Mini-Sentinel Methods: Accomplishments and lessons learned
(with comments about the Vaccine Safety Datalink)

Jennifer Nelson, PhD
Sebastian Schneeweiss MD, ScD

June 3, 2011
Agenda

• Framework for post-marketing surveillance
• Vaccine Safety Datalink (VSD)
• Mini-Sentinel methods development to date
 – Data capacity
 – Distributed methods
 – Signal alerting strategies
• Needs and recommendations
Stages of post-marketing surveillance

Aim:
- **Identify excess risk**
 - Aim = Identify excess risk
 - Approach = Consider many AEs or AE:product pairs (100’s, 1000’s)

Method:
- **Signal Generation**
 - Specific AE:product pairs of prior concern
 - Approach = Repeated monitoring or one-time expedited analysis of AE:product pairs (typically 5-10)
 - Example = Data mining of spontaneous reports

- **Signal Refinement**
 - Specific AE:product pairs of prior concern
 - Approach = Repeated monitoring or one-time expedited analysis of AE:product pairs (typically 5-10)
 - Example = Active surveillance in Mini-Sentinel and VSD using coded electronic health information

- **Signal Evaluation**
 - A highly suspected AE:product pair
 - Approach = One-time, in-depth and rigorous investigation of a single pair
 - Example = Retrospective, formal epidemiological study using individual-level data, validated AEs, richer confounders
Sentinel Initiative Vision*

- System will be able to refine safety signals in near real-time. This will require the following capabilities:
 - rapidly defining exposed cohorts;
 - establishing algorithms to capture health outcomes of interest;
 - using sophisticated modular programs capable of running evaluations with minimal input from epidemiologists and clinicians and limited or no ad hoc programming; and
 - developing a framework to guide methodological approaches for safety surveillance evaluations that include confounding adjustment.

- Approaches for signal generation will be under development.

* Within the next 3 years
Map of methodologic domains

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>• Distribution and retrieval</td>
<td>• Design & validity</td>
</tr>
<tr>
<td>– Common data model</td>
<td>• Anonymous linkage across sources</td>
<td>– Expedited design choice</td>
</tr>
<tr>
<td>– Data completeness</td>
<td>• Distributed multivariable analysis</td>
<td>– Automated confounding adjustment</td>
</tr>
<tr>
<td>– Data validity</td>
<td>– Horizontal</td>
<td>• Performance of</td>
</tr>
<tr>
<td>– HOI validation</td>
<td>– Vertical</td>
<td>– Sequential testing</td>
</tr>
<tr>
<td>Environments</td>
<td></td>
<td>• Special aspects</td>
</tr>
<tr>
<td>– Claims</td>
<td>• Design & validity</td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
<tr>
<td>– EHRs</td>
<td>– Expedited design choice</td>
<td>• Special aspects</td>
</tr>
<tr>
<td>• Ambulatory</td>
<td>– Automated confounding adjustment</td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
<tr>
<td>• Inpatient</td>
<td>• Performance of</td>
<td>• Special aspects</td>
</tr>
<tr>
<td>– Registries</td>
<td>– Sequential testing</td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
<tr>
<td>– Other (blood banks, genetic data, etc.)</td>
<td>– Non test-based</td>
<td>• Special aspects</td>
</tr>
<tr>
<td></td>
<td>– Decision analytic approaches</td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
</tbody>
</table>

Applications

- Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.
VSD: Data capacity

- **Integrity**
 - Quality of HMO vaccine database (Mullooly et al., AJE 1999)
 - Predictive value of seizure ICD-9 code (Shui et al., Vaccine 2009)
 - Accuracy of flu vaccine data in MCOs (Sy et al., Vaccine 2010)

- **Accessibility**
 - Rapid assessment of flu vaccine coverage (Lewis et al., MMWR 2005)
 - Active surveillance pilot to detect early signals (Davis et al., Epidemiol 2005)
 - VSD near real-time model & infrastructure (Baggs et al, Pediatrics 2011)

