly suspected AE:product pair
Approach	Consider many AEs or AE:product pairs (100's, 1000's)	Repeated monitoring or one-time expedited analysis of AE:product pairs (typically 5-10)	One-time, in-depth and rigorous investigation of a single pair
Example	Data mining of spontaneous reports	Active surveillance in Mini-Sentinel and VSD using coded electronic health information	Retrospective, formal epidemiological study using individual-level data, validated AEs, richer confounders

Sentinel Initiative Vision*

- System will be able to refine safety signals in near real-time. This will require the following capabilities:
 - rapidly defining exposed cohorts;
 - establishing algorithms to capture health outcomes of interest;
 - using sophisticated modular programs capable of running evaluations with minimal input from epidemiologists and clinicians and limited or no ad hoc programming; and
 - developing a framework to guide methodological approaches for safety surveillance evaluations that include confounding adjustment.
- Approaches for signal generation will be under development.

* Within the next 3 years

Map of methodologic domains

Data capacity	Distributed methods	Signal alerting
<ul style="list-style-type: none"> Integrity <ul style="list-style-type: none"> – Common data model – Data completeness – Data validity – HOI validation Environments <ul style="list-style-type: none"> – Claims – EHRs <ul style="list-style-type: none"> • Ambulatory • Inpatient – Registries – Other (blood banks, genetic data, etc.) 	<ul style="list-style-type: none"> Distribution and retrieval Anonymous linkage across sources Distributed multivariable analysis <ul style="list-style-type: none"> – Horizontal – Vertical 	<ul style="list-style-type: none"> Design & validity <ul style="list-style-type: none"> – Expedited design choice – Automated confounding adjustment Performance of <ul style="list-style-type: none"> – Sequential testing – Non test-based – Decision analytic approaches Special aspects <ul style="list-style-type: none"> – Drugs, vaccines, biologics, devices

Applications

- Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.

VSD: Data capacity

□ Integrity

- Quality of HMO vaccine database (Mullooly et al., AJE 1999)
- Predictive value of seizure ICD-9 code (Shui et al., Vaccine 2009)
- Accuracy of flu vaccine data in MCOs (Sy et al., Vaccine 2010)

□ Accessibility

- Rapid assessment of flu vaccine coverage (Lewis et al., MMWR 2005)
- Active surveillance pilot to detect early signals (Davis et al., Epidemiol 2005)
- VSD near real-time model & infrastructure (Baggs et al, Pediatrics 2011)

□ Diversification

- Enhancing detection w/EMRs (Hinrichsen et al., J Am Med Inform Assoc 2007)
- Detecting vaccine AEs in clinical notes (Hazelhurst et. al. Vaccine 2009)

VSD: Distributed analysis methods & applications

- Developed a **prospective safety monitoring** framework
 - Real-time vaccine safety surveillance (Lieu et al., Med Care 2007)
 - Near real-time flu vaccine safety surveillance (Greene et al, AJE 2010)
- A system is emerging for **rapid signal evaluation**
 - Lessons learned to reduce false positives (Yih et al., Pediatrics 2011)
- Have evaluated these systems via **applications in practice**
 - MMRV and febrile seizures (Klein et al., Pediatrics 2010)
 - Rotavirus vaccine & intussusception (Belongia et al., Ped Inf Dis 2010)
 - Tdap safety in adolescents and adults (Yih et al, Vaccine 2009)
 - Ongoing: HPV, Pentacel, Kinrix, PCV13, others...

