Use of propensity scores for multivariate distributed analytics in a Sentinel-type system

Jeremy A. Rassen, Sc.D.

Work in conjunction with: Jerry Avorn, M.D. Sebastian Schneeweiss, M.D., Sc.D.

February 2011

Div. of Pharmacoepidemiology Dept. of Medicine Brigham & Women's Hospital Harvard Medical School

FDA Sentinel from one perspective

- **Overall goal:** Use available data, collected and stored by parties across the United States, to generate, refine, and evaluate drug safety signals in an ongoing monitoring effort.
- **Epidemiology goal:** Understand that most questions will require substantial efforts to control confounding due to treatment selection driven by disease severity and prognosis.
- **Privacy goal:** Be respectful of patient and organizational privacy and operate within all guidelines and regulations.

The challenge of distributed data

- Established methods of [horizontally] combing data require either:
 - Sharing of individual covariates (often impossible) or
 - Minimal covariate adjustment (often unsuitable).
- A Sentinel-type system requires:
 - Maintaining privacy of individual patients.
 - Maintaining proprietary data from contributing organizations.
 - Executing signal refinement and evaluation with full multivariate adjustment.
 - A system that supports sites with minimal amounts of statistical expertise.

Confounding bias can lead to false alerts

- Confounding bias is a major challenge, except in limited cases like childhood vaccines.
- A drug given to sicker patients than the comparator drug may have a high probability of false positive alerts. False negative decisions are also possible.
- Full multivariate adjustment with use of maximal recorded information is required in all phases of signal assessment.

Various methods explored (i)

1. Sharing individual covariates

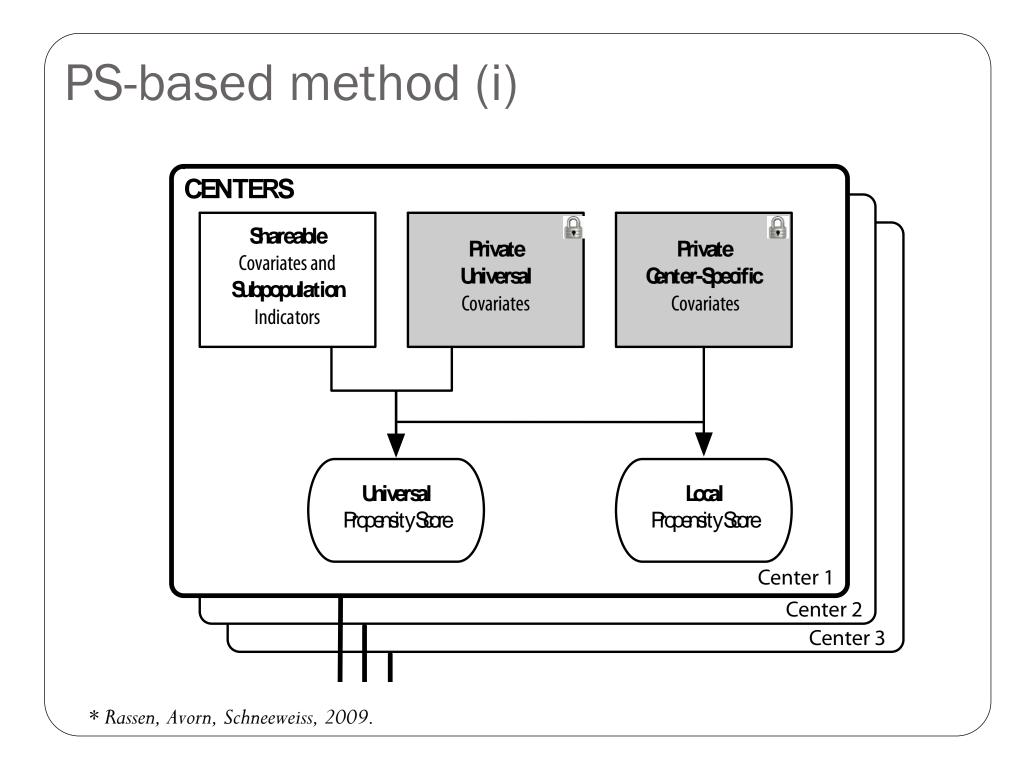
- Definition: amalgamate all data into a "master dataset", including all patient covariates
- Problems:
 - Does not maintain privacy or proprietary data
 - Time-consuming to implement and standardize variable definitions

