Is infrastructure capital productive?

Luis Servén

The World Bank

The Economics of Infrastructure in a Globalized World Washington DC, June 2010

Motivation

From development perspective, two reasons to care about infrastructure:

- Infrastructure and growth
 - Infrastructure raises productivity / reduces cost of private production
- Infrastructure and poverty / inequality
 - Infrastructure expansion has a disproportionate effect on the income / welfare of the poor
 - · Reduces their cost to access markets (e.g., labor)
 - Raises the return on their assets (e.g., land)
 - Facilitates human capital accumulation directly (sanitation, water effect on health) or indirectly (transport to school etc)

Infrastructure and growth

How important is infrastructure for economic growth?

- Old question even in Adam Smith's Wealth of Nations
- Empirically revived after Aschauer (1989) who found huge rates of return on public capital in U.S.
- Big macro literature since then using various approaches and econometric techniques
 - Also micro studies looking at firm-level growth, investment, TFP
- Two common approaches
 - Growth regressions augmented with infrastructure measures
 - Infrastructure as another input in an aggregate production function (or its dual, the cost function)

Infrastructure capital -- Brookings 2010

3

Infrastructure and growth

On balance, majority of studies – especially recent ones on developing economies – find significant positive effects

But major caveats with most:

- 1. Multidimensionality of infrastructure: not just telephones (omitted variable bias?)
- 2. Monetary measures of infrastructure often misleading (Pritchett 2000; Keefer-Knack 2007)
- 3. Non-stationarity of aggregate output and infrastructure capital (*spurious regression* problem; Gramlich 1994)
- 4. Reverse causality: richer countries / times demand more infrastructure services
- 5. Potential heterogeneity in cross-country estimations

Infrastructure capital -- Brookings 2010

Calderón, Moral-Benito and Servén (2010)

Methodological approach addressing these caveats:

- 1. Considers the multidimensionality of infrastructure by using a synthetic index of telecom, transport and power.
- 2. Uses physical measures of infrastructure assets, rather than cumulative expenditures (Canning; Roller-Waverman)
- 3. Panel time-series approach to deal with non-stationarity of the variables.
- 4. Verifies that only one long-run relationship (= the aggregate production function) exists among the variables.
- 5. Allows for unrestricted short-run heterogeneity, and tests for homogeneity across countries of the long-run parameters.

Infrastructure capital -- Brookings 2010

5

Calderón, Moral-Benito and Servén (2010)

- Focus on the contribution of infrastructure to labor productivity (GDP per worker)
- Production function approach (under CRS):

Y/L = f(K/L, H/L, Z/L)

where Y, K, H and Z are GDP, physical capital, human capital, and infrastructure capital.

- Data from 88 industrial and developing countries,1960-2000 (> 3,500 obs)
- Z measured by synthetic infrastructure index 1st principal component of road density, telephone density and power generation capacity [details]
- *f*(.) viewed as a long-run cointegrating relation whose parameters may be different across countries

Infrastructure capital -- Brookings 2010

Production function approach

- Cobb-Douglas technology: in log per worker terms, $y = \alpha k + \beta h + \gamma z$
- Infrastructure capital appears twice in the equation (as part of *k*, and separately as z). [details]
- The parameter γ captures the "excess return" on infrastructure relative to other capital.
- The marginal product of infrastructure is higher the lower are infrastructure endowments per unit of output z - y

Infrastructure capital -- Brookings 2010

7

Empirical strategy

Three-step approach – based on recent panel time-series literature.

- (1) Test for (non-)stationarity of the variables
- (2) Test for cointegration and for a common cointegrating rank across countries [details]
- (3) Estimate the cointegrating relation(s), and test for parameter homogeneity across countries

Infrastructure capital -- Brookings 2010

Estimation approach

- Tests reveal a common cointegrating rank of 1 [details]
- To estimate the cointegrating relation, use Pooled Mean Group estimator (Pesaran, Shin and Smith 1999)
 - Test for weak exogeneity, so single-equation approach suffices
 - Intercepts, error variances and short-run dynamics can differ freely across countries
 - · Frictions and adjustment costs may vay across countries
 - Experiment with alternative dynamic specifications
 - Allow for cross-country error correlation (common shocks)
 - Long-run coefficients restricted to be equal for all countries
 - Test the restrictions through individual and joint Hausman tests of parameter homogeneity

