ABSTRACT This paper reviews the unconventional U.S. monetary policy responses to the financial and real crises of 2007–09, dividing these responses into three groups: interest rate policy, quantitative policy, and credit policy. To interpret interest rate policy, it compares the Federal Reserve’s actions with the literature on optimal policy in a liquidity trap. This comparison suggests that policy has been in the direction indicated by theory, but it has not gone far enough. To interpret quantitative policy, the paper reviews the determination of inflation under different policy regimes. The main danger for inflation from current actions is that the Federal Reserve may lose its policy independence; a beneficial side effect of the crisis is that the Friedman rule can be implemented by paying interest on reserves. To interpret credit policy, the paper presents a new model of capital market imperfections with different financial institutions and roles for securitization, leveraging, and mark-to-market accounting. The model suggests that providing credit to traders in securities markets is a more effective response than extending credit to the originators of loans.

The last two years have been an exciting time to be a student of monetary policy and central banking. Variability in the data is what allows us to learn about the world, and variability has not been in short supply in the United States, with wide swings in asset prices, threats to financial stability, concerns about regulation, sharply rising unemployment, and a global recession. But these have been difficult times to be a central banker. The limited tools at the disposal of the Federal Reserve have been far from sufficient to put out so many fires, and many of the challenges have caught central bankers unprepared for what not so long ago seemed highly improbable.

This paper reviews the Federal Reserve’s actions in 2007–09 and interprets them in the light of economic theory. “Interpret” is the operative word here, since any attempt to describe and evaluate all that has happened would
be doomed to fail. On the one hand, so much has already happened that it would take a book, or perhaps many books, to describe and account for it all. On the other hand, the crisis and its repercussions are far from over, so that any assessment runs the risk of quickly becoming obsolete. I will therefore avoid, as far as I can, making pronouncements on what policies seem right or wrong, even with the benefit of hindsight, and I will not give a comprehensive account of all the events and policies. My more modest ambition is to provide an early summary of monetary policy’s reaction to the crisis thus far, to interpret this reaction using economic theory, and to identify some of the questions that it raises.

I start in section I with brief accounts of the crisis and of the Federal Reserve’s responses. These fall into three categories. The first is interest rate policy and concerns the targets that the Federal Reserve sets for the interest rates that it controls. Figure 1 illustrates the recent changes by plotting two key interest rates targeted by the Federal Reserve over the last 20 years. These rates are as low today as they have been in this entire period, and the Federal Open Market Committee (FOMC) has stated its intent to keep them close to zero for the foreseeable future.¹

¹ Operating procedures for the discount window changed in January 2003, and therefore a consistent discount rate series for the whole period does not exist. For the federal funds rate in 2009, I plot the upper end of the range targeted by the Federal Reserve. The figure also shows the interest rate on reserves that was introduced in October 2008, discussed further below.

Figure 1. Interest Rates Targeted by the Federal Reserve, August 1989–August 2009

Sources: Federal Open Market Committee press releases; Federal Reserve statistical release H.15, Selected Interest Rates; various issues; and author’s calculations.
Figure 2. Adjusted Reserves and Monetary Base, 1929–2009

Figure 2 illustrates the second set of policies, which I label quantitative policy. These involve changes in the size of the balance sheet of the Federal Reserve and in the composition of its liabilities. The figure plots an adjusted measure of reserves held by banks in the Federal Reserve System and the monetary base (currency plus reserves), both as ratios to GDP, since 1929. In September 2009 adjusted reserves were equal to 6.8 percent of GDP, a value exceeded in the history of the Federal Reserve System only once, between June and December 1940. The monetary base is as large relative to GDP as it has ever been in the last 50 years.

The third set of policies, which I label credit policy, consists of managing the asset side of the Federal Reserve’s balance sheet. To gauge the radical change in the composition of these assets since the crisis began, figure 3 plots the ratios of U.S. Treasury bills and of all Treasury securities held by the Federal Reserve to its total assets.\(^2\) From a status quo where the Federal Reserve held almost exclusively Treasury securities, in the last two years it has switched toward holding many other types of assets and, more recently, toward securities with longer maturities.

I start my assessment in section II with this last group of policies, because they are the least understood in theory. Using a new model of

\(^2\) U.S. Treasury bills are three-month securities; total Treasury securities include bonds and notes, which have longer maturities. The figure includes only securities held outright, not those held as part of repurchase agreements.
In capital markets, I investigate the effects of the Federal Reserve’s different investments on the availability of credit. In the model, four groups of actors—entrepreneurs, lenders, traders, and investors—all have funds that must be reallocated through the financial system toward investment and production, but frictions among these groups may lead to credit shortages at different points in the system. Different credit programs implemented by the central bank will have different effects depending on whether they tighten or loosen these credit constraints, and depending on the equilibrium interactions between different markets. Drawing on the model, section III goes on to suggest that whereas the Federal Reserve’s credit policies to date have been directed at a wide range of markets and institutions, focusing the central bank’s efforts on senior secured loans to traders in securities markets would be the most effective way to fight the crisis.

Next, in section IV, I move to quantitative policy and ask the following question: do the recent increases in reserves and in the central bank’s balance sheet undermine the ability of the current policy regime to control inflation? I show that according to a standard model of price-level determination, the regime is threatened only if the Federal Reserve becomes excessively concerned with the state of its balance sheet, or if it gives in to pressure from the fiscal authorities, effectively surrendering its independence.

Figure 3. U.S. Treasury Securities Held Outright by the Federal Reserve, June 1996–August 2009

3. The model is a simple version of the more complete analysis in Reis (2009).
Finally, in section V, I turn to interest rate policy. I briefly survey the literature on optimal monetary policy in a liquidity trap, which recommends committing to higher than normal inflation in the future and keeping the policy interest rate at zero even after the negative real shocks have passed. Although the Federal Reserve’s actions fit these prescriptions qualitatively, they seem too modest relative to what theory calls for. Section VI concludes.

I. What Has the Federal Reserve Been Up To?

There already exist some thorough descriptions of the events of the U.S. financial crisis of 2007–09. After a brief and selective summary, this section catalogs the policies followed by the Federal Reserve in response to these events.

I.A. The Financial Crisis and the Real Crisis

In August 2007 an increase in delinquencies in subprime mortgages led to a sharp fall in the prices of triple-A-rated mortgage-backed securities and raised suspicions about the value of the underlying assets. Because many banks held these securities, either directly or through special investment vehicles, doubts were cast over the state of banks’ balance sheets generally. Through 2007 the fear became widespread that many banks might fail, and interbank lending rates spiked to levels well above those in the federal funds market. This increase in risk spreads diffused over many markets, and in a few, notably the markets for commercial paper, private asset-backed securities, and collateralized debt obligations, the decline in trading volume was extreme, apparently due to lack of demand.

In the real economy, the U.S. business cycle peaked in December 2007, according to the National Bureau of Economic Research. Unemployment began rising steadily from 4.9 percent in December 2007 to just over 10 percent in October 2009, and output decelerated sharply in 2008Q1. Net acquisition of financial assets by households fell from $1.02 trillion in 2007 to $562 billion in 2008 and to just $281 billion and $19 billion in the first and second quarters of 2009, respectively, according to the Federal Reserve’s Flow of Funds Accounts. As of the start of 2008, however, there was still no sharp fall in total bank lending.

In March 2008 the investment bank Bear Stearns found itself on the verge of bankruptcy, unable to roll over its short-term financing. The government, in a joint effort by the Federal Reserve and the Treasury, stepped

4. See Brunnermeier (2009), Gorton (2009), and Greenlaw and others (2008).
in and arranged for the sale of Bear Stearns to JP Morgan Chase, providing government guarantees on some of Bear Stearns’ assets. Risk spreads remained high, and the asset-backed securities market was effectively closed for the rest of the year, but some calm then returned to markets until the dark week of September 15 to 21 arrived.

The extent of the crash during these seven days probably finds its rival only in the stock market crash of October 1929. It was marked by three distinct events. The first, on September 15, was the bankruptcy of Lehman Brothers, the largest company ever to fail in U.S. history. This investment bank was a counterparty in many financial transactions across several markets, and its failure triggered defaults on contracts all over the world. The second event was the bailout of American International Group (AIG), one of the largest insurance companies in the world, on the evening of September 16. The bailout not only signaled that financial losses went well beyond investment banks, but also increased the uncertainty about how the government would respond to subsequent large bankruptcies. The third event, on September 20, was the announcement of the first version of the Troubled Asset Relief Program, or TARP (also known as the “Paulson plan” after Treasury Secretary Henry Paulson), which, although potentially far-reaching, was both short on detail and vague in its provisions.

In the six months that followed, the stock market plunged: having already fallen 24.7 percent from its peak a year earlier, the S&P 500 index fell another 31.6 percent from September 2008 to March 2009. Most measures of volatility, risk, and liquidity spreads increased to unprecedented levels, and measures of real activity around the world declined. Which of the three events was the main culprit for the financial crisis that followed is a question that will surely motivate much discussion and research in the years to come.\(^5\)

Through all these events, the Treasury cooperated with the Federal Reserve while also pursuing its own policies in response to the crisis. Today, these include a plan to invest up to $250 billion in banks to shore up their capital, assistance to homeowners unable to pay their mortgages, and up to $100 billion of TARP money in public-private investments to buy

\(^5\) The situation at the time looked so dire that the head of the International Monetary Fund, Dominique Strauss-Kahn, stated apocalyptically on October 11 that “Intensifying solvency concerns about a number of the largest U.S.-based and European financial institutions have pushed the global financial system to the brink of systemic meltdown” (“Statement by the IMF Managing Director, Dominique Strauss-Kahn, to the International Monetary and Financial Committee on the Global Economy and Financial Markets, Washington, October 11”).
underperforming securities from financial institutions. Since March 2009 some stability has returned to financial markets, with risk spreads shrinking and the stock market partly recovering. Forecasts of unemployment and output, however, have yet to show clear signs of improvement.

Finally, inflation as measured using the year-on-year change in the consumer price index has fallen from 4.1 percent in December 2007 to −1.3 percent in September 2009. Inflation forecasts for the coming year, as indicated by the median answer in the Survey of Professional Forecasters, have fallen from 3.6 percent in the last quarter of 2007 to 0.7 percent in the third quarter of 2009, and the forecast for average inflation over the next 10 years has risen slightly, from 2.4 percent to 2.5 percent.

I.B. The Federal Reserve’s Actions during the Crisis

The Federal Reserve typically chooses from a very narrow set of actions in its conduct of monetary policy. It intervenes in the federal funds market, where many banks make overnight loans, by engaging in open-market operations with a handful of banks that are primary dealers. These operations involve collateralized purchases and sales of Treasury securities, crediting or debiting the banks’ holdings of reserves at the central bank. The Federal Reserve announces a desired target for the equilibrium interest rate in the federal funds market and ensures that the market clears close to this rate every day.

Over the course of the last two years, however, the Federal Reserve’s activities have expanded dramatically. Table 1 provides snapshots of these recent actions at three points in time: in January 2007, before the start of the crisis (and representative of the decade before); at the end of December 2008, in the midst of the crisis; and in August 2009. The Federal Reserve’s policies fit into three broad categories.6

The first is **interest rate policy**. Starting from a target for the federal funds rate of 5.25 percent for the first half of 2007, the Federal Reserve gradually reduced that target to effectively zero by December 2008.7 In its policy announcements, the Federal Reserve has made clear that it expects to keep

6. For alternative descriptions of the policy responses to the crisis, see Cecchetti (2009) for the United States and Blanchard (2009) for an international perspective, as well as the many speeches by governors of the Federal Reserve available on its “News & Events” page (www.federalreserve.gov/newsevents/default.htm). An up-to-date exposition is the Federal Reserve’s statement of its “Credit and Liquidity Programs and the Balance Sheet” (www.federalreserve.gov/monetarypolicy/bst.htm).

