Climate Change and The Land-use/ Transportation Challenge

How Much Change is Possible How Much Impact Will it Have

Global Ecological Footprint per Capita

Source: Global Footprint Network

Carbon Emission by Location Tons per Capita

Source: Global Footprint Network

30

Transportation Mode by Country

The Suburban Experiment: A Half Century of Radical

Change

- * VMT per Household Doubles 1950-2000
- * Autos Per Household from 1 to 1.7
- * Families with Children down from 40% to 23%
- * Working Women triples
- * Urban Footprint per Household Quadruples
- * 1950 23% population in suburbs, now 50%
- * 1970 only 25% jobs in suburbs, 1990 it is 57%

Land Use & Transportation Strategies for Climate Change

Who We Are (Really)

2003 Housing Supply vs 2025 Demand Millions

2003 Suppy 2025 Demand New Units Needed

Source: AC Nelson. Journal of the American Planning Association, Vol 72, Issue 4, 2006

USA Total Energy Consumption Trillions BTU/year

Source: Energy Information Agency Table 2.1a

Total Energy Consumption per Household

Transport

Commercial

Industrial

VMT Per Household

Pass VMT per HH

Truck VMT per HH

Quantifying the Land-use/ Carbon Emission Connection I. Density 2. Diversity 3. Design

- 1. Destinations
- 5. Distance to Transit
- 6. Development Scale
- 7. Demographics
- 3. Demand Management

Regional Carbon Emissions Chicago Metro Area

VMT is a Product of Location, Density, Demographics, Transit, and Policy

Transportation Energy Consumption

Oil Refining

Embodied Energy

Total Energy Consumption

Home

Transportation

USA Regional Planning Projects

Portland Metro Region VMT

Average Daily VMT Portland Region vs. National Average, 1990-2002

Source: State Highway Performance Monitoring System (HPMS); Federal Highway Administration, USDOT

Salt Lake Regional Plan

Regional Development Alternatives

Scenario A

Scenario B

Scenario C

Scenario D

Alternatives Analysis

Alternatives Analysis

Land Area Added

(square miles)

New Dwelling Unit Types

Multi-Family Units Single-Family Homes

Cost of Infrastructure (Billions)

Quality Growth Strategy

Layers

Open Space & Constrained Land

Centers & Corridors

New Growth & Redevelopment

COMPASS Regional Growth Vision

Historic Los Angeles Rail System

1920s

1930s - Toluca

1950s - Hill Street, Downtown LA

Mobility

Transit Systems

All Rail and Rapid Bus Transit

COMPASS Opportunity Areas

Growth that Supports Transit

High-Intensity Corridor

Wilshire Boulevard

Medium-Intensity Corridor

Ventura Boulevard

Vision California

- California High Speed Rail Authority
- California Strategic Growth Council
- Natural Resources Defense Council
- California League of Conservation Voters
- American Farmland Trust
- TransForm
- Local Government Commission
- **UC Davis**

The High Speed Rail/Smart Growth Connection

Scenario Alternates

Trend

Blueprints

Metrics and Impacts of Scenarios

Scenario Modeling

Environmental

Greenhouse Gas Emissions Air Pollution Water and Energy Consumption

Transportation

Vehicle Miles Traveled Transit, Walk, Bike Mode share Vehicle Emissions

Fiscal

State and Regional Infrastructure Cost Household/Business Costs for Energy & Water

Social

Housing Diversity & Affordability Access to Jobs and Services Public Health Impacts Cost of Living and Household Costs
Carbon Emission Sectors

World					
Sector		Mto	:02 %		
Energy Electricity & Heat Manufacturing & Con Transportation Other Fuel Combusti Fugitive Emissions [1	struction on	28,40 2,307.2 5,184.0 5,378.0 3,790.7 1,747.4	07.4 75.2 32.6 13.7 14.2 10.0 4.6	4	
Industrial Processes Agriculture Waste Total		1,86 6,07 1,41 37,76	25.2 16.1 8.7 3.8		
United States					
Sector	MtCO	92 9	10		· • • • • • • • • • • • • • • • • • • •
Energy Electric Utilities Residential Commercial Industrial Transportation Fugitive Emissions	6,083 2,354.3 368.9 226.1 1,035.1 2,042.4 56.7	.6 87 34.0 5.3 3.3 14.9 29.5 0.8	.8		
Industrial Processes Agriculture Waste International Bunkers Total	280 434 130 0 6,929	.3 6 .7 1 .3 0	.0 .3 .9 .0		
California	0/0200				
Sector	MtCO2	%	1		
Energy Electric Utilities Residential Commercial Industrial Transportation Fugitive Emissions	396.4 42.1 28.6 14.0 76.5 235.3	86.4 9.2 6.2 3.0 16.7 51.3		~	
Industrial Processes Agriculture Waste International Bunkers Total	21.5 26.4 14.6 0.1 459.0	5.8 3.2			

Vision California Place Types

Mixed Use Centers & Corridors •Urban •City •Town •Village •Suburban Commercial/Mixed •Residential Single-Use •Employment Areas •Hi/Mid Intensity •Low Intensity Institutional •Campus/University Other Institutional

Map Place Types

The Eight D's:

- Density
- 2. Diversity
- 3. Design

4.

- Destinations
- 5. Distance to Transit
- 6. Development Scale
- 7. Demographics
- 8. Demand Management

Vision California – Place Type Studies

University Avenue

Oakland Uptown

Stapleton

California Rapid Fire Scenarios 7 million New Households

Sprawl Compact Urban

Cumulative Product Mix Scenario

Large Lot Single Family Attached Single Family Small Lot Single Family Multifamily

Transportation Carbon Emissions a 3-Leg Stool

California 2050 GHG Emissions

Travel

Total Land Consumed

More land than Delaware and Rhode Island combined

Cumulative Vehicle Miles Traveled ALL cars off California's roads for 20 years

Cumulative Fuel Consumed

Equivalent to 6 years of oil imports to the US

Trend

Auto Fuel Cost

You could build 65,000 miles of High Speed Rail

Trend

Total Residential Water Use

More water than Crater Lake, Lake Shasta, the San Francisco Bay and Hetch Hetchy Reservoir, combined.

Annual Household Costs

Over \$11,000 Savings Per Household Per Year

Trend

Infrastructure Cost Per New Unit

Savings Total Over \$167 Billion or \$3.7 Billion Annually

Greenhouse Gas Emissions

Emissions offset over 186,000 acres of trees larger than California

Principles of Urbanism

Diversity & Balance

Human & Pedestrian Scale

Conservation & Restoration

Connections & Interdependence