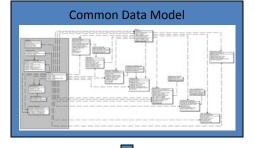
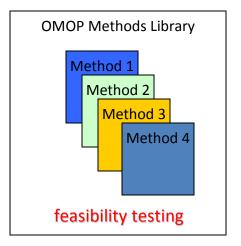

Exploring Methodological Needs for Signal Refinement


Patrick Ryan on behalf of OMOP Research Team September 21, 2010


OMOP research experiment workflow

Health Outcomes of Interest

- Angioedema
- Aplastic Anemia
- Acute Liver Injury
- Bleeding
- GI Ulcer Hospitalization
- Hip Fracture
- Hospitalization
- Myocardial Infarction
- Mortality after MI
- Renal Failure

Drugs

- ACE Inhibitors
- Amphotericin B
- Antibiotics
- Antiepileptics
- Benzodiazepines
- Beta blockers
- Bisphosphonates
- Tricyclic antidepressants
- Typical antipsychotics
- Warfarin

Non-specified conditions

- -All outcomes in condition terminology
- -'Labeled events' as reference
 - -Warning
 - -Precautions
 - -Adverse Reactions
 - -Postmarketing Experience

What methods are most appropriate for signal refinement? Multiple alternative approaches identified that deserve empirical testing to measure performance

	Parameter	Release
Method name	combinations	date
Disproportionality analysis (DP)	112	15-Mar-10
Univariate self-controlled case series (USCCS)	64	2-Apr-10
Observational screening (OS)	162	8-Apr-10
Multi-set case control estimation (MSCCE)	32	16-Apr-10
Bayesian logistic regression (BLR)	24	21-Apr-10
Case-control surveillance (CCS)	48	2-May-10
IC Temporal Pattern Discovery (ICTPD)	84	23-May-10
Case-crossover (CCO)	48	1-Jun-10
HSIU cohort method (HSIU)	6	8-Jun-10
Maximized Sequential Probability Ratio Test (MSPRT)	144	25-Jul-10
High-dimensional propensity score (HDPS)	144	6-Aug-10
Conditional sequential sampling procedure (CSSP)	144	30-Aug-10
Statistical relational learning (SRL)		
Incident user design (IUD-HOI)		

http://omop.fnih.org/MethodsLibrary

Attributes that could influence method performance

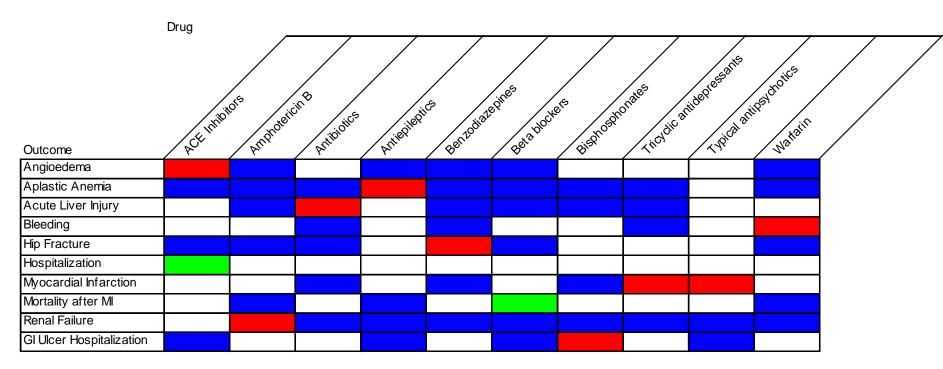
Drug attributes

- Background prevalence
- Duration of exposure

Condition attributes

- Background prevalence
- Occurrences recorded

Drug-condition attributes

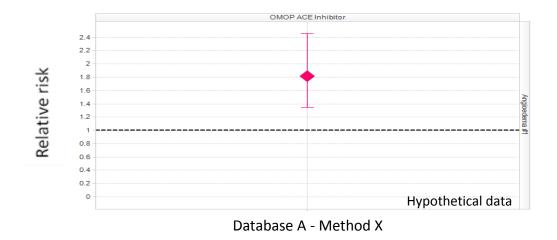

- Time-to-event
- Strength of association
- Degree of confounding

Database attributes

- Population size
- Data available (claims, clinical)
- Longitudinal capture

When addressing a specific drugoutcome pair, such as 'oral diabetic-AMI' and 'injectable antibiotic-liver injury', one can consider how the pairs relates to these attributes, but some may not be known at the time of study

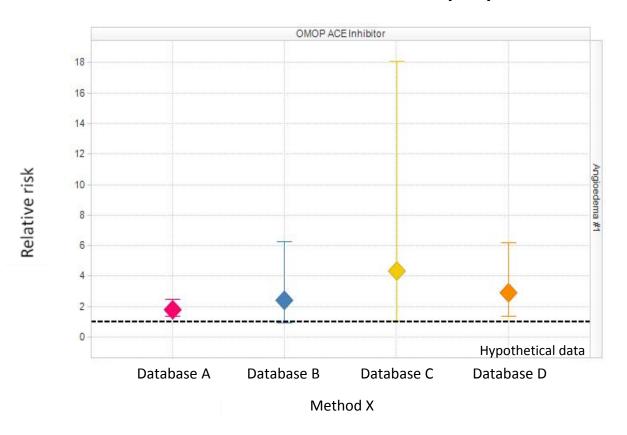
'Ground truth' for Monitoring Health Outcomes of Interest