7. More precisely, in December 2008 the Federal Reserve started announcing upper and lower limits for this rate, which at that time were 0.25 percent and zero.
Table 1. Balance Sheet of the Federal Reserve, Selected Dates, 2007–09

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities and capital</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 3, 2007</td>
<td></td>
</tr>
<tr>
<td>Securities held outright</td>
<td>Federal Reserve notes</td>
</tr>
<tr>
<td>U.S. Treasury bills</td>
<td>Commercial bank reserves</td>
</tr>
<tr>
<td>U.S. Treasury notes and bonds</td>
<td>U.S. Treasury deposits</td>
</tr>
<tr>
<td>Agency debt</td>
<td>Reverse repurchase agreements</td>
</tr>
<tr>
<td>Repurchase agreements</td>
<td>Other liabilities</td>
</tr>
<tr>
<td>Direct loans</td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>Total liabilities</td>
</tr>
<tr>
<td>Foreign reserves</td>
<td></td>
</tr>
<tr>
<td>Other assets</td>
<td>Capital</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Memorandum: federal funds target rate</td>
<td></td>
</tr>
<tr>
<td>December 31, 2008</td>
<td></td>
</tr>
<tr>
<td>Securities held outright</td>
<td>Federal Reserve notes</td>
</tr>
<tr>
<td>U.S. Treasury bills</td>
<td>Commercial bank reserves</td>
</tr>
<tr>
<td>U.S. Treasury notes and bonds</td>
<td>U.S. Treasury deposits</td>
</tr>
<tr>
<td>Agency debt</td>
<td>Reverse repurchase agreements</td>
</tr>
<tr>
<td>Repurchase agreements</td>
<td>Others</td>
</tr>
<tr>
<td>Direct loans</td>
<td></td>
</tr>
<tr>
<td>Gold</td>
<td>Total liabilities</td>
</tr>
<tr>
<td>Foreign reserves</td>
<td></td>
</tr>
<tr>
<td>Other assets</td>
<td>Capital</td>
</tr>
<tr>
<td>New asset categories</td>
<td></td>
</tr>
<tr>
<td>Term Auction Facility (TAF)</td>
<td></td>
</tr>
<tr>
<td>Commercial Paper Funding Facility (CPFF)</td>
<td></td>
</tr>
<tr>
<td>Maiden Lane</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Memorandum: federal funds target rate</td>
<td></td>
</tr>
</tbody>
</table>

this rate at zero for an extended period. Starting in October 2008, the Federal Reserve has also been paying interest on both required and excess reserves held by commercial banks; since December 2008 the interest rate on these reserves (shown in figure 1) has been the same as the upper end of the target range for the federal funds rate. This implies that banks no

8. The December 2008 press release of the FOMC stated that “the Committee anticipates that weak economic conditions are likely to warrant exceptionally low levels of the federal funds rate for some time.” The commitment to low interest rates has been reaffirmed at every meeting since then, with slightly different wording since March 2009.
longer pay an effective tax on reserves held at the central bank beyond the legal requirements. It also means that the Federal Reserve in the future has at its disposal a new policy instrument, the spread between the federal funds rate and the rate on reserves.

Finally, the Federal Reserve has purchased other securities with the stated intent of affecting their prices and yields, but there is little evidence of success.

9. The Federal Reserve also controls the interest rate that it charges banks that borrow from it directly at the discount window. Although banks rarely use the discount window during normal times, this facility can be important during crises.

10. For instance, in April 2009 Vice Chairman Donald Kohn stated that “the Federal Reserve has begun making substantial purchases of longer-term securities in order to support market functioning and reduce interest rates in the mortgage and private credit markets” (“Policies to Bring Us Out of the Financial Crisis and Recession,” speech delivered at the College of Wooster, Wooster, Ohio, April 3, 2009). Chairman Ben Bernanke stated that “The principal goal of these programs is to lower the cost and improve the availability of credit for households and businesses” (“The Federal Reserve’s Balance Sheet,” speech delivered at the Federal Reserve Bank of Richmond 2009 Credit Markets Symposium, Charlotte, N.C., April 3, 2009).
The second category, which I label *quantitative policy*, concerns the size of the Federal Reserve’s balance sheet and the composition of its liabilities. Historically, the bulk of these liabilities has consisted of currency in circulation plus bank reserves (most of which the banks are required by law to hold at the level mandated by the Federal Reserve) and deposits of the Treasury and foreign central banks. With the onset of the crisis, the first change in quantitative policy was that the Federal Reserve’s balance sheet more than doubled. Reserves accounted for much of this increase and are now mostly voluntary, since the penalty for holding reserves instead of lending in the federal funds market effectively disappeared once the interest rates on both became the same. The other significant change was that the U.S. Treasury became the single largest creditor of the Federal Reserve. As a means of providing the Federal Reserve with Treasury securities to finance its lending programs, the Treasury has greatly expanded its account, and in August 2009 it held more than one-tenth of the Federal Reserve’s total liabilities.

The third category is *credit policy*. This consists of managing the composition of the asset side of the Federal Reserve’s balance sheet. At the start of the crisis, the central bank’s assets were similar in composition to what they had been since its founding: mostly U.S. Treasury securities, with over one-third in Treasury bills and the remainder made up of Treasury bonds and notes together with modest amounts of foreign reserves. Rounding out the balance sheet were other assets (such as gold), but almost no direct loans. By the height of the crisis in December 2008, however, this picture had changed dramatically, following the announcement of several new asset purchase programs.\footnote{These included the Term Auction Facility (TAF), the Term Securities Lending Facility (TSLF), the Primary Dealer Credit Facility (PDCF), the Commercial Paper Funding Facility (CPFF), the Term Asset-Backed Securities Loan Facility (TALF), the Asset-Backed Commercial Paper Money Market Mutual Fund Liquidity Facility (AMLF), and the Money Market Investor Funding Facility (MMIFF).}

The Federal Reserve’s December 31, 2008, balance sheet reveals several important changes in its assets from two years earlier. Starting from the top of the assets column, the first is a significant shift in the average maturity of Treasury securities held from short to long. The second is a dramatic increase in direct loans, with the Federal Reserve for the first time lending directly to entities other than banks. These included loans to primary dealers through the 28-day TSLF and the overnight PDCF and, through the TALF, to investors posting as collateral triple-A-rated asset-backed securities on student loans, auto loans, credit card loans, and Small Business...
Administration loans.12 The third is an almost 30-fold increase in foreign reserves, reflecting a swap agreement with foreign central banks to temporarily provide them with dollars against foreign currency. The next three changes take the form of entirely new asset categories. First, through the TAF, the Federal Reserve started lending to banks for terms of 28 and 84 days against collateral at terms determined at auction. These auctions provide a means to lend to banks that preserves the recipients’ anonymity, to prevent these loans from being seen by the market as a signal of trouble at the debtor bank. In December 2008 these credits to banks accounted for almost one quarter of the Federal Reserve’s assets. Second, through the CPFF, the Federal Reserve bought 90-day commercial paper, thereby financing many companies directly without going through the banks. Finally, the Federal Reserve created three limited-liability companies, Maiden Lane LLC and Maiden Lane LLC II and III, to acquire and manage the assets associated with the bailouts of AIG and Bear Stearns.

By August 2009 some of these programs had been reduced significantly in scope, in particular the holdings of commercial paper and foreign reserves. Others, however, continue to grow. In particular, in March 2009 the Federal Reserve announced it would purchase up to $300 billion in long-term Treasury bonds and $1.45 trillion in agency debt and mortgage-backed securities; it expects to reach these goals by the end of the first quarter of 2010. These changes were announced at the FOMC meeting of March 2009 but had been under discussion for a few months before that. A large share of these purchases is already reflected in the August balance sheet.

II. A Credit Frictions Model of Capital Markets

The crisis of 2007–09 has witnessed credit disruptions involving multiple agents in many markets, it has seen large swings in asset-backed securities, and it has propagated from financial markets to the real economy. Unfortunately, no off-the-shelf economic model contains all of these ingredients. Before I can interpret the Federal Reserve’s policies, I must therefore take a detour to introduce a new model that captures them.

Financial markets perform many roles, including the management of risk and the transformation of maturities. In the model I abstract from these

12 The Federal Reserve also made funds available to lend to the money market, through the MMIFF for money market funds, and through the AMLF programs for banks to finance purchases from money market funds. The first program was never used; the funds under the AMLF are included in the “direct loans” item on the balance sheet, but the balance is currently zero.
better-understood roles to focus on another role of financial markets: the reallocation of funds toward productive uses. I take as given a starting distribution of funds across agents, and I study how trade in financial markets shifts these funds to where they are needed, subject to limits due to asymmetries of information. The model merges insights from the theory of bank contracts based on limited pledgeability (Holmström and Tirole 2009) with the theory of leverage based on collateral constraints (Kiyotaki and Moore 1997; Matsuyama 2007). It is a simpler version of a model fully developed in Reis (2009). The appendix lays out the model in more detail.

II.A. Setting up the Model: Agents

The model has three periods, no aggregate uncertainty, and a representative consumer-worker. She supplies labor L in all three periods, earning a wage W in each period, and consumes a final good C in the last period, which is a Dixit-Stiglitz aggregator of a continuum of varieties. The economy has only one storable asset, in amount H, which I will refer to as capital. It consists of claims issued by the government, which can be redeemed for the consumption good in the final period. The government levies a lump-sum tax on the representative household in the last period to honor these claims.13

The representative household has four different types of financial agents, each endowed with an initial allocation of capital. First, there are many investors behaving competitively, who hold capital M. Agents of the second type are entrepreneurs. There is a continuum of them in the unit interval associated with each variety of the consumption good. In the first period they must hire F units of labor to set up operations.

13. A few notes are in order regarding this capital. First, it is a very crude way to introduce an asset in this economy that is used as a means of payment. However, it allows me to keep the focus on the credit frictions and to avoid having to describe in detail the underlying theory of money or assets. Second, although I assume that, like money, capital pays a zero net return, generalizing the model to include a positive return does not change the results qualitatively. Third, I use the term “capital” and not “money” because these assets can be thought of as broader than just high-powered money. They represent any claims that can be exchanged for consumption goods in the last period, and so they refer to all assets in this economy. Fourth, these assets could be private claims issued by the representative consumer, if the consumer could commit to their repayment, thus dispensing with the need for a government or taxes. However, decentralizing this economy to justify the existence of the representative consumer is a difficult task. Fifth, an alternative would be to assume that H is a physical good that can be stored without depreciating and can be transformed into the final consumption good in the final period. This leads to predictions similar to those in this paper, but messier algebra.
Further labor is then hired in the second and third periods, to produce monopolistically in the last period a variety of consumption goods in amount Y''. The production function is

\[Y'' = A' \min \left\{ \frac{L'}{v}, \frac{L''}{1 - v} \right\}. \]

At the optimal choice of labor in the second and third periods, v will be the fraction of labor employed in the second period. Exogenous productivity, A', is independently and identically distributed across the continuum of firms and is revealed in the second period, before the labor decision is made for that period. With probability $1 - \varphi$ it equals a, and with probability φ it is zero. Therefore, if $I \in [0, 1]$ projects are funded in the first period, only $N = (1 - \varphi)I$ yield positive output in the last period.