- **Diversification**
 - Enhancing detection w/EMRs (Hinrichsen et al., J Am Med Inform Assoc 2007)
 - Detecting vaccine AEs in clinical notes (Hazelhurst et. al. Vaccine 2009)
VSD: Distributed analysis methods & applications

- Developed a **prospective safety monitoring** framework
 - Real-time vaccine safety surveillance (Lieu et al., Med Care 2007)
 - Near real-time flu vaccine safety surveillance (Greene et al., AJE 2010)

- A system is emerging for **rapid signal evaluation**
 - Lessons learned to reduce false positives (Yih et al., Pediatrics 2011)

- Have evaluated these systems via **applications in practice**
 - MMRV and febrile seizures (Klein et al., Pediatrics 2010)
 - Rotavirus vaccine & intussusception (Belongia et al., Ped Inf Dis 2010)
 - Tdap safety in adolescents and adults (Yih et al, Vaccine 2009)
 - Ongoing: HPV, Pentacel, Kinrix, PCV13, others...
VSD: Alerting strategies

- **Study design**
 - Comparing designs for active surveillance (McClure et al., Vaccine 2008)
 - Self-controlled case series risk windows (Xu et al., Stat in Med 2010)

- Extending **sequential methods** to observational safety setting
 - Continuous monitoring with maxSPRT (Kulldorff et al., Seq Anal 2011)
 - Accounting for uncertainty in hx controls (Li et al., Stat in Med 2010)
 - Sequential design/analysis challenges (Nelson et al., submitted)
 - Group sequential designs simulation evaluation (Zhao et al., submitted)

- Improving methods for **confounder adjustment**
 - Propensity score stratification (Li et al., accepted at Stat in Biosciences)
 - Regression, generalized estimating equations (Cook et al., submitted)

- Improving method to handle **data complexities**
 - Partially-accrued and missing data (Greene et al., in press at PDS)
VSD: Methods challenges and priorities

- **Challenges**
 - Optimizing methods given rare AEs, variable uptake, site heterogeneity
 - False positive/negative signals due to misclassification & confounding
 - Best practices for rapid signal evaluation and follow-up
 - Detecting unanticipated AEs

- **Priorities**
 - Enhance, customize and evaluate more sequential approaches
 - exact tests, delayed starts, risk differences, longer-term outcomes
 - Develop methods to better account for misclassification & confounding
 - sequential 2-phase sampling (to get better AE, confounder data)
 - analysis (vs. design) based confounding adjustment, use of propensity scores
 - Solidify system for rapid signal evaluation
 - Evaluate and implement data mining approaches for signal generation
Map of methodologic domains

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>Distribution and retrieval</td>
<td>Design & validity</td>
</tr>
<tr>
<td>– Common data model</td>
<td>Anonymous linkage across sources</td>
<td>– Expedited design choice</td>
</tr>
<tr>
<td>– Data completeness</td>
<td>Distributed multivariable analysis</td>
<td>– Automated confounding adjustment</td>
</tr>
<tr>
<td>– Data validity</td>
<td>– Horizontal</td>
<td>Performance of</td>
</tr>
<tr>
<td>– HOI validation</td>
<td>– Vertical</td>
<td>– Sequential testing</td>
</tr>
<tr>
<td>Environments</td>
<td>Signal alerting</td>
<td>– Non test-based</td>
</tr>
<tr>
<td>– Claims</td>
<td>– Application</td>
<td>– Decision analytic approaches</td>
</tr>
<tr>
<td>– EHRs</td>
<td>– Special aspects</td>
<td>Special aspects</td>
</tr>
<tr>
<td>– Ambulatory</td>
<td>– Drugs, vaccines, biologics, devices</td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
<tr>
<td>– Inpatient</td>
<td></td>
<td>Applications</td>
</tr>
<tr>
<td>– Registries</td>
<td></td>
<td>– Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.</td>
</tr>
<tr>
<td>– Other (blood banks, genetic data, etc.)</td>
<td></td>
<td>Distributed methods</td>
</tr>
</tbody>
</table>
Expansion of MSCDM

