Understanding of Symbols at the Transition from Arithmetic to Algebra: The Equal Sign and Letters as Variables

Martha W. Alibali University of Wisconsin - Madison

Understanding Symbols

- Understanding symbols is key to success in algebra
- Symbols represent "core concepts" that are fundamental to algebra
 - Equal sign
 - Letters used as variables

$$3m + 7 = 25$$

- Prior knowledge can be a stumbling block
 - Sets up expectations that may not apply
- Changes over time
 - Effects of experiences with symbols

Equal Sign

- What meanings do students ascribe to the equal sign? How do these change across grade levels? ...vary across task contexts?
 - Does prior knowledge influence students' interpretations?
- What is the relationship between meanings ascribed to the equal sign and performance on problems involving the equal sign?

Letters Used as Variables

- What meanings do middle school students ascribe to letters used as variables? How do these change across grade levels?
 - Does prior knowledge influence students' interpretations?
- What is the relationship between the meanings ascribed to variables and performance on problems that use variables?
- Does the form of the variable symbol affect students' interpretations?

Interpretations of the Equal Sign

• Past research has identified two main ways in which elementary and middle school students interpret the equal sign (e.g, Carpenter, Franke, & Levi, 2003; Kieran, 1981; McNeil & Alibali, 2005; Rittle-Johnson & Alibali, 1999)

Operational

 Equal sign is a signal to perform the given operations, put the answer

Relational

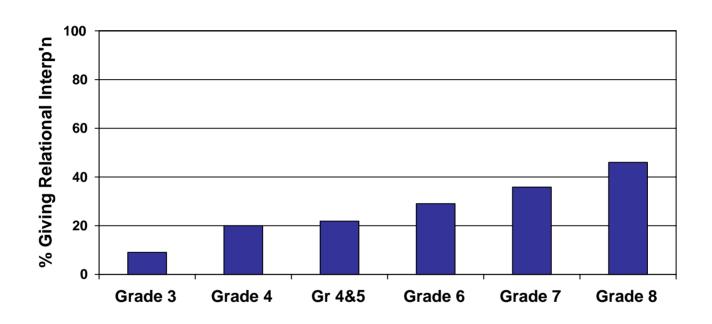
 Equal sign represents a relationship between quantities, indicates that two quantities are the same

Interpretation of the Equal Sign

The following questions are about this statement:

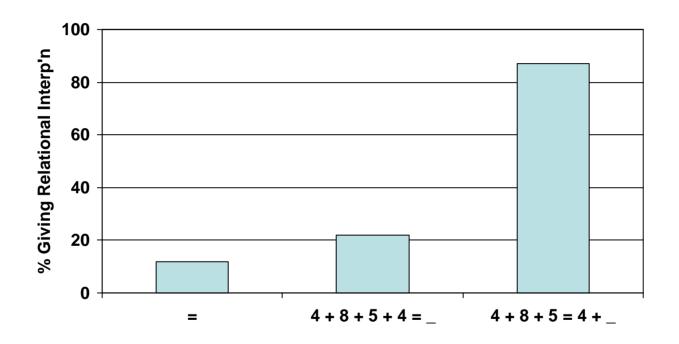
- (a) The arrow above points to a symbol. What is the name of the symbol?
- (b) What does the symbol mean?
- (c) Can the symbol mean anything else? If yes, please explain.

Sample Student Responses Grades 5 - 7


Operational

- The answer to the problem.
- It's the symbol that goes before the answer. It tells you that the next number that goes there is the answer.
- It means like what it's added up to.

Relational


- The same as.
- Um sometimes we have these math problems, we have numbers and then other numbers and whichever number is greater you put a sign like an arrow, and whichever number is being used it would point to the littler number. Then if they're both the same you would put, I can't remember, 2 or 3 lines like this.