This production structure captures the maturing process of investments, with expenses incurred in every period in order to obtain a payoff in the last period, together with the risk that setup costs may not be recouped if the technology turns out to be worthless. The entrepreneurial capital available is K, which is smaller than WF, so that entrepreneurs must seek outside financing.

Agents of the third type are lenders. Their distinguishing feature is that only they have the ability to monitor the behavior of entrepreneurs. If investors were to finance entrepreneurs directly, they could not prevent them from running away with all of the funds. Lenders, in contrast, can prevent the entrepreneurs from absconding with more than a share δ of sales revenue. Entrepreneurs can therefore pledge $1 - \delta$ of this revenue to lenders and zero to all other agents. I assume that the pledgeable revenue is enough to ensure positive pledgeable profits to lenders. A lender will provide the capital needed to start the project, $WF - K$, as well as a line of credit in the second period to pay wages WL'.

To fund these investments, lenders have capital D in the first period and may receive a new infusion D' in the second period. If they require further financing, they can issue and sell securities, guaranteed by the loans they make, totaling S for price Q in the first period, and S' for price Q' in the

14. This limited pledgeability constraint has a long tradition in the modeling of capital market imperfections: see Matsuyama (2007) and Holmström and Tirole (2009) for recent reviews. Note that one can reinterpret the F setup costs as the cost to lenders to set up the monitoring technology to which only they have access, allowing them to capture $1 - \delta$ of the revenue.
second period. These securities pay one unit of capital in the last period, if the project is in operation. In the data, lenders include all providers of financing to the nonfinancial sectors, including commercial banks, primary issuers of commercial debt, some brokers, and others.

Traders are the fourth and final group of agents. Although they cannot monitor loans, together with lenders they have the unique ability to understand and trade the lenders’ securities. In particular, in the first period, lenders could try to sell as many securities as they wanted whether they had proper backing or not. Traders are the only agents who can verify that a recently issued security has proper backing. Traders also observe the realization of productivity in the second period, whereas investors do not. They therefore perform the role of intermediating between lenders and investors so that the latter have access to the securities. In the United States, traders include investment banks, hedge funds, special investment vehicles set up by commercial banks, and many others.

Traders have capital E in the first period, and an additional E' is available to them in the second period. They can also obtain funds from investors, but I assume that another friction prevents investors from effectively owning the traders and acquiring access to their information technology. I again use a pledgeability constraint, assuming that investors can seize at most a share $1 - \mu$ of the assets of a trader, so that this is the trader’s maximum liability. Therefore, in the first period, the trader’s total assets are E/μ, where μ gives the inverse of the leverage multiplier. In the second period, because traders enter with assets equal to the securities S, and these are marked to market, their entering equity is $E + [(1 - \varphi)Q' - Q]S/Q$, reflecting the capital gain (or loss) made on these investments. Because the trader can get new loans against this marked-to-market equity position, the trader can invest a further $[(1 - \mu)/\mu][(1 - \varphi)Q'/Q - 1]S$ in the second period. This ability to use capital gains to boost leverage is also emphasized by Arvind Krishnamurthy (forthcoming) and by Andrei Shleifer and Robert Vishny (2009).

15. Note that S is the total revenue from selling the security in the first period, so that S/Q is the number of securities sold paying this amount of capital in the third period. The same applies to S'.

16. I assume that even if traders abscond with the securities, they can show up to redeem them in the last period.

17. Lenders cannot obtain direct financing from investors, since in equilibrium their assets will consist solely of the outstanding loans. Only lenders can monitor these loans, so seizing the lenders’ assets would produce zero revenue.
II.B. Setting Up the Model: Financial Markets

Having presented the agents, I now describe the markets in which they interact in each period. In the first period, entrepreneurs need financing to set up their firms. Because of the need for monitoring, only lenders are willing to provide them with capital. Lenders behave competitively in funding each project, but once a lender is matched with an entrepreneur, they stay together until the last period. If lenders do not have enough capital, they can issue securities, which only traders will choose to buy since only they can ensure that the securities have proper backing. Investors deposit funds with traders. I assume that $K + D + E < WF$, so that all funds of all agents, including the investors, are required to set up all the projects.

In the second period, entrepreneurs require more capital and obtain it from their line of credit with their lender. The lender may issue more securities, and traders can again choose to buy them. In this period, however, investors can also buy the preexisting securities, because lenders and traders have signaled, by trading them in the first period, that these securities are properly backed. However, investors cannot distinguish the securities backed by assets for which $A' = a$ from those for which $A' = 0$. Therefore, as long as $Q' > 1 - \varphi$, they will refrain from buying securities directly in this market. Lenders and traders, on the other hand, can distinguish between the two types of securities, so if investors stay out, the price of the $A' = 0$ securities is zero, and Q' refers to the price of the $A' = a$ securities.

Finally, in the third period, entrepreneurs obtain the revenue from sales, pay the last-period workers, and pay back the lenders. The lenders, in turn, use part of the proceeds to repay the holders of securities backed by the loans, and traders return the funds belonging to investors. In the end, all agents return their capital to the representative household. All of these financial market participants are risk-neutral and aim to maximize their last-period payoff.

Figure 4 summarizes the timing and the flows of funds just described. I assume that there is enough liquidity to sustain the social optimum, where all projects get funded and marginal costs depend only on wages and productivity, which is equivalent to assuming that total capital H exceeds the setup and up-front labor costs at the efficient level. The problem I focus on here is the allocation of this liquidity, in the presence of the frictions captured by the parameters δ, φ, and μ.

II.C. Closing the Model

To close the model, I need a few more ingredients, which are spelled out in more detail in the appendix. The first is the demand for each variety of
Figure 4. Characterization of Markets in the Credit Frictions Model

<table>
<thead>
<tr>
<th>Agents</th>
<th>Frictions</th>
</tr>
</thead>
</table>
| **Entrepreneurs** | Borrow from lenders
 | Incur fixed cost in first period
 | Hire labor in second period
 | Realize revenue in third period |
| **Lenders** | Lend to entrepreneurs
 | Monitor loans
 | Sell securities to traders and investors |
| **Traders** | Obtain leverage from investors
 | Trade securities in first two periods
 | Mark securities to market |
| **Investors** | Extend capital to traders in first two periods
 | Can buy securities from lenders but cannot tell good from bad |

- Entrepreneurs can abscond with share δ of loans.
- Only a share ϕ of projects are productive.
- Traders can abscond with share μ of investors' capital.

Source: Author's model described in the text.
the goods, which is isoelastic: \(Y'' = C''P''(1-m) \), where \(C'' \) is total final consumption, and \(P'' \) is the price of the good. The lender and the entrepreneur jointly decide the optimal scale of production for the productive firms in the second and third periods so as to maximize joint returns:

\[
\max_{P''Y''-WL''-WL'/Q'} \{ P''Y''-WL''-WL'/Q' \},
\]

subject to the production function in equation 1 and demand for the good. The optimality condition is

\[
P'' = m\left(1 - \frac{v}{Q'}\right)\left(\frac{W}{a}\right),
\]

together with \(L' = v(L' + L'') \). I assume that \(m \in [1, 2] \), so that markups are between 0 and 100 percent, and that \((1 - \delta)m > 1\), so that the pledgeable profits to lenders are positive.

In a symmetric equilibrium, the production of all firms is the same and equal to \(Y \). Total consumption is then \(C = NmwY \), which is increasing in the number of goods produced because variety is valued. Moreover, all prices are the same in equilibrium, which, since consumption goods and capital have the same price, implies that \(N^{m-1}P'' = 1 \), so the static cost-of-living price index is constant. Finally, the labor supply function is \(C'' = W \), which follows from assuming log preferences over consumption and linear disutility of labor supply.

Combining all of these equations provides the solution for the following endogenous variables: total employment \(L' + L'' \) in the second and third periods, wages \(W \), and the pledgeable amount of operating profits \(\pi \):

\[
L' + L'' = \frac{1}{m(1 - \phi + v/Q')(1-\phi)I}
\]

\[
W = \frac{a[(1-\phi)I]^{m-1}}{m(1 - \phi + v/Q')}
\]

\[
\pi_i(Q', I) \equiv (1 - \delta)P''Y'' - WL'' - WL'/Q'
\]

\[
= \frac{[(1 - \delta)m - 1]a}{m^2(1 - \phi + v/Q')[(1-\phi)I]^{1-\phi}}.
\]
II.D. Equilibrium Conditions in the Financial Markets

Two restrictions on prices must hold so that there are no arbitrage opportunities that would allow for infinite profits. First, since a security bought in the first period for price Q will, with probability $1 - \varphi$, be worth Q' in the second period, but zero otherwise, and since lenders can sell it in the first period and buy it back in the second period, it must be that $Q \leq (1 - \varphi)Q'$. Otherwise, lenders would make infinite expected profits. Second, and similarly, because lenders can hold cash between the second and the third period with a guaranteed return of 1, it must be that $Q' \leq 1$.

I now characterize the equilibrium securities price and investment in the first period. In the securities market in the first period, if $Q < (1 - \varphi)Q'$, traders strictly prefer to buy securities rather than hold cash, and so their total demand is E/μ. If $Q = (1 - \varphi)Q'$, they are indifferent between cash and securities, and so they will be willing to buy any amount of securities below E/μ. Turning to the supply of securities, if $Q < (1 - \varphi)Q'$, it equals total investment minus the capital of the entrepreneurs and the lenders: $WFI - K - D$. If $Q = (1 - \varphi)Q'$, the lender is indifferent between issuing this amount of securities and any higher amount. Equating demand and supply for $Q < (1 - \varphi)Q'$ and substituting for equilibrium wages from equation 5 gives the first-period securities market equilibrium condition (SM):

$$ I^n = \left(K + D + \frac{E}{\mu} \left[\frac{m}{a(1 - \varphi)^{m-1} F} \right] \left[1 - v + \frac{v}{Q'} \right] \right). $$

In (I, Q) space this defines a vertical line for Q between zero and $(1 - \varphi)Q'$.

The expected profits of lenders in the first period are $Q(1 - \varphi)\pi(Q', I) - WFI + K$. There is free entry into this sector, so lenders will enter as long as there are available projects, and profits are strictly positive. If Q is above a certain level Q^*, then $I = 1$, and lenders earn positive rents in exchange for their monitoring services. If $Q \leq Q^*$, then lenders’ profits are driven to

18. The fact that capital gains on a portfolio of securities are always nonnegative is a consequence of the lack of aggregate uncertainty. It is straightforward to extend the model to include uncertainty; since all agents are risk-neutral, this would change little in the analysis after replacing expected for actual values.

19. Q^* is defined as $Q^* = \frac{WFI - K}{(1 - \varphi)\pi(Q', 1)}$.
zero, so \(Q(1 - \varphi)I\pi(Q', I) - WFI + K = 0 \). Solving this equation for \(I \) and replacing for pledgeable profits from equation 6 gives

\[
(8) \quad a(1 - \varphi)^{n-1} I^n \left\{ F - \frac{Q[(1 - \delta)m - 1]}{ml} \right\} = Km \left(1 - \nu + \frac{\nu}{Q'} \right).
\]

This is the zero-profits equilibrium condition (ZP), when \(Q \leq Q^* \) and investment is below 1. It defines investment implicitly as an increasing function of \(Q \). Intuitively, as the price of securities increases, projects become cheaper to finance, so the amount of entrepreneurial capital needed per project falls and more projects are funded.

