

Spatial analysis and agent-based modeling for understanding the population dynamics of changing human-environment landscapes

Steven M. Manson Department of Geography University of Minnesota 414 Social Sciences 267 - 19th Avenue South Minneapolis, MN 55455 manson@umn.edu umn.edu/~manson

Brookings – December 2007

Three North American Frontiers

- Twin Cities: urbanization, suburbanization, ex-urbanization
- MN/WI/NY: periurban/rural agriculture
- Yucatan: deforestation along Mexico's 'New Frontier'

www.mo.nrcs.usda.gov

Southern Yucatan Peninsular Region (SYPR)

Land use = 2356 km² / $13^{.4}$ %

HELIA (Human-Environment Land Integrated Assessment)

Data

Surveys (1996, 2003, 2006)

Household Labor Production Institutions

Spatial

Satellite imagery (1975 - Present) Aerial photography (1969, 1980s) Environmental GIS layers (Ongoing) Land-use/cover maps (1970 - Present)

Archival (Ongoing)

Land use Institutions Climate

Ecological (Ongoing) Structure / function Nutrient flows Biodiversity

Environment

- Environmental concepts
 - Endogenous functions
 - Exogenous impacts
- Environmental cellular model
 - States in spatial factors
 - Rules

Institutions

- Institution concepts
 - Influence actors
 - Channel drivers
- Institutional agent-based model
 - Direct change of actor resources
 - Indirect change of spatial factors

Targeted Market

Ejidos

Culture

Market

Targeted Market

Tenure

Group Affiliation

Access

Actors

Actor concepts

- Decision making
 - Bounded rationality vs. perfect rationality
 - Learning under risk/uncertainty
 - Networks/Ties/Formation
- Population/Demographics
 - Household dynamics
 - Migration at multiple scales

Actor agent-based model

Ε

Α

Land Use

Movement

Interaction/ Networks

Agent-Based Model

Standard approaches tend to focus on:

- □ General assumptions
- General model of decision making
- □ Analytical tractability (i.e., math/stats)
- Power/elegance

Agent-based models focus on:

- Varying decision making models
- Varied actors
- Actor interaction
- Local interactions
- Simplicity leading to complexity

Example Dynamics

Actor must grow crops to meet needs

Land access influenced by institution

Potential for environmental degradation

Example Simulation

 \otimes

 \otimes

Model output: the aggregate results of the modeled subsystems (actors, institutions, environment) can be seen in (a) spatially-explicit mappings of LUCC, (b) estimates of correlation between LUCC and various factors, and (c) statistics for individual households. All of these results in turn can be applied to social and environmental scenarios.

Factors	Importance
Population	7.30
Environment	6.85
Institutions	28.33
Ejidal	12.86
Market	15.47
Land Use/Cover	7.52
Fragmentatior	n 20.45
Distance	20.47
Cover type	16.60
Total	100

(a)

(C)

(b)

Household Product Diversity

No Ejidal Limits

Ejidal limits

Complex Scales of Reality

Complex Reality, Complex Models

Conclusion

- Regional modeling needs
 - Actors + Environment + Institutions
 - Scale
 - Complexity

Future research

- Continued socioeconomic & ecological integration
- - SYPR (NASA)
 - Twin Cities region (NASA)
 - Rotational grazing in MN, WI, and NY (NSF)

- Manson, S. M. and T. Evans (2008). Agent-based modeling of deforestation in southern Yucatán, Mexico, and reforestation in the Midwest United States. *Proceedings of the National Academy of Sciences* (Accepted, in press).
- Manson, S. M. (2008). Does scale exist? An epistemological scale continuum for complex human-environment systems. *Geoforum* (Accepted, in press).
- Sander, H. and S. M. Manson (2007). Heights and locations of artificial structures in viewshed calculation: how close is close enough? *Landscape and Urban Planning* 82(4): 257-270.
- Manson, S. M. (2007). Challenges in evaluating models of geographic complexity. Environment and Planning B 34(2): 245-260.
- Manson, S. M. (2006). Bounded rationality in agent-based models: experiments with evolutionary programs. International Journal of Geographic Information Science 20(9): 991-1012.
- Manson, S. M. and M. Bauer (2006). Changing Landscapes in the Twin Cities Metropolitan Area. CURA Reporter 36(3): 3-11.
- Manson, S. M. (2006). Land use in the Southern Yucatan Peninsular Region of Mexico: scenarios of population and institutional change. *Computers, Environment, and Urban Systems* 30(3): 230-253.
- Manson, S. M. and D. O'Sullivan (2006). Complexity theory in the study of space and place. *Environment and Planning A* 38(4): 677-692.
- Manson, S.M., (2005). Agent-based modeling and genetic programming for modeling land change in the Southern Yucatan Peninsular Region of Mexico. *Agriculture, Ecosystems and Environment* 111(1): 47-62.
- Manson, S. M., J. Geoghegan and B. L. Turner, II (2006). State of the art in describing future changes in ecosystem services: forecasting changes in land use and land cover. In Millennium Ecosystem Assessment: Ecosystems and Well-Being (Volume 2: Scenarios). H. Mooney and A. Cropper (eds). Geneva, Switzerland: Island Press, pp. 74-76..
- Manson, S. M. (2004). The SYPR integrative assessment model: complexity in development. In Integrated Land-Change Science and Tropical Deforestation in the Southern Yucatán: Final Frontiers. B. L. Turner, D. Foster and J. Geoghegan (eds). Oxford, United Kingdom: Clarendon Press of Oxford University Press, pp. 271-291.
- Brown, D. G., R. Walker, S. M. Manson and K. Seto (2004). Modeling land use and land cover change. In Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth's Surface. G. Gutman, A. Janetos, C. Justice, E. Moran, J. Mustard, R. Rindfuss, D. Skole and B. L. Turner II. (eds). Dordrecht, Netherlands: Kluwer Academic Publishers, pp. 395-409.
- Manson, S. M. (2003). Validation and verification of multi-agent models for ecosystem management. In Complexity and Ecosystem Management: The Theory and Practice of Multi-Agent Approaches. M. Janssen (ed). Northampton, Massachusetts: Edward Elgar Publishers, pp. 63-74.
- Parker, D. C., S. M. Manson, M. Janssen, M. J. Hoffmann and P. J. Deadman (2003). Multi-agent systems for the simulation of land use and land cover change. *Annals of the Association of American Geographers* 93(2): 314-337.

Manson, S. M. (2001). Simplifying complexity. Geoforum 32(3): 405-414.

Publications available from:

www.umn.edu/~manson