VSD: Alerting strategies

- **Study design**
 - Comparing designs for active surveillance (McClure et al., Vaccine 2008)
 - Self-controlled case series risk windows (Xu et al., Stat in Med 2010)
- **Extending sequential methods to observational safety setting**
 - Continuous monitoring with maxSPRT (Kulldorff et al., Seq Anal 2011)
 - Accounting for uncertainty in hx controls (Li et al., Stat in Med 2010)
 - Sequential design/analysis challenges (Nelson et al, submitted)
 - Group sequential designs simulation evaluation (Zhao et al., submitted)
- **Improving methods for confounder adjustment**
 - Propensity score stratification (Li et al., accepted at Stat in Biosciences)
 - Regression, generalized estimating equations (Cook et al., submitted)
- **Improving method to handle data complexities**
 - Partially-accrued and missing data (Greene et al., in press at PDS)

VSD: Methods challenges and priorities

Challenges

- Optimizing methods given **rare AEs, variable uptake, site heterogeneity**
- False positive/negative signals due to **misclassification & confounding**
- Best practices for rapid **signal evaluation** and follow-up
- Detecting **unanticipated AEs**

Priorities

- Enhance, customize and evaluate **more sequential approaches**
 - exact tests, delayed starts, risk differences, longer-term outcomes
- Develop methods to **better account for misclassification & confounding**
 - sequential 2-phase sampling (to get better AE, confounder data)
 - analysis (vs. design) based confounding adjustment, use of propensity scores
- Solidify system for **rapid signal evaluation**
- Evaluate and implement **data mining** approaches for signal generation

Map of methodologic domains

Data capacity	Distributed methods	Signal alerting
<ul style="list-style-type: none"> Integrity <ul style="list-style-type: none"> – Common data model – Data completeness – Data validity – HOI validation Environments <ul style="list-style-type: none"> – Claims – EHRs <ul style="list-style-type: none"> • Ambulatory • Inpatient – Registries – Other (blood banks, genetic data, etc.) 	<ul style="list-style-type: none"> Distribution and retrieval Anonymous linkage across sources Distributed multivariable analysis <ul style="list-style-type: none"> – Horizontal – Vertical 	<ul style="list-style-type: none"> Design & validity <ul style="list-style-type: none"> – Expedited design choice – Automated confounding adjustment Performance of <ul style="list-style-type: none"> – Sequential testing – Non test-based – Decision analytic approaches Special aspects <ul style="list-style-type: none"> – Drugs, vaccines, biologics, devices

Applications

- Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.

Expansion of MSCDM

Data Capacity

Data validation and adjudication

- Validation of selected health outcomes of interest (HOI):
 - Myocardial infarction
 - Severe liver injury
 - Anaphylaxis
 - Venous thromboembolism
 - Intussusception

Literature reviews on the validity of HOI identification

- Review of 20 HOIs completed (accepted at PDS 2011)
- Review of 20 additional HOI in progress

Map of methodologic domains

Data capacity	Distributed methods	Signal alerting
<ul style="list-style-type: none"> Integrity <ul style="list-style-type: none"> – Common data model – Data completeness – Data validity – HOI validation Environments <ul style="list-style-type: none"> – Claims – EHRs <ul style="list-style-type: none"> • Ambulatory • Inpatient – Registries – Other (blood banks, genetic data, etc.) 	<ul style="list-style-type: none"> Distribution and retrieval Anonymous linkage across sources Distributed multivariable analysis <ul style="list-style-type: none"> – Horizontal – Vertical 	<ul style="list-style-type: none"> Design & validity <ul style="list-style-type: none"> – Expedited design choice – Automated confounding adjustment Performance of <ul style="list-style-type: none"> – Sequential testing – Non test-based – Decision analytic approaches Special aspects <ul style="list-style-type: none"> – Drugs, vaccines, biologics, devices

Applications

- Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.