Turning to the securities market in the second period, if \(1 - \varphi < Q' < 1 \), the demand comes solely from traders and equals

\[
(9) \quad S' = \frac{E'}{\mu} + \left(1 - \frac{\mu}{\mu} \right) \left(1 - \varphi \right) \frac{Q'}{Q} - 1 \left(\frac{E}{\mu} \right).
\]

Here the first term is the demand from the new capital, and the second is the extra demand from leveraging capital gains. If \(Q' = 1 \), the trader is indifferent between zero and the amount in equation 9. As \(Q' \) falls, the expected capital gain for traders is smaller, and so they have fewer funds with which to demand securities. If \(Q' \) falls all the way to \(1 - \varphi \), then investors start buying securities directly, satisfying the supply at that price.

The supply of securities comes from lenders who need capital to cover their outstanding credit lines; thus, it equals \((1 - \varphi)WL' - D' \) if \(Q' < 1 \). Replacing for the equilibrium labor and wage from equations 4 and 5 gives the supply function for securities in the second period:

\[
(10) \quad S' = \frac{\nu a(1 - \varphi)^{n-1} I^{n-1}}{m^i (1 - \nu + \nu/Q')^2} - D'.
\]

This is increasing in \(Q' \), since a higher price of securities implies a lower marginal cost of production and therefore an increase in the scale of each firm. This requires more funds to finance operations, and hence higher credit lines and more securities issued. When \(Q' = 1 \), the lenders become indifferent between supplying this and any higher amount.

Equations 7 through 10 provide four conditions to determine the four endogenous variables: the equilibrium price of securities in the first and second periods (\(Q \) and \(Q' \)), the amount of investment in the first period (\(I \)), and the scale of operations and funding in the second period (\(S' \)). Together
these define the equilibrium in this economy.20 There are three possible equilibria, which I describe next.

\textbf{II.E. The Three Equilibrium Cases}

The first case is the \textit{efficient economy}, where, in spite of the financial frictions, all projects are still funded ($I = 1$), and financing does not add to the marginal cost of firms: $Q' = 1$. One can show that this will be the case if δ, μ, and ϕ are each below some threshold. Intuitively, if δ is not too high, then the lenders are able to appropriate enough of the entrepreneurs’ revenue so that their profits are high enough and they will wish to finance all the projects. If μ is low enough, the friction impeding the flow of funds from investors to traders is not too severe, and so their funds can satiate the market for securities. Finally, if ϕ is low enough, the expected profits of lenders in the first period are high, inducing full investment, and investors put a high lower bound on the price of securities in the second period.

The second case is the other extreme, that of a \textit{catastrophic economy}, where the price of securities in the second period has fallen to $1 - \phi$. Investors start buying securities directly, but because they cannot distinguish profitable from unprofitable assets, for each dollar they spend on a worthwhile security, $\phi/(1 - \phi)$ dollars buy a worthless security, squandering their funds and destroying resources. This low price of securities implies that the marginal cost of production $(1 - v + v/Q')$ is high, so that each firm will operate at a small, inefficient scale. And as Q falls even lower, below $(1 - \phi)^2$, the cost of financing to set up projects in the first period becomes very high, and few firms are set up in the first place.

In between these two extremes is the \textit{constrained economy}, depicted in figure 5. As the left-hand panel of figure 5 shows, the equilibrium price of securities and the level of investment in the first period are determined, taking as given the price of securities in the second period. The vertical line is the \textit{SM} condition in equation 7, and the upward-sloping curve is the \textit{ZP} condition in equation 8. The right-hand panel shows the equilibrium price in the second period and the scale of the projects, taking as given the price and investment from the previous period. The zigzag line depicts the demand function in equation 9, and the curve is the supply function in equation 10. In this economy there is an extensive-margin inefficiency, as $I < 1$ in equilibrium. Traders do not have enough assets, because of either

20 With these four variables determined, equilibrium wages and hours worked are determined by equations 4 and 5. Equilibrium output and consumption follow from using the production function and the market clearing condition in the goods market.
One can see that the efficient equilibrium in this graph would require that the SM line lie to the right of $I = 1$ so that, in the second period, demand and supply would coincide over a line segment in the region at the top where they are horizontal. The catastrophic equilibrium occurs when the supply curve intersects the demand curve in its lower horizontal segment.

One feature of this model, as well as of most models of credit frictions, is that there is too little borrowing. Some have argued that the current crisis is due rather to too much borrowing, but to my knowledge this has not yet been formalized.

Figure 5. Equilibrium in a Constrained Economy

Source: Author’s model described in the text.

low capital or tight leverage constraints imposed by investors, so the price of securities Q is below Q^*, making the up-front cost of investing too high relative to future revenue. There is also an intensive-margin inefficiency, since $Q' < 1$, and so the marginal costs of production exceed W/a. Operating firms will hire too little labor and produce too little output, because there is too little second-period capital in the hands of traders to satisfy the lenders’ residual need for funds.

Intuitively, for the economy to operate efficiently, investors’ capital must reach entrepreneurs, either directly from lenders or through the securities market from traders and investors. In the efficient economy, this happens because entrepreneurs have all the capital they need to set up and operate projects. In the constrained economy, leverage constraints on traders are too tight, so that there are insufficient funds in the securities markets in both periods, and the pledgeability constraint and technological risk prevent lenders’ capital from being enough. In the catastrophic economy, investors enter the securities market directly, but do so with great waste since they are unable to pick securities. There is severe mispricing and misallocation of capital, as worthless and worthwhile investments face the same marginal cost of capital in an inefficient pooling equilibrium.

21. One can see that the efficient equilibrium in this graph would require that the SM line lie to the right of $I = 1$ so that, in the second period, demand and supply would coincide over a line segment in the region at the top where they are horizontal. The catastrophic equilibrium occurs when the supply curve intersects the demand curve in its lower horizontal segment.

22. One feature of this model, as well as of most models of credit frictions, is that there is too little borrowing. Some have argued that the current crisis is due rather to too much borrowing, but to my knowledge this has not yet been formalized.
To understand better the role of each of the three frictions in the model, consider what happens in equilibrium as each is shut down. First, if all projects are productive ($\phi = 0$), then there is no “lemons” problem in the securities market. This implies that the knowledge traders use in picking securities is no longer valuable, and investors can buy securities directly from lenders. Since there is no limit to the amount of securities that lenders can issue, and since investors have all the necessary capital to fund all projects and run them efficiently, the only equilibrium is the efficient one. Second, assume that traders can no longer abscond with capital without being detected ($\mu = 0$). In this case investors will be willing to invest all their funds with traders, who in turn will buy all the securities issued by lenders. Again, the unique equilibrium is the efficient case. Finally, if the banks have a perfect monitoring technology, they can reap all of the revenue from projects ($\delta = 0$). Lenders will then be very willing to lend, a condition reflected in figure 5 by Q^* being quite low, making it more likely that the efficient equilibrium obtains. It is still possible, however, that the friction in the leveraging of traders is so strong that they cannot obtain from investors even the small amount of funds required to fund all projects, and so the constrained equilibrium persists if the SM line is to the left of $I = 1$.

III. Interpreting the Federal Reserve’s Actions: Credit Policy

In terms of the model just described, the financial events and crisis described in section I.A can be interpreted as a combination of two effects. First, the downgrading of many securities, following downward revisions of the value of the assets backing them, can be interpreted as an increase in ϕ in the model. Second, the withdrawal of funds from the financial sector and the fears about the solvency of many financial institutions can be interpreted as an increase in μ. Both of these changes can be interpreted as technological changes, or instead as changes in beliefs about the quality of assets. The economy in 2007–09 can then be seen as moving to a constrained equilibrium like that depicted in figure 5, or perhaps even as on the way to the catastrophic equilibrium.

A policymaker would like to intervene to correct this serious misallocation of funds. Credit policy in this economy consists of transferring the capital trapped in investors’ hands to other agents or, alternatively, issuing more claims on final output (and correspondingly taxing more consumption in the final period). What the central bank can achieve with these actions depends on what is assumed about its knowledge and skills.
One extreme is the case where the central bank has no special powers beyond those available to private investors. In terms of the model, this translates into the central bank having neither the ability to monitor loans, nor the know-how to pick securities, nor the power to seize more than a share of the traders’ assets. In this case any injection of credit by the central bank in the market is equivalent to an increase in the capital of investors M. This does not affect any of the equilibrium conditions in the model, since the problem to be solved is not a lack of funds but their misallocation. Worse, if the central bank misguidedly tries to pick securities, invest in traders, or make loans directly to entrepreneurs, the model predicts that its suboptimal behavior will lead to possibly heavy losses, as money is absconded and investments turn sour.

At the other extreme, consider the case where the central bank can become a lender, able to monitor the behavior of borrowers and ensure that the funds it lends are put to good use. Then, by lending the needed funds to entrepreneurs, the policymaker could reach the social optimum, with no intervention by financial firms. This seems unrealistic and indeed results in absurd predictions: if the central bank could lend as effectively as anyone else, why have a financial system at all? Three intermediate cases are both more interesting and more realistic.

III.A. The Central Bank as a Senior Secure Investor

In the first intermediate case, I assume that the central bank has the ability to make loans to financial institutions that are sure to be fully repaid. In the model this maps into the policymaker both being able to distinguish good projects from bad and having some monitoring technology that ensures that lenders repay the central bank out of the revenue from projects before they or the securities holders get paid. In reality this might be achieved by imposing the condition that central bank loans are senior to those of other creditors, or by the central bank using its regulatory power.

In the model a transfer of funds X from the central bank to lenders in the first period raises their initial capital from D to $D + X$, while leaving their profits unchanged as X is returned in the final period. Figure 6 depicts the effect this has on the equilibrium. The SM line in the first period shifts to the right, leading to an increase in investment and a rise in the price of securities. The extensive margin moves closer to the efficient level. These changes, in turn, lead to an increase in the supply of securities in the second

23. This assumes that the central bank is not trying to profit from the loan, so that the net interest rate it charges is zero.
period, since I is higher, so that the amount needed for the credit lines rises, as well as to a decline in demand, since the increase in Q lowers expected capital gains for traders. Therefore, the price of securities in the second period unambiguously falls, raising marginal costs and leading to a worsening of the intensive margin. Second-round effects then follow as the lower Q' lowers the expected profits of lenders, shifting the zero-profit condition to the left and lowering investment, and so on. As a result of the central bank’s actions, more firms are in operation, but each at a smaller, inefficient scale.

For comparison, consider what happens if the first-period loans X are made to traders instead, as also portrayed in figure 6. Their total assets in the first period increase to $E/\mu + X$, which has exactly the same effect on the first-period equilibrium as the transfer of funds to lenders in the previous scenario. However, in the second-period market, the increase in the assets of traders implies that they will have higher capital gains. Because traders mark their equity to market, they now have an extra source of funds with which to demand securities in the second period, so that the demand curve will be to the right of that in the previous case (in the figure this is drawn as unchanged from the initial case). Therefore, the price of second-period securities falls less than it did in that case. This intervention does not give rise to the same intensive-margin inefficiency that the loan to lenders did.

Alternatively, consider the case where the central bank lends to traders or lenders in the second period rather than the first. Examination of the two
equilibrium conditions, equations 9 and 10, shows that E'/μ and D' enter symmetrically; it follows that loans to traders and loans to lenders would have an equivalent effect, raising Q' and improving intensive-margin efficiency. At the same time, they would lower investment in the first period (see equation 7) and so worsen the extensive margin. Note that the crucial difference between the first and the second periods in the model is whether the securities are coming due next period or not. The indifference between lending funds to traders and lending them to lenders applies only to the securities that are about to mature; for all other securities, loans to traders are more effective because they affect the traders' equity and leverage in future periods.