<table>
<thead>
<tr>
<th>MSCDM v1.1</th>
<th>MSCDM vX.X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enrollment</td>
<td></td>
</tr>
<tr>
<td>Demographic</td>
<td></td>
</tr>
<tr>
<td>Dispensing</td>
<td></td>
</tr>
<tr>
<td>Encounter</td>
<td></td>
</tr>
<tr>
<td>Diagnosis</td>
<td></td>
</tr>
<tr>
<td>Procedure</td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td></td>
</tr>
<tr>
<td>Cause of Death</td>
<td></td>
</tr>
<tr>
<td>Clinical labs</td>
<td></td>
</tr>
<tr>
<td>Vital signs</td>
<td></td>
</tr>
<tr>
<td>Inpatient meds</td>
<td></td>
</tr>
<tr>
<td>Devices</td>
<td></td>
</tr>
</tbody>
</table>

Current DPs
- Aetna
- HealthCore
- HMORN
- Humana
- KP
- Vanderbilt

New DPs
Data Capacity

- **Data validation and adjudication**
 - Validation of selected health outcomes of interest (HOI):
 - Myocardial infarction
 - Severe liver injury
 - Anaphylaxis
 - Venous thromboembolism
 - Intussusception

- **Literature reviews on the validity of HOI identification**
 - Review of 20 HOIs completed (accepted at PDS 2011)
 - Review of 20 additional HOI in progress
Map of methodologic domains

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Integrity</td>
<td>• Distribution and retrieval</td>
<td>• Design & validity</td>
</tr>
<tr>
<td>– Common data model</td>
<td>• Anonymous linkage across sources</td>
<td>– Expedited design choice</td>
</tr>
<tr>
<td>– Data completeness</td>
<td>• Distributed multivariable analysis</td>
<td>– Automated confounding adjustment</td>
</tr>
<tr>
<td>– Data validity</td>
<td>– Horizontal</td>
<td></td>
</tr>
<tr>
<td>– HOI validation</td>
<td>– Vertical</td>
<td></td>
</tr>
<tr>
<td>• Environments</td>
<td></td>
<td>• Performance of</td>
</tr>
<tr>
<td>– Claims</td>
<td></td>
<td>– Sequential testing</td>
</tr>
<tr>
<td>– EHRs</td>
<td></td>
<td>– Non test-based</td>
</tr>
<tr>
<td>• Ambulatory</td>
<td></td>
<td>– Decision analytic approaches</td>
</tr>
<tr>
<td>• Inpatient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Registries</td>
<td></td>
<td>• Special aspects</td>
</tr>
<tr>
<td>– Other (blood banks, genetic</td>
<td></td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
<tr>
<td>data, etc.)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Applications

• Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.
Distributed methods

- Distribution and retrieval
 - Developed increasingly complex query modules
 - Fast turn-around

- Anonymous linkage across sources
 - Of great importance when adding clinically rich data sources to the longitudinal claims data backbone
 - Have identified a candidate method
 - Working group to evaluate such method (starts in June)
Distributed methods

- Evaluating strategies for accessing distributed data (RFTO) (Rassen et al PDS 2010, Med Care 2010, ISPE workshop etc)
 - That allow multivariable confounder balancing
 - That use varying information content to a maximum
 - That allow flexible subgroup analyses
 - Preserve patient privacy
 - Respects plan confidentiality
 - (Velentgas et al. PDS 2008, Rassen et al PDS 2010, Med Care 2010, ISPE workshop etc)

- Provide guidance for MS on valid and practical strategies
Map of methodologic domains