Infrastructure capital -- Brookings 2010

9

Basic estimation results

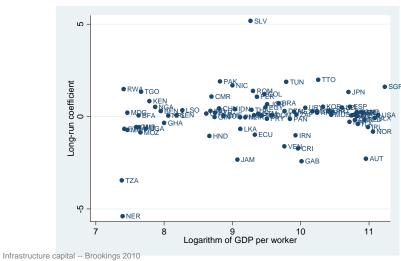
Column	(1)	(2)	(3)	(4)	(5)	(6)
Max # of lags	2	2	2	1	4	2
Information criterion	SBC	AIC	Imposed	SBC	SBC	SBC
Common factors	Yes	Yes	Yes	Yes	Yes	(No)
Physical Capital	0.34	0.33	0.36	0.35	0.34	0.41
t-ratio	35.2	30.5	22.7	31.4	32.4	33.4
hausman p-value	0.54	0.95	0.43	0.78	0.44	0.52
Human capital	0.10	0.12	0.10	0.12	0.11	0.12
t-ratio	15.6	14.8	8.09	18.7	17.1	16.0
hausman p-value	0.24	0.19	0.21	0.19	0.20	0.64
Infrastructure	0.08	0.07	0.10	0.08	0.08	-0.02
t-ratio	7.45	6.73	6.58	8.33	8.77	-1.49
hausman p-value	0.21	0.18	0.16	0.40	0.88	0.40
joint hausman p-value	0.44	0.38	0.24	0.25	0.45	0.85
Average R ²	0.36	0.40	0.48	0.28	0.42	0.35
Observations	3432	3432	3432	3520	3256	3432

Infrastructure capital -- Brookings 2010

Basic estimation results

- Estimates are robust across specifications
 - Except if cross-country error correlation ignored
 - Little changed when using alternative measures of infrastructure, h and k [details]
- Coefficients on standard variables (physical and human capital) in line with literature (around 0.35, 0.10)
- Infrastructure coefficient in range .07 to .10
- No evidence of cross-country parameter heterogeneity
 - Accords with with empirical evidence on stability of factor shares (Gollin 2002)
 - But country-specific estimates are noisy (especially in poorer countries)

Infrastructure capital -- Brookings 2010


11

Further homogeneity tests

- No evidence of (general) parameter heterogeneity across countries – but tests may have low power
- Same conclusion from (more powerful) tests for *specific* forms of heterogeneity: [details]
 - By income level: infrastructure elasticity could be different in rich and poor countries
 - By level of infrastructure endowment: nonlinear effects of infrastructure (network effects?) [details]
 - By population size: economies of scale / congestion effects.
 - By quality of policy framework: high / low distortions (close to 10% significance)

Infrastructure capital -- Brookings 2010

Economic significance

Direct increase in output per worker from infrastructure catch-up to OECD median (percent)

Region	Increase in output per worker	
East Asian Tigers	11.5%	
Eastern Europe	8.3%	
Latin America	13.7%	
Middle East & N. Africa	15.5%	
South Asia	26.0%	
Sub-Saharan Africa	36.3%	

14

From analysis to action

- All this is about the benefit side what about the cost?
- Cost-benefit comparison needed to determine extent of under-provision of infrastructure – and whether it is greater than that of other inputs (e.g., H)
 - Limited evidence on this (e.g., Canning and Pedroni 2008: no generalized infrastructure shortage across countries / sectors)
 - Calderón and Servén (2010): big income impact of infrastructure catch-up in Africa – but massive cost involved [details]
 - Loayza and Odawara (2010): big income impact in Egypt too but only if much of the cost is financed by spending cuts elsewhere
- Quality (not only quantity) of spending matters
 - impact on assets/services depends on government technical capacity, fiscal institutions, governance

Infrastructure capital -- Brookings 2010

15

Summary

- Robust evidence of a positive contribution of infrastructure to GDP / productivity a 10% rise in infrastructure assets *directly* raises GDP per worker by 0.7 to 1%.
- The effect is highly significant and robust to alternative empirical specifications.
- Little evidence that it varies across countries so the returns to infrastructure are higher where the endowment is lower.
- Effects are *economically* significant potentially big income gains, especially for poor countries.
- But careful before calling for big infrastructure spending rise extent of underprovision unclear; refroms needed to enhance the link between spending and assets.