The theory therefore suggests that providing funds to traders of new securities is more effective than providing them to lenders. The intuition is that, by accruing capital gains, traders can use increases in their equity to raise their leverage and draw more of the plentiful funds in the hands of investors to where they are needed in the securities markets. For the Federal Reserve, however, it is more natural to extend loans to commercial banks, as this involves little departure from its usual procedures. The creation of the popular 90-day loans under the TAF, which banks can use instead of the overnight loans available in the federal funds market, is an example of directing funds to lenders. Programs such as the TSLF, the PDCF, and the TALF are closer to the injection of funds into traders that the model recommends.

III.B. The Central Bank as a Buyer of Securities

Next, consider the stricter case where the central bank has the know-how to evaluate securities in the second period, distinguishing those that are associated with profitable firms from those that are worthless. In this case the central bank can use its funds X to buy securities directly, shifting the demand curve in the right-hand panel of figure 5 to the right. In the model this is precisely equivalent to lending funds to traders or lenders in the second period, as was just discussed. It is less effective than lending to traders in the first period because it does not draw investors' funds into the market.

The Federal Reserve followed this path during the latter part of 2008 through the CPFF. This agrees with the model’s prescriptions, since it has the same effect on the equilibrium as loans to traders, but the latter in

24. Leaving the constrained equilibrium and reaching the efficient one would require large loans in either or both periods. If that is not possible, then a well-calibrated increase in the funds available to traders in both periods could simultaneously improve both extensive- and intensive-margin efficiency.
reality are likely easier to manage and less risky. Moreover, in practice, once the central bank starts picking which securities to buy, it opens itself to political and lobbying pressures that may prove dangerous.

III.C. The Central Bank as an Equity Investor

Through its public-private partnerships and its capital stakes in banks, the Treasury has become an equity holder in many financial firms. The Federal Reserve has not done so explicitly, although its uncomfortable actions in support of the rescue of Bear Stearns and AIG make it close to being a de facto investor.²⁵

In terms of the model, this case differs from the previous one because the purchases of securities by the traders increase not by X but rather by X/μ. That is, with the central bank now taking an equity stake, the new funds can be leveraged up, drawing more capital from investors into the securities market. In terms of the model, this is unambiguously better than providing loans, but only if the central bank can prevent its new partners from absconding with a share μ of the assets.²⁶ Moreover, in real life it requires that the government behave like a profit-maximizing shareholder in the firms. Both conditions may not be met, and both surely come with some risk.

IV. Interpreting the Federal Reserve’s Actions: Quantitative Policy

The large increase in outstanding reserves and in the size of the Federal Reserve’s balance sheet can cause worries. If “inflation is always and everywhere a monetary phenomenon,” as in Milton Friedman’s famous dictum, then the creation of so much money in the past two years might indicate that inflation is to come.

However, there are good reasons, both empirical and theoretical, to be skeptical of the tight link between money and inflation that a strict mone-

²⁵ The Federal Reserve’s discomfort with these actions is clear in Chairman Bernanke’s speech of April 3, 2009, cited above: “[The purchases covered by Maiden LLC] are very different than the other liquidity programs discussed previously and were put in place to avoid major disruptions in financial markets. From a credit perspective, these support facilities carry more risk than traditional central bank liquidity support, but we nevertheless expect to be fully repaid. . . . These operations have been extremely uncomfortable for the Federal Reserve to undertake and were carried out only because no reasonable alternative was available.”

²⁶ In reality, agents receiving the funds need not literally abscond with them. They may instead pick dishonest partners, exert too little effort, or divert company investments toward private gains.
tarist stance would suggest. The attempts at money targeting in the United States and the United Kingdom in the early 1980s were a failure, and even though Japan in the 1990s increased reserves on a scale similar to that in the United States recently, deflation persisted. Conventional models of inflation predict that reserves are irrelevant for the setting of interest rates or the control of inflation.27 This section discusses these theoretical arguments and examines to what extent the crisis may require their modification.

IV.A. A Simple Model of Price-Level Determination

Consider the following model of price-level \((P_t) \) determination with no uncertainty:

\[
(1 + i_t) \frac{P_t}{P_{t-1}} = \frac{C_t}{\beta C_t} \tag{11}
\]

\[
M_t / P_t = L(i_t - \pi_t) C_t \tag{12}
\]

\[
P G_t + i_{t-1} B_{t-1} = P T_t + V_t + B_t - B_{t-1} \tag{13}
\]

\[
B_t = B^r_t + B^c_t \tag{14}
\]

\[
V_t + \pi_t M_{t-1} + B^c_t - B^r_t + K_t - K_{t-1} = M_t - M_{t-1} + i_{t-1} B^c_{t-1} + q_{t-1} K_{t-1} \tag{15}
\]

\[
\ln(1 + i_t) = \chi \Delta \ln(P_t) + z_t. \tag{16}
\]

Equation 11 is the Euler equation for consumption, which equates the real interest rate (the gross nominal rate \(1 + i_t\), divided by gross inflation \(P_{t-1}/P_t\)) to the discounted change in the marginal utility of consumption, which with log utility equals consumption growth. Equation 12 is the demand for real reserves \((M_t/P_t)\). It depends negatively on the opportunity cost of holding reserves instead of bonds, which is the difference in the interest rates paid on the two assets \((i_t - \pi_t)\). When this difference is zero and the other determinants of the demand for reserves are held fixed, the private sector is indifferent toward holding any amount of reserves above some satiation level.28

27. See Woodford (2008), among many others.

28. One assumption implicit in these two equations is that real money balances do not affect the marginal utility of consumption. Although deviations from this strict separability assumption can have strong theoretical implications for monetary policy (Reis 2007), empirically the deviations seem small (see section 3.4 in Woodford 2003).
The next two equations refer to the behavior of the Treasury. Equation 13 is the government budget constraint. On the left-hand side are government spending \((G_t)\) and interest payments on outstanding bonds \((B_t)\). On the right-hand side are revenue from taxes \((T_t)\), transfers from the Federal Reserve \((V_t)\), and issuances of new debt. Equation 14 is the market clearing condition for government debt, which may be held either by the Federal Reserve \((B_t^F)\) or by private agents \((B_t^P)\).

The final two equations apply to the central bank. It makes transfers to the Treasury, pays interest on reserves, and buys either government securities or private assets \((K_t)\). These uses of funds are financed by issuing new reserves and by the interest collected on the government bonds and on the portfolio of private securities with return \(q_t\). The last equation is the policy rule for the interest rate, with \(\chi > 1\) and policy choices \(x_t\).^29

To focus on the price level, I take consumption as exogenous, and to focus on monetary policy, I treat government spending as also exogenous. The Federal Reserve’s policy is captured by its interest rate policy (its choices of interest rates \(\{x_t, i_t, i_t^m\}\)), its quantitative policy (its choices regarding the amount of reserves and transfers to the Treasury \(\{M_t, V_t\}\)), and its credit policy (its choices regarding what assets \(\{B_t^F, K_t\}\) to hold). The Treasury’s policy is captured by its choices regarding taxation and debt issuance \(\{T_t, B_t\}\).^30 The goal is to determine the price level \(P_t\) as a function of these nine policy variables, subject to the six equations above and a set of initial and terminal conditions.\(^31\) A policy regime can be defined as a choice of which of these policy variables will be exogenously chosen and which must be accommodated endogenously.

IV.B. The Precrisis Policy Regime

For most of the last 20 years, the press releases and commentary following meetings of the FOMC have focused on the current choice of innovations to the short-term interest rate \(x_t\), and its likely future path.

29. Adding a real activity variable to bring this rule close to a Taylor rule would change nothing in the analysis.

30. In the world outside the model, this sharp distinction between fiscal and monetary policy has become blurred by the recent cooperation between the Federal Reserve and the Treasury in addressing the crisis.

31. The initial conditions are \(M_{-1}, B_{-1}^x, B_{-1}, K_{-1}\), and the terminal conditions come from consumer optimization with no outside assets and nonnegative holdings of money and bonds: \(\lim_{j \to \infty} [\beta^j u'(C_t)B_{-j}^m/P_{-j}] = 0\) and \(\lim_{j \to \infty} [\beta^j u'(C_t)M_{-j}/P_{-j}] = 0\).
Combining equations 11 and 16 and solving forward, the unique bounded solution for the price level is

\[
\Delta \ln(P_t) = \frac{\ln(\beta)}{1 - \chi} + \sum_{j=0}^{\infty} \chi^{j-1} \left[\Delta \ln(C_{t+j}) - x_{t+j} \right]
\]

Regardless of any other policy choice, interest rate policy alone determines inflation. As long as the other policy choices respect the constraints imposed by the equilibrium in equations 11 through 16, understanding and forecasting inflation involves focusing solely on the target rates announced by the FOMC. However, the other variables are determined, it is the federal funds rate that determines inflation, according to the model.

Turning to the other variables, the policy rule in equation 16 determines endogenously the observed short-term interest rate \(i_t\). The other exogenous interest rate is \(i_m\), the interest rate on reserves, which before October 2008 was zero. The money demand equation (equation 12) then implied that total reserves \(M_t\) were determined endogenously. Therefore, there was no independent quantitative policy, as the size of the Federal Reserve’s balance sheet had to accommodate the fluctuations in the demand for reserves.

As for credit policy, before 2007 the Federal Reserve chose to hold almost no private securities \((K_t \approx 0)\) and to hold government bonds roughly in line with the amount of reserves in circulation \((B_t^F = M_t)\). The Federal Reserve’s budget constraint, equation 15, reduces to

\[
V_t = i_{t-1} M_{t-1}
\]

in steady state. With these policy choices, the Federal Reserve obtained net income from seigniorage every period, rebating almost all of it to the Treasury to keep its accounting capital roughly constant.

Finally, turning to fiscal policy, combining the result in equation 18 with the Treasury’s budget constraint in equation 13, the market clearing condition for bonds in equation 14, and the transversality conditions gives

\[
B_t^p = P_t(G_t - T_t) + (1 + i_{t-1}) B_{t-1}^p - \Delta M_t,
\]

\[
\sum_{j=0}^{\infty} \left[\frac{P_{t+j} (T_{t+j} - G_{t+j}) + \Delta M_{t+j}}{\Pi_{t+j} (1 + i_{t-1+j})} \right] = B_{t-1}^p.
\]
The fiscal authorities can choose a path for deficits subject to the inter-temporal solvency constraint in equation 20, and the total outstanding U.S. debt evolves endogenously to satisfy equation 19.

Monetary policy has been independent of fiscal policy in that the Federal Reserve chooses \(x_t \) taking only its mandate into account, regardless of the fiscal choices of the Treasury. Fiscal policy is dependent on monetary policy insofar as changes in reserves will affect the flow of seigniorage to the Treasury, but since the term \(\Delta M_{rt} \) has in the history of the Federal Reserve been tiny relative to the government’s operating balance \(P_{rt}(T_{rt} - G_{rt}) \), this dependence has been close to irrelevant.

Until recently, both the independence of the central bank to set interest rates and control inflation and the accommodation of reserves to interest rate policy were seen as hallmarks of good monetary policy.32 Some have even argued that this policy regime partly explains the decline in macroeconomic volatility in the two decades before the crisis.33

IV.C. Is the Pre-2007 Status Quo Sustainable?

The crisis has brought significant changes in monetary policy. However, these by themselves do not imply that the determination of the price level must be different from what was just described. According to the model, monetary policy can still independently choose the path for interest rates \(\{x_t\} \), and this alone still suffices to determine current and future inflation.