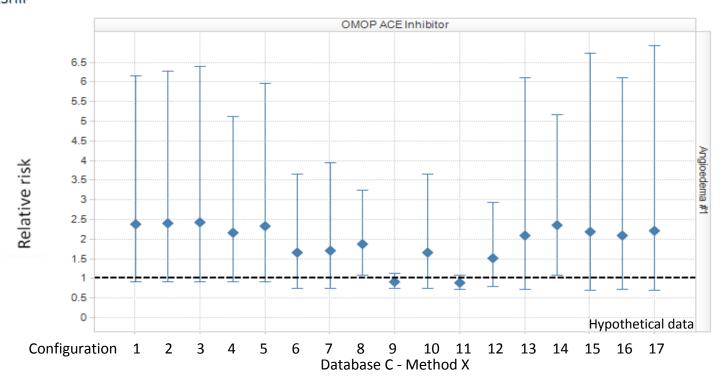
Legend	Total
B- 'True positive' benefit	2
R- 'True positive' risk	9
N- 'Negative control'	44

One potential goal: establish a reference set that sufficiently covers the anticipated scenarios so results can be generalized to new pairs such as 'oral diabetic- AMI' and 'injectable antibiotic-liver injury'

Studying method performance for 'signal refinement'


- Apply method with specific set of parameter settings to a database for a drug-outcome pair that has a prior suspicion of being potentially related
- Example: Run method X on database A for ACE inhibitors Angioedema

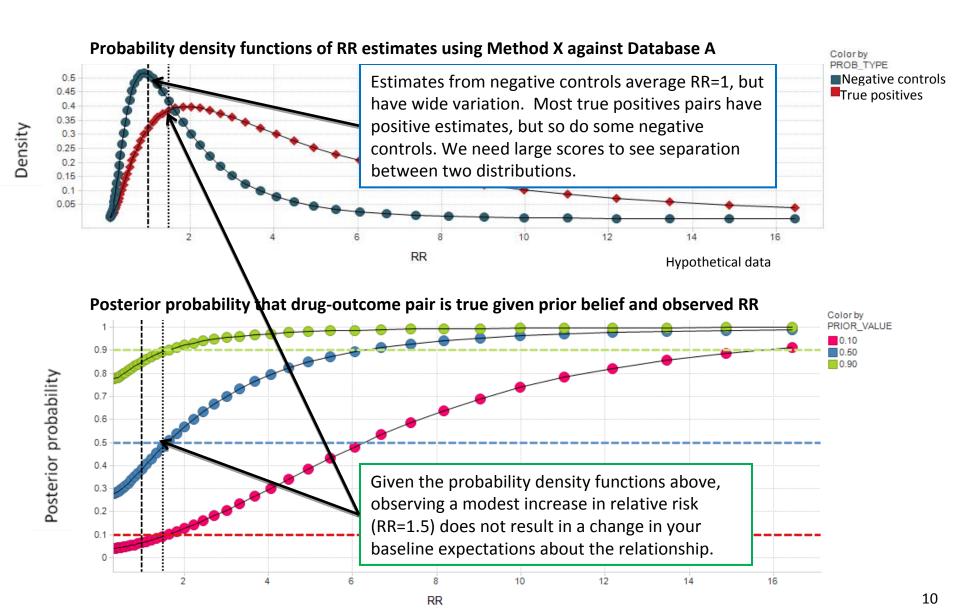
Challenges:


- How to put the resulting score in context?
- What if we modified one of the methods parameters?
- What if we applied the method to a different database?
- If we had applied the same method to other drug-outcome pairs, what types of scores would we expect?
 - How many other true positives would get a RR > 1.8?
 - How many false positives would be identified with a threshold of 1.8?

How do effect estimates vary by database?


- Each database may have unique source population characteristics that can influence method behavior, including:
 - Sample size
 - Length and type of longitudinal data capture
 - Population demographics, such as age, gender
 - Disease severity, including comorbidities, concomitant medications and health service utilization patterns

How do estimates vary by method parameter settings?


- Performance can be sensitive to various factors, including:
 - Length of washout period to identify incident use
 - Definition of time-at-risk
 - Choice of comparator
 - Number and types of covariates to include in propensity score modeling
 - Statistical approach for adjustment: matching vs. stratification vs. multivariate modeling
- 'Optimal' settings may vary by database and/or the drug-outcome pair in question 8

How does method perform against other 'benchmark' true positives and negative controls?

 It is important to establish operating characteristics of any method, when applied across a network of databases, as part of the 'validation before adoption for signal refinement'

Probabilistic framework for interpreting active surveillance results: In light of the observed evidence, how confident are we that there is a true association between medical product exposure and outcome?

Concluding thoughts

- Many viable methods to consider for active surveillance
- Method performance may vary by parameter settings, database, and characteristics of the drug-outcome pair
- Empirical testing, using both true positives and negative controls, is needed to establish operating characteristics of methods and data sources prior to adoption
- Bias presents a significant methodological challenge unlikely to be overcome by any one method or one database
- Probabilistic framework offers another way of interpreting findings from an active surveillance system

Contact information

Patrick Ryan Research Investigator ryan@omop.org

David Madigan
OMOP Methods Lead
madigan@stat.columbia.edu

Thomas Scarnecchia
Executive Director
scarnecchia@omop.org

Emily Welebob Senior Program Manager, Research welebob@omop.org

OMOP website: http://omop.fnih.org