Improvement Across Grades

• Improvement across grade levels, BUT weak performance throughout the elementary and middle grades

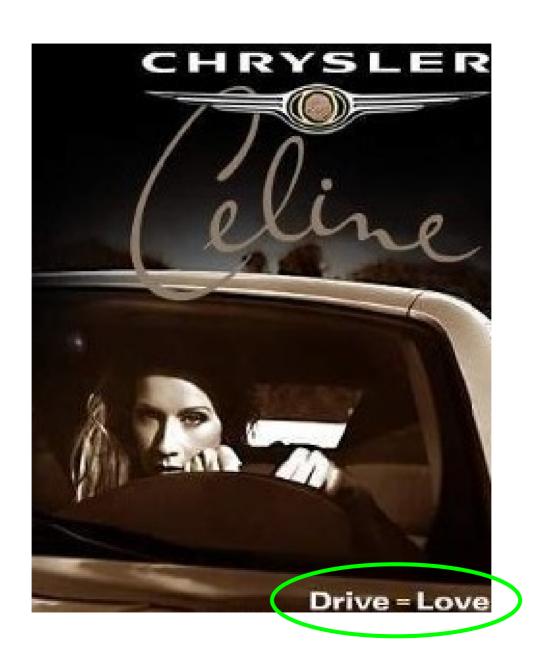
Variability Across Task Contexts: Grade 7 Students

• Students much more likely to offer relational interpretation in "operations on both sides" context

Does prior knowledge/experience influence students' interpretations?

- Elementary school mathematics involves extensive practice with arithmetic facts
 - Often in the form "operations = answer"

$$-3+8=?$$


• Most equations that elementary and middle school students encounter are in an "operations = answer" format (Seo & Ginsburg, 2001: McNeil, Grandau, et al., 2004)

Does prior knowledge/experience influence students' interpretations?

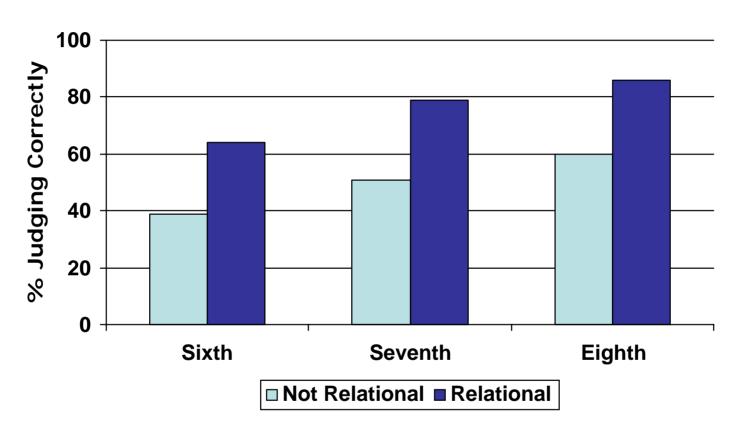
• 4th- and 5th-grade students often misencode equations with operations on both sides as equation in the "operations = answer" format (McNeil & Alibali, 2004)

```
E.g., asked to reconstruct 4 + 8 + 5 = 4 + ___
Many students write 4 + 8 + 5 + 4 = ___
```

 Operational interpretation compatible with students' experiences, prior knowledge of how = is used in arithmetic

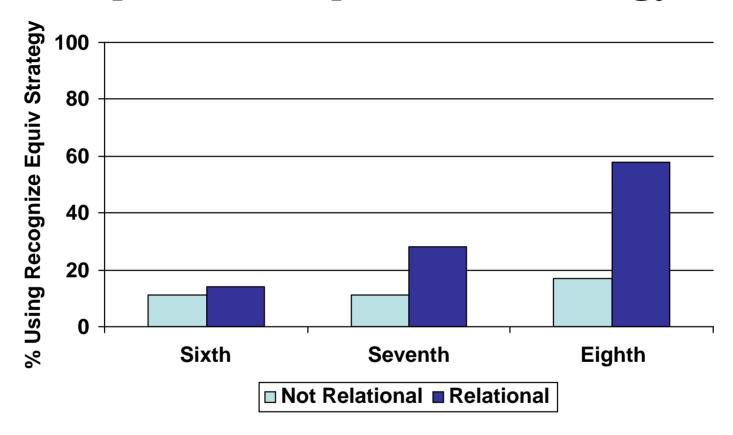
Does understanding the equal sign matter?

 Do students who offer a relational interpretation perform better at tasks that involve the equal sign than students who offer an operational interpretation?


Equivalent Equations Problems

Is the number that goes in the ____ the same number in the following two equations? Explain your reasoning.