The changes in policy only have to affect variables in the system other than inflation. First, because it can now pay interest on reserves, the central bank can choose exogenously either \(i_t - i^m_t \) or the quantity of reserves \(M_r \). Unlike before, when the interest rate on reserves was fixed at zero, the central bank may now wish to set a target for the amount of reserves in the market, as long as it adjusts \(i^m_t \) accordingly. Moreover, if it continues the current policy of setting \(i^m_t = i_t \), the central bank can also target any level of reserves above the satiation level \((M_r/P_t)^* \). This policy has at least two virtues. First, it allows the central bank to inject as much liquidity as necessary to sustain the efficient equilibrium described in the previous section. Second, it eliminates the implicit tax on reserves that existed before 2008 and that Friedman (1960, 1969) and Marvin Goodfriend (2002), among many others, had criticized well before the crisis for being inefficient.

32. See Woodford (2003) and Mishkin (2007).
Turning to credit policy, the Federal Reserve can gradually sell its holdings of private securities, receiving in return government bonds until these are again approximately equal to reserves. The only substantial change is that now, with the removal of the implicit tax on reserves, transfers to the Treasury become zero. Since they were small to start with, this should have no visible effect on government finances and fiscal policy. The balance sheet of the Federal Reserve can stay larger than before, with reserves beyond the satiation level at whatever amount is supplied.

The announced intentions of the Federal Reserve are roughly consistent with the scenario just described. The Federal Reserve has been firm in its commitment to set interest rates so as to control inflation and to maintain its independence. Moreover, there is no indication that the decision to pay interest on reserves will be reversed. The Federal Reserve has also indicated that it would like to lower its holdings of private securities to as close to zero as possible as soon as it can.

One source of uncertainty is what the Federal Reserve will do about quantitative policy in the aftermath of the crisis. The Federal Reserve has indicated that once it becomes possible, it will lower reserves and reduce the size of its balance sheet. The theory in this and the previous sections suggests that this is unnecessary, as there is nothing wrong with keeping reserves at high levels. Importantly, this much higher level of reserves is

34. From the joint statement of the Federal Reserve and the Treasury on March 23, 2009: “The Federal Open Market Committee (FOMC) determines monetary conditions in the United States, subject to its congressional mandate to foster maximum sustainable employment and stable prices. The Federal Reserve’s independence with regard to monetary policy is critical for ensuring that monetary policy decisions are made with regard only to the long-term economic welfare of the nation.” From the same statement: “Actions that the Federal Reserve takes, during this period of unusual and exigent circumstances, in the pursuit of financial stability, such as loans or securities purchases that influence the size of its balance sheet, must not constrain the exercise of monetary policy as needed to foster maximum sustainable employment and price stability.”

35. As Vice Chairman Kohn put it in a speech in May 2009, “An important issue with our nontraditional policies is the transition back to a more normal stance and operations of monetary policy as financial conditions improve and economic activity picks up enough to increase resource utilization. These actions will be critical to ensuring price stability as the real economy returns to normal” (“Interactions between Monetary and Fiscal Policy in the Current Situation,” speech delivered at Princeton University, May 23, 2009).

36. As Chairman Bernanke stated in his April 3 speech, cited above, “We have a number of tools we can use to reduce bank reserves or increase short-term interest rates when that becomes necessary. . . . Many of our lending programs extend credit primarily on a short-term basis and thus could be wound down relatively quickly. . . . The Federal Reserve can conduct reverse repurchase agreements against its long-term securities holdings to drain bank reserves or, if necessary, it could choose to sell some of its securities.”
not inflationary. Once the Federal Reserve started paying interest on reserves, eliminating the implicit tax on reserves, the old money multiplier that linked reserves to the price level broke down.

IV.D. The Capital and Fiscal Risks to the Status Quo

The main risk to the scenario just described comes from the Federal Reserve’s flow of funds in equation 13. Now that interest is being paid on reserves, and now that reserves have more than doubled, the term $i^{m}_{t-1}M_{t-1}$ can become significant as soon as i^{m}_{t-1} increases from zero in tandem with the federal funds rate. Moreover, with the Federal Reserve holding a significant amount of private securities, the return on these securities may prove negative, lowering revenue by the amount $q_{t-1}K_{t-1}$. How can the Federal Reserve make up for this budget shortfall?

There are two separate issues, one real and one illusory. To start with the latter, if the Federal Reserve suffers significant losses on its portfolio, its accounting capital may become negative. If the Federal Reserve were an ordinary company, this would mean that it was bankrupt, as its liabilities would exceed its assets. However, the Federal Reserve is not an ordinary company, because its liabilities are special. Negative capital is a problem for an ordinary company because it lacks the assets to pay its creditors if they all demand to be paid at once. But the Federal Reserve’s two main creditors are currency holders and banks holding reserves. Neither can show up at the central bank and demand to be paid with assets. Currency issued by the Federal Reserve is legal tender, and the holding of reserves can be required by law. This means that there cannot be a run of creditors on the Federal Reserve. Thus, the accounting capital of the Federal Reserve is a vacuous concept. If there is a concern, it is because, as Tiago Berriel and Saroj Bhattarai (2009) document, most central banks, including the Federal Reserve, seem to worry about their capital. As those authors show, if the central bank worries about trying to maintain a target level of capital in its balance sheet, this will move the path of interest rates away from what would be desirable.

37. The Federal Reserve has repeatedly stated that it believes the risk of losses is minimal (see, for example, Chairman Bernanke’s Stamp Lecture at the London School of Economics, “The Crisis and the Policy Response,” January 13, 2009), because in most of its programs it is taking triple-A-rated securities as collateral and imposing significant haircuts. There is reason to be a little skeptical, however. First, if the investments were riskless, one would expect that private investors would not be so reluctant to make them. Second, there is a certain irony in appealing to the high ratings of the collateral when the financial crisis has been marked by suspicions about the value of collateral and the reliability of ratings agencies.
The real issue is whether there is a need for outside funds. The Federal Reserve, like any other agent, has a budget constraint. Rearranging equation 13,

\[i_{t,1}^* M_{t,1} - q_{t,1} K_{t,1} = i_{t,1} B_{t,1}^r - \Delta B_{t,1}^r - \Delta K_t + \Delta M_t - V_t. \]

The issue is that the left-hand side may become large, requiring additional funds on the right-hand side to maintain equality. The five terms on the right-hand side give the five possible sources of these funds. The first of these is the interest collected on the government bonds the central bank holds. Because \(i_{t,1} - i_{t,1}^* \geq 0 \), any budget shortfall that arises from paying interest on reserves is at most equal to the interest rate times the difference between reserves outstanding and government securities held. The Federal Reserve’s balance sheet on August 19, 2009, reported in table 1, shows that at that date, even if the annual interest rate were as high as 5 percent, this would amount to just over $10 billion a year.\(^3\) If the Federal Reserve exchanges a few of its private assets for government securities, as it already plans to do by the end of 2009, it can reach the normal state where \(B_t^r > M_t \) and the interest on reserves is more than covered by the interest received on government securities.

The danger therefore comes almost entirely from the possibility of large losses on the central bank’s holdings of private assets. The second and third terms on the right-hand side of equation 21 show that the Federal Reserve can sell its assets—either the government securities or the private assets—to cover these losses. This cannot go on forever, as the Federal Reserve will eventually run out of assets. But considering the over $2 trillion in assets that the Federal Reserve holds, this would require quite catastrophic losses for a sustained period.\(^3\)

Another option is to print money or raise reserves, raising \(M_t \). If the economy is already satiated with reserves, this extra printing of money will have no effect on the macroeconomy, as banks will be happy to accept these extra reserves as payment. There is no private or social cost to creating excess and possibly idle reserves.\(^4\)

38. This is calculated by multiplying 0.05 by the sum of bank reserves plus Treasury deposits minus securities held outright. This maps onto the worst-case scenario, where the Treasury closes its deposit account with the Federal Reserve, demanding that its $240.2 billion in bonds be given back. Excluding this possibility, then already \(B_t^r > M_t \).

39. Stella (2009, table 9) tries to quantify this risk and arrives at a worst-case scenario of losses of $78 billion on the existing assets.

40. Note that this option relies on the existence of a finite satiation level in the demand for reserves, beyond which people are indifferent about the real money balances they hold. Otherwise, printing money would compromise the Federal Reserve’s target for inflation.
Only the final option is more troublesome. To pay for its budget shortfall, the Federal Reserve might choose to rely on a steady stream of financing from the Treasury ($V_t < 0$). The financial independence of the Federal Reserve from Congress has been a guarantee of its overall independence. Should transfers from the taxpayer to the Federal Reserve, requiring the approval of Congress, become a regular occurrence, political pressures on the setting of interest rates would become inevitable. There is a real danger that this would lead to permanent increases in inflation in exchange for only short-lived boosts to output, as the U.S. economy falls into the time-inconsistency trap described by Finn Kydland and Edward Prescott (1977).

In the extreme, this loss of independence could even trigger a change in the policy regime. In particular, consider the scenario where Congress limits the fiscal plans of the executive branch by imposing a target for government debt as a ratio to GDP (or consumption): B_t/C_t. The Treasury could accommodate this target by cutting deficits. But it might instead choose a value for nominal deficits exogenously, consistent with an equilibrium. The equilibrium price level would be

$$\pi_t = \frac{B_t/C_t}{\sum_{j=1}^{\infty} \beta \left(T_{t+j} - G_{t+j} \right)/C_{t+j}}$$

and inflation would be determined solely by the government’s fiscal choices. The Federal Reserve would then be forced to accommodate these fiscal policies by effectively handing over control of nominal interest rates, with x_t determined endogenously to satisfy

$$x_t = \Delta \ln(P_{t+1}) - \chi \Delta \ln(P_t) + \Delta \ln(C_{t+1}) - \ln \beta.$$

This fiscalist determination of inflation requires the Treasury to be dominant over the Federal Reserve in setting policy—a situation that the literature has described as the fiscal authorities being active and the central bank passive.43

41. Indeed, conventional measures of central bank independence typically consider budgetary independence from the legislative bodies a prerequisite (see the recent survey in Cukierman 2008).

42. This mechanism is described in Sims (1994) and Woodford (1995) and is discussed and criticized in Canzoneri, Cumby, and Diba (2001) and Bassetto (2008).

43. For further exploration of the implications of this fiscal theory of the price level within the context of the current crisis, see Sims (2009) and Cochrane (2009).
V. Interpreting the Federal Reserve’s Actions: Interest Rate Policy

A key feature of the crisis of 2007–09 is that short-term interest rates have been almost zero. This is only the second time that this has happened in the last century in the United States, the other being the period of the Great Depression in the 1930s. Many economists refer to this situation as a “liquidity trap,” since zero is the lowest possible target for the federal funds rate, and transitory increases in the money supply lead investors, now indifferent between money and bonds, to simply substitute one for the other. Conventional monetary policy appears powerless.

An extensive literature argues that this appearance is incorrect. Motivated by the experience of Japan in the 1990s, researchers over the past decade have characterized the challenges in a liquidity trap and offered some policy advice to confront them.\(^{44}\) They argue that in a liquidity trap, not only is interest rate policy not ineffective, but indeed choosing the right path for interest rates becomes particularly important.