Infrastructure capital -- Brookings 2010

End

Data

- Output given by real PPP GDP from PWT 6.2
- Physical capital: perpetual inventory method with investment from PWT 6.2
- Human capital from Barro and Lee (2000)
- Infrastructure capital: power, transport and telecom
 - Electricity Generating Capacity (EGC) from United Nations Energy Statistics
 - Telephone lines from ITU
 - Road length in km from IRF
- These three infrastructure assets are summarized in a synthetic index constructed through a principalcomponent procedure. [back]

Production function approach

• Cobb-Douglas technology: in log per worker terms,

$$y = \alpha k + \beta h + \gamma z$$

- Infrastructure capital appears twice in the equation (as part of k, and separately as z).
- Let \tilde{k} denote non-infrastructure physical capital. Then:

$$k = (1 - \theta)\tilde{k} + \theta z$$
 and $\frac{\partial y}{\partial z} = \alpha \theta + \gamma$ where $\theta = \frac{p_z Z}{p_z Z + p_{\tilde{k}} \tilde{K}}$

• The parameter γ captures the "excess return" on infrastructure relative to other capital. Note also θ is usually a small number. [back]

Infrastructure capital -- Brookings 2010

19

Empirical strategy

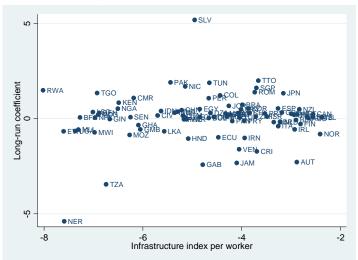
Test for the existence of long-run relation(s):

- How many cointegrating relations are there?
- Is the number the same for all countries?
 - o Find the minimum across countries (LR-bar test)
 - o Find the maximum across countries (PC-bar test)
 - o Test if they are equal

[back]

Infrastructure capital -- Brookings 2010

Cointegration test results [back]


PANEL A: Panel Unit Root Test					
Variable	Test Statistic				
GDP	-6.20				
Physical Capital	-7.08				
Human capital	-1.77				
Infrastructure	-3.35				
PANEL B: Panel LR-bar Test					
Maximum rank	Test Statistic				
0	9.03				
1	0.85				
PANEL C: Panel PC-bar Test					
Minimum rank	Test Statistic				
1	1.21				
50/	C:11				
5% critical value for the null hypothesis is 1.96 in all cases.					

Infrastructure capital -- Brookings 2010

21

Further homogeneity tests [back]

Output elasticity of infrastructure vs. infrastructure per worker

Infrastructure capital -- prookings ∠υτυ

Further homogeneity tests [back]

Break sample into high / low along the relevant dimension – and test for equality of mean infrastructure coefficient

	Per Capita Income (A)		Infrastructure Endowment	Total Population	Distortions
High	0.054	0.044	0.059	-0.016	-0.156
Low	0.059	0.062	0.055	0.131	0.271
p-value	0.985	0.94	0.988	0.576	0.102

Infrastructure capital -- Brookings 2010

23

Additional results: alternative explanatory variables [back]

Column	(1)	(2)	(3)	(4)	(5)
Variable Changed	Base	Total Phone Lines	Roads plus Rails	Paved Roads	BC Physical Capital
Physical Capital	0.34	0.35	0.34	0.34	0.33
t-ratio	35.2	32.8	35.2	26.6	18.0
hausman p-value	0.54	0.80	0.48	0.58	0.05
Human Capital	0.10	0.07	0.10	0.05	0.10
t-ratio	15.6	6.84	15.8	3.98	10.3
hausman p-value	0.24	0.55	0.24	0.11	0.20
Infrastructure	0.08	0.07	0.08	0.07	0.09
t-ratio	7.45	5.45	7.51	5.20	5.53
hausman p-value	0.21	0.37	0.23	0.41	0.14
joint hausman p-value	0.44	0.69	0.43	0.33	0.20
Average R ²	0.36	0.37	0.36	0.35	0.35

Infrastructure capital -- Brookings 2010

Sub-Saharan Africa: cost of infrastructure catch-up Investment required for halving the infrastructure quantity gap with other regions [back] | 18% | 12%