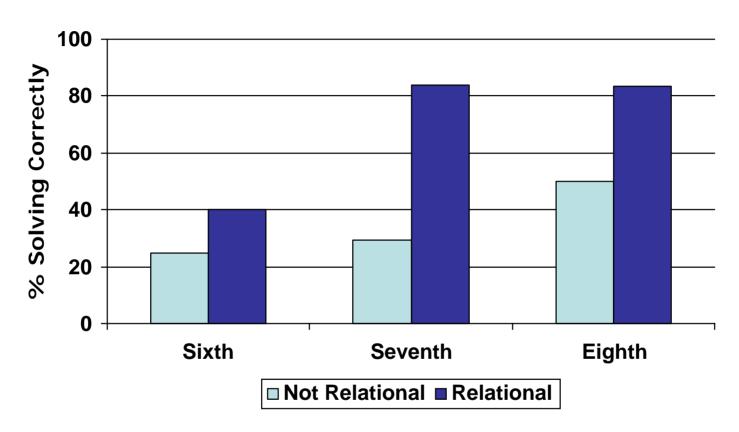
$$2 \times \Box + 15 = 31$$


$$2 \times \square + 15 - 9 = 31 - 9$$

Equivalent Equations: Judgments

• More students with relational understanding judge that the solution for both equations is the same, $\textit{Wald}\ (1,\,N=251)=17.23,\,p<.01$

Equivalent Equations: Strategy


• More students with relational understanding solve problem by recognizing equivalence, Wald (1, N = 251) = 16.10, p < .01

Linear Equations

• What value of m will make the following number sentence true?

$$4m + 10 = 70$$

or
 $3m + 7 = 25$

Linear Equations

- More students with relational understanding solve equations correctly, Wald(1, N = 177) = 22.64, p < .01
- Pattern holds even when controlling for mathematics ability, $Wald\ (1,\,N=65)=3.85,\,p=.05$

Knuth, Stephens, McNeil & Alibali, J. Res. Math. Ed., in press

Does understanding the equal sign matter?

- Yes...
- Not simply that stronger students do better at both tasks

Letters Used as Variables

- What meanings do middle school students ascribe to letters used as variables? How do these change with grade level?
 - Does prior knowledge influence students' interpretations?
- What is the relationship between the meanings ascribed to variables and performance on problems that use variables?
- Does the form of the variable symbol affect students' interpretations?

Interpretations of Letters Used as Variables

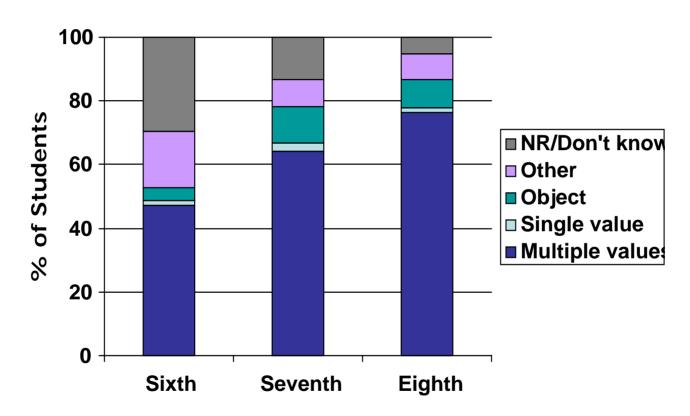
- Past research has documented students' as well as adults' difficulties understanding letters used as variables (e.g., Clement, 1982; Küchemann, 1978; MacGregor & Stacy, 1997; Paige & Simon, 1966)
- One common misinterpretation is to treat letters as labels for objects -- an "abbreviation" interpretation
 - The number of quarters a man has is seven times the number of dimes he has. The value of the dimes exceeds the value of the quarters by \$2.50. How many of each coin does he have? (Paige & Simon, 1966)

d = dimes

d = number of dimes

d = value of dimes

Interpretation of a Letter Used as a Variable

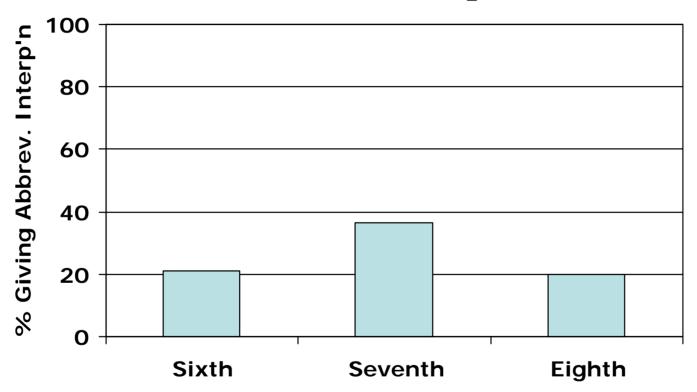

The following question is about this expression:

The arrow above points to a symbol. What does the symbol stand for?