To understand this point, recall the Fisher equation equating the real interest rate, \(r_t\), to the nominal interest rate, \(i_t\), minus expected inflation, \(E_t(\Delta P_{t+1})\):

\[
(24) \quad r_t = i_t - E_t[\Delta \ln(P_{t+1})].
\]

Recall further that the (linearized) Euler equation with log utility for optimal consumption states that expected consumption growth between date \(t\) and date \(t+s\) is equal to the sum of short-term real interest rates across the two periods:

\[
(25) \quad E_t[\ln(C_{t+s}) - \ln(C_t)] = E_t\left(\sum_{j=0}^{s} r_{t+j}\right).
\]

Intuitively, the higher the long-term real interest rate, which is equal to the expected path of short-term real interest rates, the greater the incentive to save, postponing consumption today for consumption in the future.

\(^{44}\) This work, in turn, builds on earlier analyses of monetary policy during the Great Depression. Romer (1992), in particular, makes a compelling case for the powerful role of monetary policy in ending the Depression.
The challenge for interest rate policy is that the financial crisis and its spillover to the real economy have led to a fall in the real interest rate needed for the economy to respond efficiently. If inflation expectations remain stable and low, equation 24 may imply that the nominal interest rate would have to become negative to generate the needed real interest rate. But because the nominal interest rate has a zero lower bound, this cannot happen, and consequently real interest rates remain too high.\footnote{The nominal interest rate on any safe security cannot be negative, because selling this security short and keeping the proceeds as cash until the security matures would result in positive profits and create an arbitrage opportunity. This is only approximately correct since the expected return on money is not exactly zero but slightly negative, as deposit accounts pay fees, and cash held in one’s pocket may be stolen. Nevertheless, it is likely very close to zero. Goodfriend (2000) and Buiter and Panigirtzoglou (2003) have revived an old proposal by Silvio Gesell for the government to tax money, effectively removing the lower bound on interest rates and therefore eliminating the possibility of liquidity traps.} Equation 25 then implies that these excessively high real interest rates drive down current consumption, worsening the recession.

The “Brookings answer” to this problem was given in two papers published in this journal. First, Paul Krugman (1998) emphasized that monetary policy is particularly potent in this situation if it can steer inflation expectations. The way out of the trap is to raise inflation expectations by whatever means possible, so that the short-term real interest rate can fall, encouraging consumption. Then, Gauti Eggertsson and Michael Woodford (2003) identified a practical way for the central bank to affect inflation expectations, by committing to keep nominal interest rates low into the future, even after the shocks leading to the crisis have subsided. This would lower expected future short-term real interest rates, producing the fall in long-term real interest rates needed to drive real activity up.

There are several other ways to raise inflation expectations, bring down real interest rates, and stimulate the economy. Devaluing the currency is one, and another is to purchase government debt with a permanent increase in the money supply that is allowed to persist after the crisis has passed. A more institutional approach that would prevent the problem from appearing in the first place would be for the central bank to announce a price-level target, since this would require that current deflation be offset by higher future inflation to get back on target. A final alternative would be for the central bank to commit to lower long-term nominal interest rates, as this would be equivalent to committing to a lower path of short-term rates.\footnote{On exchange rate policy see Svensson (2003), on debt purchases see Auerbach and Obstfeld (2005), on price-level targeting see Eggertsson and Woodford (2003), and on lowering long-term interest rates see Bernanke (2002).}
is important to note that these are not alternatives to increasing inflation expectations by committing to low nominal interest rates into the future. Rather, they are different ways to implement the same policy, namely, a decrease in the real interest rate, through its relationship with other macroeconomic variables.

How do the Federal Reserve’s actions compare with these theoretical suggestions? Although the Federal Reserve has not announced a commitment to allow higher inflation than average in the near future, in the way that a price-level target would suggest, it has announced its commitment to do what it can to prevent deflation. The FOMC announcements following every meeting so far in 2009 have stated the intention to keep the target for the federal funds rate at zero for an extended period. These are signs that the advice of Krugman, Eggertsson, and Woodford is being followed, but only halfway, as the Federal Reserve has also signaled that it will not tolerate either temporary or permanent above-normal inflation.47

Meanwhile the Federal Reserve has made no commitment to any of the other alternatives. First, announcing a devaluation of the dollar is not an option, since this is the domain of the Treasury, not the Federal Reserve. Second, there has been little purchasing of government debt: the dollar value of Treasury-issued securities plus agency debt held by the Federal Reserve in August 2009, at $847.9 billion, was not dramatically greater than the $778.9 billion it held in January 2007. Although the Federal Reserve has announced that it will expand its purchases of government bonds substantially in the coming months, it has also indicated that this might be temporary, as it returns to a balance sheet similar in size to that in the past once the crisis subsides. Third, the change in the maturity composition of these securities toward longer-term bonds is consistent with an effort to lower long-term interest rates, but there is little evidence that this portfolio shift can have any effect beyond what the announcement of lower future short-term interest rates will achieve.

A crucial part of the Federal Reserve’s policy is its future actions, after the crisis subsides, and these remain to be seen. In particular, the FOMC has not clearly stated that it will keep interest rates at zero even after the financial shock disappears, an important component of optimal policy according to the theory just discussed.

47. This was clearly stated by Vice Chairman Kohn on October 9, 2009.
VI. Conclusion

This paper has provided a critical analysis of the Federal Reserve’s policy actions of the past two years. It has catalogued monetary policy into three types according to whether it affects interest rates, the size of the Federal Reserve’s balance sheet, or the allocation of its credit across different assets.

With regard to interest rate policy, the Federal Reserve has followed the advice derived from theory by committing to fight deflation and to keep nominal interest rates at zero for the foreseeable future. It has deviated from the theoretical recommendations by not committing to higher-than-average inflation in the future, and especially by not providing a clear signal that it will keep nominal interest rates low for some time even after the crisis is over.

With regard to quantitative policy, at least theoretically there is no reason why the path of short-term nominal interest rates should cease to determine inflation, or why the conventional separation between monetary and fiscal policy should have to be revisited. Both of these features have been lauded as hallmarks of the success of monetary policy in the past two decades. However, the combination of an expansion in the Federal Reserve’s balance sheet, the introduction of interest payments on reserves, and the holding by the Federal Reserve of assets with risky returns does pose a danger. The Federal Reserve might face significant budget shortfalls, and overreacting to these may lead to the central bank surrendering its independence from fiscal policy, potentially compromising both of the hallmarks above.

Finally, regarding credit policy, the paper has introduced a new model of how the financial market allocates funds to investment and of the credit frictions in that process. I have considered the merits of different interventions as indicated by the model, conditioned on alternative beliefs about the knowledge and power of the Federal Reserve. The model suggests that using senior loans to inject funds into firms that trade asset-backed securities is an effective way to intervene in the financial markets. Theoretically, this seems superior to lending funds to the originators of loans, and superior to buying securities directly, and perhaps superior even to taking equity stakes in financial firms. The Federal Reserve’s actions over the past two years have included almost all of these alternatives. Perhaps this was wise, since so little is known in this area. What is more likely is that looking back in a few years and using either the model in this paper or others that will follow, some of the Federal Reserve’s credit policies will be seen as ineffective or even harmful.
Although the paper has touched on many different topics, models, and policies, I have not addressed every facet of the crisis or of the role of monetary policy during a crisis. For example, I have considered neither aggregate risk and changes in risk spreads nor the potential for bank runs. Nor have I discussed the role of foreign investors and the external deficit, or compared the Federal Reserve’s actions with those of other central banks around the world. Finally, I have not emphasized the political economy trade-offs that the different policies involve, which may become important in the near future.

This interpretation of the Federal Reserve’s actions has thus enjoyed the privileges of being selective in the choice of topics and of having some hindsight in addressing them. Neither was available to the Federal Reserve and other central banks in the past two years. Moreover, as is almost always the case when an academic writes about policy, the tone and spirit of this interpretation are based implicitly on the premise that theory runs ahead of practice. The events of the past two years have been humbling on that score, providing a lesson to academics like me that we must be less confident about this premise than usual.

APPENDIX

Details of the Model

This appendix complements the setup and solution of the model described in the text.

The Problem of the Representative Consumer-Worker

The consumer-worker in the model faces the following optimization problem:

\[(A.1) \max_{C', L', L', s'} \ln(C') - (L' + L' + L')\]

\[(A.2) \text{s.t.: } \int_0^\infty P_C''C''di + H'' = W(L' + L' + L') + \text{Payoff}\]

\[(A.3) C'' = \left(\int_0^\infty C''d\right)''\]

48. On risk spreads, see Cúrdia and Woodford (2009), and on bank runs, see Allen, Babus, and Carletti (2009).
Expression A.1 gives the consumer-worker’s preferences. Utility is logarithmic in total consumption and linear in labor supplied; these functional forms make the algebra easier.

Equation A.2 is the budget constraint. On the left-hand side are the uses of funds in the third period, namely, to purchase the consumption good from the firms and to pay taxes H''. On the right-hand side are the sources of the funds: wages received from labor and income received (“payoff”) from the four financial participants in the last period. Because utility is linear in labor supply in all three periods, there is a single wage. Since capital is transferred across periods at zero net return, this is the single intertemporal budget constraint.

Finally, equation A.3 is the Dixit-Stiglitz aggregator mapping the consumption of different varieties onto the final composite goods, with elasticity of substitution $m/(m - 1)$.

The optimality conditions are

$$1 = \left(\int_0^\infty P''(t) \, dt \right)^{1-m}$$

(A.4)

$$C'' = C''P''(t)$$

(A.5)

$$C'' = W.$$

(A.6)

The Problem of Agents in the Financial Market

Investors start in period 1 with capital M. Their budget constraints for each period are

$$Inv + H_j = M$$

(A.7)

$$Inv' + H_j' + Sec' = H_j$$

(A.8)

$$H_j'' = H_j' + Inv + Inv' + (1 - \varphi)Sec'/Q'.$$

(A.9)

In words, in the first period they invest Inv in traders and keep H_j in capital. In the second period they invest an additional Inv', buy securities in amount Sec', and keep the remainder H_j' in capital. In the third period they receive back their previous investments from traders at zero net return and receive the payoff of the $1 - \varphi$ securities they bought in the previous period that were productive, ending with total capital H_j''.

Entrepreneurs start with capital K. The aggregate budget constraint (summed over all entrepreneurs) in each period is

$$WFI + H_e = K + Loan$$ \hspace{1cm} (A.10)

$$WL'N + H'_e = Loan' + H_e$$ \hspace{1cm} (A.11)

$$WL''N + H''_e = \delta P''Y'N + H'_e.$$ \hspace{1cm} (A.12)

In the first period entrepreneurs use their own capital and the loans from lenders to pay their fixed costs, with H_e left over. In the second period they have this capital plus new loans, which they spend on the operating costs of their firms, leaving H'_e for the next period. Finally, in the last period, they receive the share δ of revenue and end with total capital H''_e.

The budget constraints of the lending sector in the aggregate in each period are

$$Loan + H_L = D + S$$ \hspace{1cm} (A.13)

$$Loan' + H'_L = D' + S' + Sec' + H_L$$ \hspace{1cm} (A.14)

$$(1 - \varphi)S/Q + S'/Q' + (1 - \varphi)Sec'/Q' + H''_L = (1 - \delta)NP''Y'N + H'_L.$$ \hspace{1cm} (A.15)

In the first period lenders start with capital D and obtain extra capital S by selling securities. They use this to make loans and retain a nonnegative amount of capital H_L. In the next period they receive new capital, sell new securities to traders and investors, and can use this and the capital saved from the last period to increase their lending, through the credit lines extended to the entrepreneurs, while potentially holding some capital for the following period. Finally, in the last period, they receive a share $1 - \delta$ of the firms’ revenue and must pay back the holders of securities backed by the loans to the surviving firms.