2. Meta-analysis

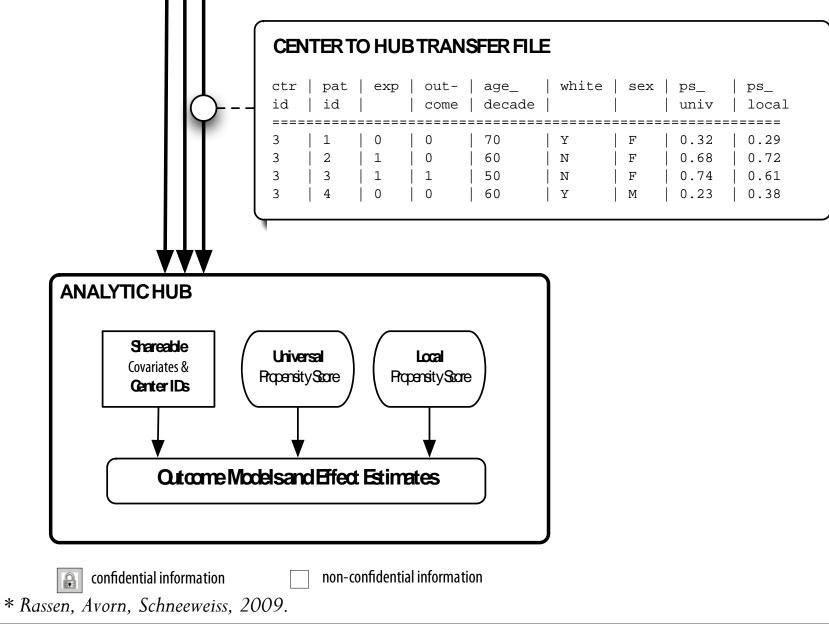
- Definition: compute point estimates and variances at each site; do a pooled analysis with just these figures.
- Problems:
 - Requires statistical ability at each site
 - Limited ability to do *post hoc* (or "*intra hoc*") changes to analytic plan

Various methods explored (ii)

- 3. Sharing cell counts (or cell counts masked cryptographically)
 - Definition: summarize data into cells of counts, then pool counts. Analyze data at the cell level.
 - Problems:
 - If data are stratified by outcome and a reasonable number of confounders are considered then most important cells would be small and thus make patients identifiable.


4. Propensity score based method*

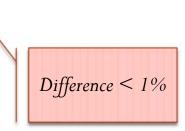
- Based on propensity scores a value that predicts an individual's probability of exposure given his/her vector of measured covariates.
- PS methods are robust, proven, and can maximize site-specific information content.


* Rassen, Avorn, Schneeweiss, 2009.

Propensity scores

- One of several confounder summary scores: a single value that encapsulates all important information about a patient's disease status.
- If a patient receiving saxagliptin has a PS of 0.2836, and a patient receiving metformin has a PS of 0.2836, then they should be generally balanced on their covariates.
- No knowledge of *why* their PS is 0.2836 needs to be shared.
 0.2836 is essentially useless for identifying a single patient.
- Any observed increase in MI incidence can then be causally attributed to the drug.
- Other summary scores could work just as well.

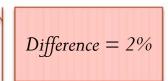
PS-based method (ii)



Example

- PS-based analysis should yield substantially similar results to analysis based on full, unblinded information.
- Example: drug-drug interaction between clopidogrel and PPIs; two outcomes.
- Four centers contribute information to a single analytic hub
- 29 covariates with private patient information

Example outcome 1 (strong confounding)


	B.C. n=19,979	PA Medicr. n=4,201	NJ Medicr. n=4,030	Commerc. n=3,451	POOLED n=31,661	META- ANALY.
Unadj.	1.87	2.03	1.32	~1.21	1.74	1.74
Age/sex adj.	1.66	2.12	1.25	~1.18	1.60	1.60
Cov. adj.	1.34	1.99	1.19	~0.75	1.34	1.34
Univ. PS adj.	1.35	2.11	1.22	~0.88	1.32	1.32

* n was too small for model to converge.

Example outcome 2 (weaker confounding)

	B.C. n=19,979	PA Medicr. n=4,201	NJ Medicr. n=4,030	Commerc. n=3,451	POOLED n=31,661	META- ANALY.
Unadj.	1.41	0.96	0.77	~1.34	1.12	1.12
Age/sex adj.	1.5	0.95	0.78	~1.34	1.14	1.14
Cov. adj.	1.42	0.96	0.78	~1.34	1.14	1.14
Univ. PS adj.	1.44	0.93	0.76	~1.32	1.11	1.11

* n was too small for model to converge.

Limitations

- Limited flexibility for *post hoc* subgroup analyses.
- Perceived as a black box.
 - But one that can be opened by having each site automatically generate copious pre-defined diagnostics.
- Gleaning private information from propensity scores is all but impossible, but not cryptographically iron-clad.
 - It is particularly difficult if the information is shared with a (mostly) trusted third party.
- PS traditionally used for 2 exposures
 - This fits most Sentinel monitoring scenarios
 - Can be expanded to >2 exposures using, eg, multi-way matching

Conclusions

- Any methodology for a Sentinel-type system must be
 - (a) built on sound epidemiologic principles; and
 - (b) built with the Sentinel goals in mind.
- The PS-based approach maintains privacy and simplicity without sacrificing validity. It also allows for maximal information usage from each data partner.
- The method has served well in several projects to date.