Coding Interpretations of Variables

- Multiple values
 - It can stand for any number.
- Single value
 - It stands for 4.
- Abbreviation
 - It means newspapers.
- Other

Variable Understanding as a Function of Grade Level


• Increase in multiple-values interpretations across the grades, Wald(1, N = 372) = 22.27, p < .01

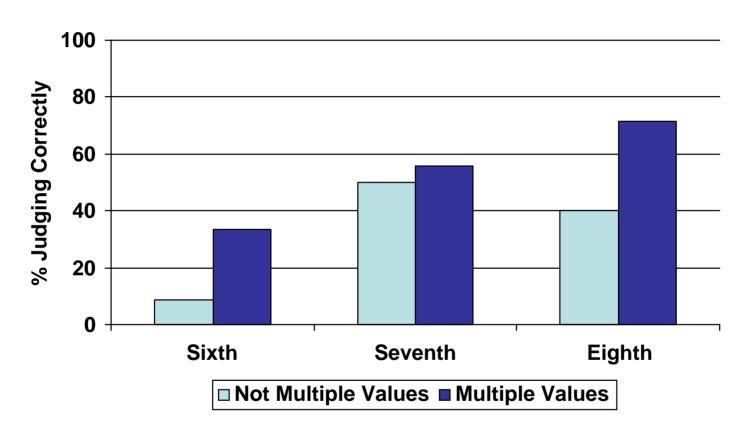
Does prior knowledge/experience influence students' interpretations?

- Students encounter letters as abbreviations in elementary school (e.g., initials, *m* for meter)
- Textbooks often use first letter as a variable symbol
- These experiences may promote the *abbreviation* interpretation
 - -Rare in 2n + 3 item, but may be more common in items that involve objects

Cakes cost c dollars each and brownies cost b dollars each. Suppose I buy 4 cakes and 3 brownies. What does 4c + 3b stand for? (Küchemann, 1978)

Cakes & Brownies: Abbreviation Interpretation

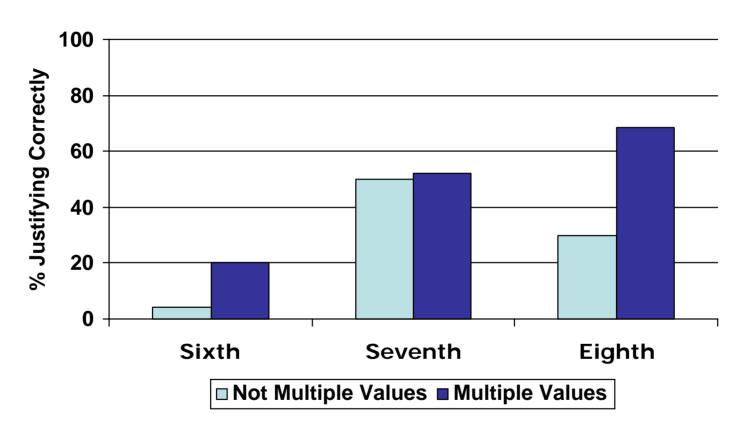
• Abbreviation interpretation especially prevalent at 7th grade


Does having a multiple-values interpretation matter?

• Do students who offer a multiple-values interpretation of letters used as variables perform better at tasks that involve letters used as variables than students who do not offer a multiple-values interpretation?

Using Variables: Which is Larger?

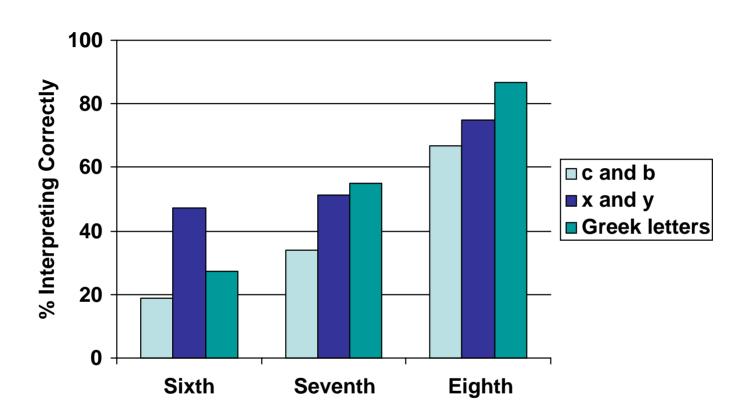
• Can you tell which is larger, 3n or n + 6? Please explain your answer.