Distributed methods

❑ Distribution and retrieval

- Developed increasingly complex query modules
- Fast turn-around

❑ Anonymous linkage across sources

- Of great importance when adding clinically rich data sources to the longitudinal claims data backbone
- Have identified a candidate method
- Working group to evaluate such method (starts in June)

Distributed methods

- Evaluating strategies for accessing distributed data (RFTO) (Rassen et al PDS 2010, Med Care 2010, ISPE workshop etc)
 - That allow multivariable confounder balancing
 - That use varying information content to a maximum
 - That allow flexible subgroup analyses
 - Preserve patient privacy
 - Respects plan confidentiality
 - (Velentgas et al. PDS 2008, Rassen et al PDS 2010, Med Care 2010, ISPE workshop etc)
- Provide guidance for MS on valid and practical strategies

Map of methodologic domains

Data capacity	Distributed methods	Signal alerting
<ul style="list-style-type: none"> Integrity <ul style="list-style-type: none"> – Common data model – Data completeness – Data validity – HOI validation Environments <ul style="list-style-type: none"> – Claims – EHRs <ul style="list-style-type: none"> • Ambulatory • Inpatient – Registries – Other (blood banks, genetic data, etc.) 	<ul style="list-style-type: none"> Distribution and retrieval Anonymous linkage across sources Distributed multivariable analysis <ul style="list-style-type: none"> – Horizontal – Vertical 	<ul style="list-style-type: none"> Design & validity <ul style="list-style-type: none"> – Expedited design choice – Automated confounding adjustment Performance of <ul style="list-style-type: none"> – Sequential testing – Non test-based – Decision analytic approaches Special aspects <ul style="list-style-type: none"> – Drugs, vaccines, biologics, devices

Applications

- Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.

Design and validity

□ Taxonomy project:

- Expedited choice of design and analytic monitoring approach
- Identified generic attributes of exposure, outcomes, and relationships
- Have developed a decision table for fundamental design choice and Year 2 Taxonomy is working on analytic choices

□ Self-controlled designs:

- Came up with clear guidance on (MacLure et al, submitted)
 - Strength/limitations, practicability in a monitoring setting
- Tested a multivariate SCCS approach (Madigan et al, submitted)

Design and Validity

□ Automated covariate adjustment

- Empirical covariate identification in claims data is essential
 - for improved confounding adjustment
 - for rapid turn-around
- Empirical approaches have been shown to be superior to investigator identified adjustment in claims
- Simulation studies have shown that theoretical biases (M-Bias and z-Bias) are not relevant (Myers et al. AJE 2011 in press)
- A comprehensive approach to automated covariate adjustment is developing for PS and DRS methods
(Rassen&Schneeweiss, submitted)

Performance of signal alerting algorithms

□ Sequential testing

- Developed guidance on sequential designs customized for observational safety settings (Nelson et al, submitted)
- Reviewed methods 'state-of-the-art'
 - Group sequential LRT (inc. maxSPRT, Kulldorff et. al Seq Anal 2011)
 - Conditional sequential sampling procedure (Li et. al Stat Med 2009)
 - Clinical trial group sequential methods (Lan&Demets Stat Med 1994)
 - Estimating equations approach (Cook et al, submitted)
- Simulation to compare performance (Cook et al, submitted)
 - Type 1 error rate, power, time-to-signal detection
 - Varying outcome prevalence, exposure & confounder complexity
- Using inverse probability weighting (ongoing Y2 activity)

Performance of signal alerting algorithms

□ Non test-based approaches (Pilot)

- Are available but fair comparisons in a monitoring setting are lacking
- Pilot work has set up a simulation framework and evaluation statistic (Gagne et al.)

□ Safety monitoring and decision science (Pilot)

- MS recognizes the value of decision analytic approaches in an active surveillance system
- Pilot work on alerting based on the future value of continued monitoring (Patrick et al.)

Performance of signal alerting algorithms

- Rapid signal validation techniques (WG starting)
 - Develop a framework for follow-up to alerts resulting from signal refinement
 - Data checks
 - Program checks
 - Sensitivity analyses
 - Additional confounding control
 - Endpoint adjudication etc.

Special Aspects

- Vaccines (see VSD)
- Devices
 - Data issues
 - Rapidly changing technologies
 - Exposure-risk window (implantation vs. device itself)
- In-hospital products
 - Data issues
 - Temporality issues
 - Exposure-risk window (end at discharge or later)