<table>
<thead>
<tr>
<th>Data capacity</th>
<th>Distributed methods</th>
<th>Signal alerting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrity</td>
<td>Distribution and retrieval</td>
<td>Design & validity</td>
</tr>
<tr>
<td>– Common data model</td>
<td>Anonymous linkage across sources</td>
<td>– Expedited design choice</td>
</tr>
<tr>
<td>– Data completeness</td>
<td>Distributed multivariable analysis</td>
<td>– Automated confounding adjustment</td>
</tr>
<tr>
<td>– Data validity</td>
<td>– Horizontal</td>
<td>Performance of</td>
</tr>
<tr>
<td>– HOI validation</td>
<td>– Vertical</td>
<td>– Sequential testing</td>
</tr>
<tr>
<td>Environments</td>
<td></td>
<td>– Non test-based</td>
</tr>
<tr>
<td>– Claims</td>
<td></td>
<td>– Decision analytic approaches</td>
</tr>
<tr>
<td>– EHRs</td>
<td></td>
<td>Special aspects</td>
</tr>
<tr>
<td>• Ambulatory</td>
<td></td>
<td>– Drugs, vaccines, biologics, devices</td>
</tr>
<tr>
<td>• Inpatient</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Registries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– Other (blood banks, genetic data, etc.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Oral antidiabetic agents and MI, rotavirus vaccine and intussusception, etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Design and validity

- Taxonomy project:
 - Expedited choice of design and analytic monitoring approach
 - Identified generic attributes of exposure, outcomes, and relationships
 - Have developed a decision table for fundamental design choice and Year 2 Taxonomy is working on analytic choices

- Self-controlled designs:
 - Came up with clear guidance on (Maclure et al, submitted)
 - Strength/limitations, practicability in a monitoring setting
 - Tested a multivariate SCCS approach (Madigan et al, submitted)
Design and Validity

- Automated covariate adjustment
 - Empirical covariate identification in claims data is essential
 - for improved confounding adjustment
 - for rapid turn-around
 - Empirical approaches have been shown to be superior to investigator identified adjustment in claims
 - Simulation studies have shown that theoretical biases (M-Bias and z-Bias) are not relevant (Myers et al. AJE 2011 in press)
 - A comprehensive approach to automated covariate adjustment is developing for PS and DRS methods (Rassen&Schneeweiss, submitted)
Performance of signal alerting algorithms

- Sequential testing
 - Developed guidance on sequential designs customized for observational safety settings (Nelson et al, submitted)
 - Reviewed methods ‘state-of-the-art’
 - Group sequential LRT (inc. maxSPRT, Kulldorff et. al Seq Anal 2011)
 - Conditional sequential sampling procedure (Li et. al Stat Med 2009)
 - Clinical trial group sequential methods (Lan&Demets Stat Med 1994)
 - Estimating equations approach (Cook et al, submitted)
 - Simulation to compare performance (Cook et al, submitted)
 - Type 1 error rate, power, time-to-signal detection
 - Varying outcome prevalence, exposure & confounder complexity
 - Using inverse probability weighting (ongoing Y2 activity)
Performance of signal alerting algorithms

- Non test-based approaches (Pilot)
 - Are available but fair comparisons in a monitoring setting are lacking
 - Pilot work has set up a simulation framework and evaluation statistic (Gagne et al.)

- Safety monitoring and decision science (Pilot)
 - MS recognizes the value of decision analytic approaches in an active surveillance system
 - Pilot work on alerting based on the future value of continued monitoring (Patrick et al.)
Performance of signal alerting algorithms

- Rapid signal validation techniques (WG starting)
 - Develop a framework for follow-up to alerts resulting from signal refinement
 - Data checks
 - Program checks
 - Sensitivity analyses
 - Additional confounding control
 - Endpoint adjudication etc.
Special Aspects

- Vaccines (see VSD)

- Devices
 - Data issues
 - Rapidly changing technologies
 - Exposure-risk window (implantation vs. device itself)

- In-hospital products
 - Data issues
 - Temporality issues
 - Exposure-risk window (end at discharge or later)