Which is Larger?: Judgments

• More students with multiple-values interpretations judge "can't tell", $Wald\ (1,\ N=122)=4.9,\ p<.03$

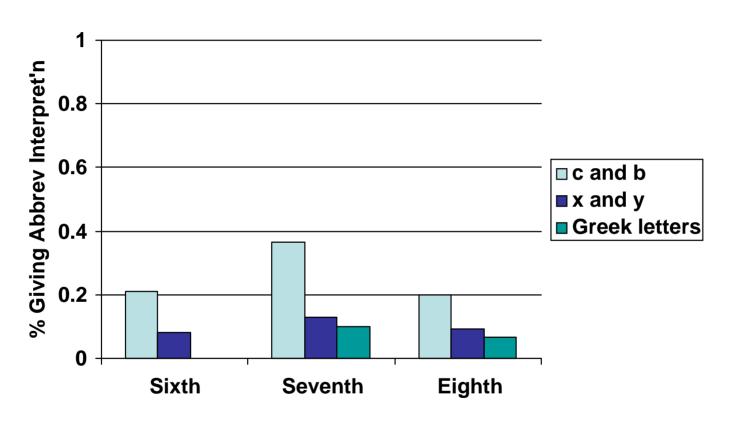
Knuth, Alibali, et al., Int'l Reviews in Math. Ed., 2005

Which is Larger?: Justifications


• More students with multiple-values interpretations give correct justifications, Wald(1, N=122)=4.21, p < .05

Knuth, Alibali, et al., Int'l Reviews in Math. Ed., 2005

Interpretation of Letters Used as Variables


- Cakes cost c dollars each and brownies cost b dollars each. Suppose I buy 4 cakes and 3 brownies. What does 4c + 3b stand for?
- Do interpretations vary as a function of the specific symbols used?
 - b and c
 - -x and y
 - $-\Psi$ and Φ

Correct Performance

• Students in c and b condition have weakest performance, Wald (1) = 9.34, p < .01

Abbreviation Interpretation

• Students in c and b condition most likely to make abbreviation errors, Wald(1) = 19.34, p < .01

Empirical Summary - Equal sign

- Many middle school students interpret the equal sign operationally rather than relationally
- Increase in relational definitions across the elementary and middle grades
- Students who have a relational understanding of the equal sign
 - More likely to judge that equivalent equations have the same solution
 - More likely to solve linear equations correctly

Empirical Summary - Variable

- Many middle-school students hold multiple-values interpretations of variables, but many do not
- Increase in multiple-values interpretations across the middle grades
- Students who have multiple-values interpretations
 - More likely to judge that one "can't tell" whether 3n or n+6 is larger
 - More likely to provide a correct justification
- Students often interpret literal symbols as abbreviations
 - "First letter" symbols especially prone to this misinterpretation

Learning Meanings of Symbols

- Students derive expectations about meanings of symbols from prior experiences
 - Often, experiences not intended to be algebraic
- Students may also infer meanings based on implicit learning about contexts in which symbols occur
 - E.g., "operations = answer" contexts for the equal sign
- Students may also have opportunities for explicit learning
 - However, little is known about what types of instruction are most effective
 - Bridging from prior knowledge
 - Contrasting cases

Learning Meanings of Symbols at the Transition to Algebra

- Development of understanding of symbols depends crucially on opportunities for learning about symbols
- Patterns of performance suggest that, in some respects, prior knowledge may be a stumbling block
- Educators should be thoughtful about providing opportunities for learning, both explicit and implicit

Thanks to

- Eric Knuth
- Mitchell Nathan
- Ken Koedinger
- Nicole McNeil
- Bethany Rittle-Johnson
- Pam Asquith
- Aaron Weinberg

- Ana Stephens
- Laura Grandau
- Dan Krill
- Shanta Hattikudur
- Kristina Kemp
- Alex Hojem
- Interagency Educational Research Initiative (IERI)
 Understanding and Cultivating the Transition from Arithmetic to Algebraic Reasoning (STAAR)
- National Science Foundation, Developmental and Learning Sciences program
 - Changes in Representation as a Mechanism of Knowledge Change