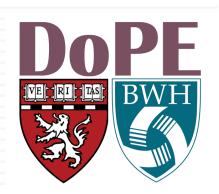
Measuring method performance in prospective safety monitoring


Joshua J. Gagne

Division of Pharmacoepidemiology

Brigham and Women's Hospital

Brookings Institution

February 16, 2011

Objectives of monitoring methods

- Identify all safety issues of interest (sensitivity)
- Produce as few false positives as possible (specificity)
- □ But, in <u>prospective</u> monitoring, we also want:
 - True positives identified early and false positives identified late (if they are to occur at all)
 - Performance weighted differently in different scenarios

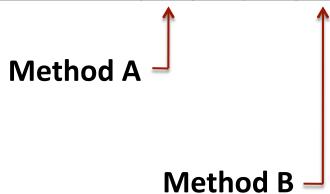
Imagine the following scenarios...

- □ Hypothetical monitoring scenario 1:
 - Febrile seizures after administration of one type of vaccine (monitoring vaccine) versus another (comparison vaccine)
 - Monitoring vaccine increases febrile seizure risk by 2-fold
- □ Hypothetical monitoring scenario 2:
 - AMI in users of an anti-diabetic drug (monitoring drug)
 versus users of another anti-diabetic drug (comparison drug)
 - Monitoring drug does not increase AMI risk
- Two hypothetical monitoring methods could be used
- New data become available on a quarterly basis, for a total of 10 periods

Hypothetical febrile seizure data

	Numbers of new febrile seizure observed in each quarter											
		1	2	3	4	5	6	7	8	9	10	Total
1:1	Monitoring vaccine	20	20	20	20	20	20	20	20	20	20	200
match	Comparison vaccine	10	10	10	10	10	10	10	10	10	10	100

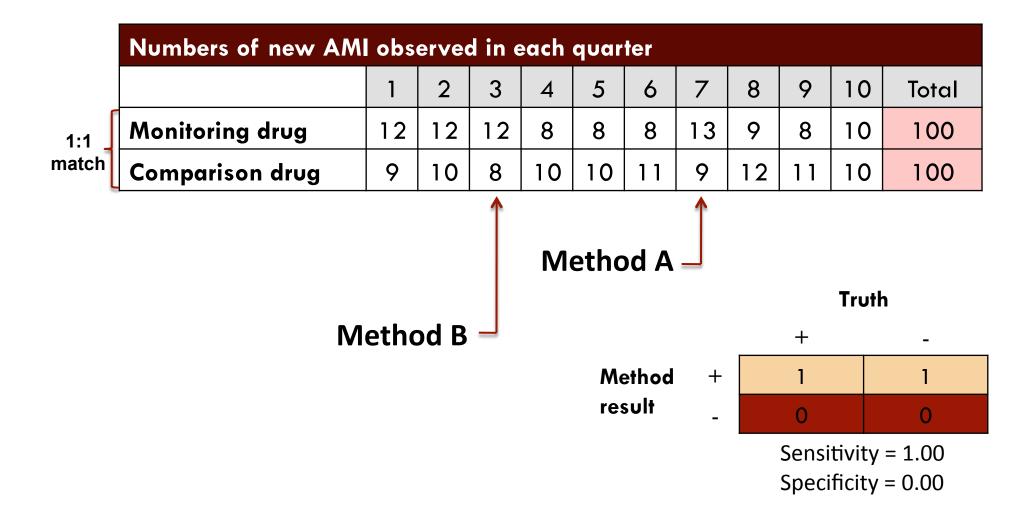
Hypothetical febrile seizure data


	Numbers of new febrile seizure observed in each quarter											
		1	2	3	4	5	6	7	8	9	10	Total
1:1	Monitoring vaccine	20	20	20	20	20	20	20	20	20	20	200
match	Comparison vaccine	10	10	10	10	10	10	10	10	10	10	100

Method A

Hypothetical febrile seizure data

	Numbers of new febrile seizure observed in each quarter											
		1	2	3	4	5	6	7	8	9	10	Total
1:1	Monitoring vaccine	20	20	20	20	20	20	20	20	20	20	200
match	Comparison vaccine	10	10	10	10	10	10	10	10	10	10	100

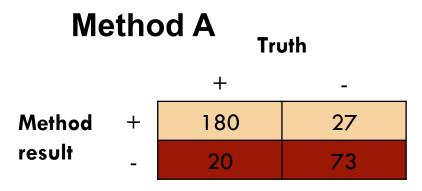

	Numbers of new AMI observed in each quarter											
		1	2	3	4	5	6	7	8	9	10	Total
1:1	Monitoring drug	12	12	12	8	8	8	13	9	8	10	100
match	Comparison drug	9	10	8	10	10	11	9	12	11	10	100

	Numbers of new AMI observed in each quarter											
		1	2	3	4	5	6	7	8	9	10	Total
1:1	Monitoring drug	12	12	12	8	8	8	13	9	8	10	100
match	Comparison drug	9	10	8	10	10	11	9	12	11	10	100

Method A –

	Numbers of new AMI observed in each quarter											
		1	2	3	4	5	6	7	8	9	10	Total
1:1	Monitoring drug	12	12	12	8	8	8	13	9	8	10	100
match	Comparison drug	9	10	8	10	10	11	9	12	11	10	100

Method A Method A


An event-based approach

Numbers of exposed events in each scenario in each quarter											
	1	2	3	4	5	6	7	8	9	10	Total
Scenario 1 (vaccine)	20	20	20	20	20	20	20	20	20	20	200
Scenario 2 (drug)	12	12	12	8	8	8	13	9	8	10	100

An event-based approach

Numbers of exposed events in each scenario in each quarter											
	1	2	3	4	5	6	7	8	9	10	Total
Scenario 1 (vaccine)	20	20	20	20	20	20	20	20	20	20	200
Scenario 2 (drug) 12 12 12 8 8 8 13 9 8 10 100											

Event-based sensitivity = 0.90 Event-based specificity = 0.73

An event-based approach

Numbers of exposed events in each scenario in each quarter											
1 2 3 4 5 6 7 8 9 10 Total											
Scenario 1 (vaccine)	20	20	20	20	20	20	20	20	20	20	200
Scenario 2 (drug) 12 12 12 8 8 8 13 9 8 10 100											

Method B

Method A Truth + Method + 180 27 result - 20 73

Event-based sensitivity = 0.90 Event-based specificity = 0.73 Truth
+ + 120 64
- 80 36

Event-based sensitivity = 0.60 Event-based specificity = 0.36

Event-based performance metric

$$EBP = \frac{\sum_{j=1}^{n} a_{j} \cdot w_{j}}{\sum_{j=1}^{n} a_{j} + c_{j}} + \frac{\sum_{j=1}^{n} d_{j} \cdot (1 - w_{j})}{\sum_{j=1}^{n} d_{j} + b_{j}}$$

□ Where:

- $w_i = weight for sensitivity:specificity preference in scenario j$
- n = total number of j scenarios

Truth
$$+ -$$
Method $+ a_i b_i$
result $- c_i d_i$

A vs. B comparison with EBP

Method A Truth + Method + 180 27 result - 20 73

Event-based sensitivity = 0.90 Event-based specificity = 0.73

Method B

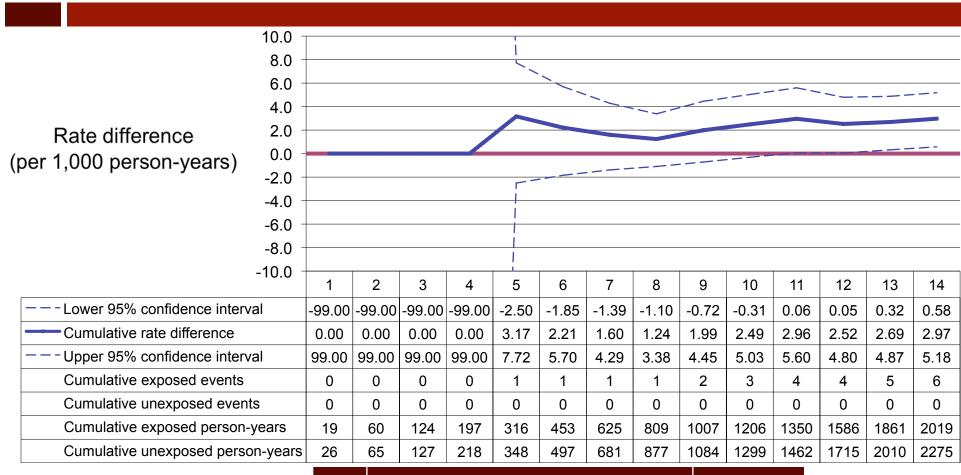
+

+	120	64
-	80	36

Event-based sensitivity = 0.60 Event-based specificity = 0.36

- $w_i = 0.1$ for febrile seizures; $w_i = 0.2$ for AMI:
 - \blacksquare EBP_{method_A} = 0.674 vs. EBP_{method_B} = 0.348
- $w_i = 0.01$ for febrile seizures; $w_i = 0.01$ for AMI:

$$\blacksquare$$
 *EBP*_{method_A} = 0.731 vs. *EBP*_{method_B} = 0.362


Application in simulated data

- Simulated data resembling signal refinement for statin-induced rhabdomyolysis
- Assumed matched cohort design with 20 periods defined by calendar time (e.g. quarters)
- □ Compared 93 algorithms
- □ 100,000 iterations

w _i	Algorithm	Overall sensitivity	Overall specificity	EBP
0.01	maxSPRT ($\alpha=0.01$)	0.18	1.00	0.99
0.10	Pocock-like spending function ($\alpha=0.10$)	0.32	0.99	0.93
0.20	Pocock-like spending function ($\alpha=0.40$)	0.49	0.95	0.87

Translation to empirical data

w _i	Algorithm	Alert period
0.01	maxSPRT ($\alpha = 0.01$)	
0.10	Pocock-like spending function ($\alpha=0.10$)	14
0.20	Pocock-like spending function ($\alpha=0.40$)	11

Summary

- □ EBP is useful to compare performance of methods in settings in which truth is known
- Uses exposed events to incorporate time to signaling
 - Most relevant unit for public health decision making (i.e. modifiable)
 - The most meaningful measure of "time" in prospective monitoring
 - Main driver of statistical power
- Allows for transparent weighting of sensitivity-specificity tradeoffs that can vary by monitoring outcome
- Does not depend on "prevalence" of safety issues

igagne 1@partner.org

Summarizing event-based performance

- Many ways to use events to summarize performance:
 - Mean average precision, diagnostic odds ratio, F₁ score, Matthews correlation coefficient, Youden's J statistic, accuracy, etc.
 - All are functions of sensitivity, specificity, and (often) "prevalence"
 - Built-in tradeoffs between FP and FN costs are arbitrary and cannot be easily changed
- Sensitivity and specificity are characteristics of the methods whereas prevalence is arbitrary