Finally, the aggregate budget constraints of the traders in each period are

$$S + H_r = E + Inv$$ \hspace{1cm} (A.16)

$$S' + H'_r = E' + Inv'$$ \hspace{1cm} (A.17)

$$Inv + Inv' + H''_r = (1 - \varphi)S/Q + S'/Q'.$$ \hspace{1cm} (A.18)
In the first period traders buy securities S and hold capital HT, using their starting funds E plus Inv received from investors. The same applies in the second period. In the third period the investments are repaid at zero net cost, and the securities earn a nonzero return. The pledgeability constraints on investment are

\begin{equation}
Inv \leq (1 - \mu)S
\end{equation}

\begin{equation}
Inv' \leq (1 - \mu)\left\{S' + [(1 - \varphi)Q' - Q]S/Q\right\}.
\end{equation}

The second term in the pledgeability constraint in the second period is the capital gain on the securities bought in the previous period. The possible absconding of traders with the assets is not included in these constraints, because this never happens in equilibrium.

The capital holdings for all agents are nonnegative: $HI, HI', HI'', HE, HE', HE'', HL, HL', HL''$ are all greater than or equal to zero.

Optimality Conditions for Financial Agents

Each of the risk-neutral financial agents wants to maximize its final capital. I focus here on the case where, in equilibrium, there is some inefficiency, so $Q < 1 - \varphi$, and $Q' < 1$. The other cases are similar.

Investors want to maximize HI''. As long as $Q' < 1 - \varphi$, they will buy no securities, $Sec' = 0$, since doing so leads to a negative return. Moreover, they are indifferent between holding capital and placing it with traders, and I assume that they invest as much as they can, subject to the pledgeability constraint.

Entrepreneurs earn strictly positive profits. Therefore, the return from applying their capital in the firm exceeds that from keeping it idle, and $HE = HE' = 0$. The optimal number of projects started and the optimal amount of labor hired are determined in section II.C.

Lenders are willing to sell securities at a positive return to traders, and therefore they must not be holding capital at zero return, so $HL = HL' = 0$. The optimal choice of Loan and Loan' was determined in section II.C, and the optimal issues of S and S' were stated in section II.D and derive from the budget constraints.

Traders earn a positive net return on the securities. Since capital earns a zero return, they choose $HT = HT' = 0$. Since they pay zero return to investors, they will want to draw funds from them to the extent possible. The pledgeability constraints therefore hold with equality. Combining the
pledgeability and budget constraints gives the demand for securities in the
text, \(S = \frac{E}{\mu} \) and \(S' = \frac{E'}{\mu} + \left[(1 - \mu)/\mu \right] [(1 - \phi)Q'/Q - 1]E/\mu \).

Market Clearing Conditions and Walras's Law

I start by summing the budget constraints for the four financial agents,
to obtain the market clearing conditions for capital within the financial
market. This gives

\[(A.21) \quad H_i = M + K + D + E - WFI\]

\[(A.22) \quad H'_i = H_i + D' + E' - WL'N\]

\[(A.23) \quad H''_i + H''_e + H''_l + H''_i = NP''Y'' - NWL'' + H'_i.\]

The first two conditions determine the capital left over with investors at the
time of the first two periods. They show that as long as \(M \) is large enough,
\(H_i > 0 \) and \(H'_i > 0 \), an assumption that I maintain throughout the analysis.
This in turn translates into an assumption for total initial capital, since the
market clearing condition for capital between the representative household
and financial institutions in the first period is

\[(A.24) \quad H = M + K + D + D' + E + E'.\]

The payoff from financial firms to households in the last period is

\[(A.25) \quad \text{Payoff} = H''_i + H''_e + H''_l + H''_i\]

\[(A.26) \quad = P''Y''N - WL''N + H'_i\]

\[(A.27) \quad = P''Y''N - WL''N - WL'N - WFI + H,\]

where the second equation comes from the market clearing condition for
capital in the third period, and the third from using the market clearing
conditions in the other periods. Noting that market clearing in the goods
market implies that \(\int_0^\infty P''_i C''_i \, di = P''Y''N \), and therefore this last expression
can be rewritten as

\[(A.28) \quad \int_0^\infty P''_i C''_i \, di + H = WFI + WL'N + WL''N + \text{Payoff}.\]
Finally, since the labor market clearing conditions are $FI = L^x$, $L'N = L^y$, and $L''N = L^z$, this expression becomes the budget constraint of the representative consumer. This verifies Walras’s law and confirms that all funds have been accounted for.
References

Comments and Discussion

COMMENT BY
TIMOTHY BESLEY

The past two years have seen central banks respond with unprecedented aggressiveness to the consequences of the global downturn. Following the collapse of Lehman Brothers in September 2008, interest rates were eventually cut to their effective lower bound by a number of central banks, including the Federal Reserve. Many central banks have now engaged in a variety of unconventional policy measures to increase the degree of monetary stimulus and to improve the operation of financial markets, particularly credit markets. These have involved a variety of actions that often fall collectively under the heading of “quantitative easing,” although as Ricardo Reis notes in his paper, there are conceptually distinct components to the Federal Reserve’s strategy.

There has been much in this episode to challenge practitioners and students of monetary policy. In his paper Reis sets out to provide a framework for thinking through the theoretical motivation for the Federal Reserve’s actions. While focusing on the U.S. experience, he touches on issues of more general importance for academics and policymakers. And to some degree the issues that he discusses have been on the mind of many central bankers the world over. I come at this through the lens of my own experience as a member of the Bank of England’s Monetary Policy Committee between 2006 and 2009.

The context of recent events is important for understanding the bigger picture. The period known as the Great Moderation had encouraged a view that the science of monetary policy and its practical implementation had reached maturity. Reflecting this, central banks were more or less universally charged with ensuring price stability and had enjoyed a good measure of success over the recent past. Whether as cause or as effect, most major central banks had been granted some kind of operational independence to
achieve this mandate. This had been accompanied by a remarkably stable real economy, although the direction of causation between this stability and good policy was always subject to debate.

This period of stability was important since it fueled a belief that episodes of macroeconomic instability like those experienced in the 1970s, and a fortiori the 1930s, had been largely consigned to the history books. A standard macroeconomic tool kit supported the inflation control and stabilization strategies of central banks, with a central role for dynamic stochastic general-equilibrium (DSGE) models. Unlike a previous generation of practical macroeconomic models, these incorporated microeconomic foundations grounded in stylized depictions of optimizing behavior and forward-looking behavior derived from policymakers’ likely responses to economic shocks. They therefore offered the promise of harmony between economic theory and policy practice.

The chief problems underpinning the current crisis were, of course, the build-up of leverage and the inflation of asset prices. This is the classic historical pattern observed before the onset of most financial crises in the past (see Reinhart and Rogoff 2009). The available macroeconomic models, particularly those developed by central banks, were ill equipped to spot the dangers associated with this leverage and to understand the implications for economic instability. Central banks have also traditionally been given a central role in guaranteeing financial stability. But just what this meant in practice was less clear than their responsibility for controlling inflation and for economic stabilization more generally. And there was nothing of comparable sophistication to the DSGE models to help them fulfill this role.

Most of the debate about redesigning policy has therefore rightly focused on how to refashion the policy architecture to prevent a repeat of the severe difficulties in financial markets that precipitated the current crisis. Although there have been plenty of useful suggestions, we are still some way from fully understanding what types of policies are needed and what kind of institutional framework will be necessary to support them. It seems unlikely, however, that this wider macroprudential role can be achieved solely through monetary policy, narrowly defined.

It is now commonplace to observe that the standard model used to study the conduct of monetary policy had scant role for financial frictions. It has been well understood for a while that the operation of the financial system should affect how the principal tool of monetary policy, the overnight interest rate, affects real activity. The workhorse DSGE models, however, largely marginalized these frictions. Its microfoundations basically had interest rate
policy acting on the economy through two Euler equations: one for firms’ investment decisions, and the other to represent households’ intertemporal optimization.

The first hints that something was amiss in the global economy were firmly apparent by 2006. Sitting as I did on the Monetary Policy Committee, I distinctly recall how, in 2006–07, our steering of overnight rates was having relatively little impact on the economy or in reining in credit creation. Little concrete guidance for policy was coming from either the output gap (however measured) or inflation. The economic expansion was not remarkably rapid, and neither was inflation signaling an overheating economy. Instead, most of the danger signs were in asset prices and leverage growth. In the end, interest rates were probably kept too low for too long. But manipulation of overnight rates was never going to be an adequate tool for combating the problems of excess credit creation during an expansion such as this one.

Of course, there were many (mainly theoretical) models linking financial systems and real activity. Particularly important were those that described the propagation, even the amplification, of shocks via the collateral channel. But these were mainly models where the behavior of financial intermediaries played little role. The key feature of the current crisis, and of many crises before it, is that the shock was rooted inside the financial sector itself. To anyone familiar with financial history (see, for example, Kindleberger 1989), there is perhaps nothing surprising about this.

Recent events thus provide a big challenge to economic modeling and policy analysis. Similar-looking events have occurred in the past, but they were rare; hence, deciding what is specific to the present case and what emerges as a general phenomenon requires careful judgment. It is a pipe dream to think that one can build a coherent macroeconomic model that does justice to the richness of modern financial sectors. Models are generally useful in economics because they are intelligible—they are judicious simplifications that can describe general effects. But the complexity of the events leading up to a major global crisis like this one can almost certainly not be captured in a stylized model.

In this innovative and interesting paper, Ricardo Reis does three main useful things. First, he offers a bird’s-eye view of the Federal Reserve’s reaction in the face of a liquidity trap. Second, by dissecting the Federal Reserve’s actions into three components—credit policy, quantitative policy, and interest rate policy—he provides a useful analytical framework for thinking these actions through. Finally, as part of this exercise, Reis sketches a novel model of financial frictions and develops some aggregate
implications. His paper is a nice mixture of restatement of aspects of the conventional wisdom and new insights. It is a useful contribution to the debate in this important area.

In their response to the current crisis, many central banks have engaged in some kind of unconventional monetary policy in one or more of Reis’s three categories. Table 1 below gives a sense of the kinds of measures adopted before August 2009 by a number of leading central banks. A common feature of many of the unconventional policies that Reis discusses is a blurring of the distinction between monetary and fiscal policy. This can be explicit, as in the case of monetary finance of a fiscal transfer, or more implicit, as when a central bank increases the risk on its balance sheet. In time, therefore, the lessons from these unconventional policies may lead us to modify our understanding of what it means for a central bank to be independent.

Interest rate policy can be motivated in more or less conventional terms, but when the overnight rate reaches its zero lower bound, unconventional policy can be thought of as a second-best way of implementing a negative shadow interest rate, in part by influencing inflation expectations. This has been the approach taken, for example, by the Bank of England, which has mainly been purchasing government securities at medium maturities and boosting the supply of narrow money. Other central banks, such as Sweden’s Riksbank and the Bank of Canada, have accompanied such actions with communications about the likely time path of interest rates, emphasizing a desire to keep the interest rate low. These strategies are not linked to the fallout of the financial crisis per se, but rather to the negative demand shock that accompanied it.

Increasing the money supply through purchasing government securities is what Reis calls quantitative policy. Here he restates the new conventional wisdom that “reserves are irrelevant for the setting of interest rates or the control of inflation.” And he restates the logic of the model and points out that there is no reason why the expansion of reserves by the Federal Reserve (or by other central banks) need be inflationary. I cannot help but feel, however, that the success of this view was partly responsible for policymakers’ lack of attention to the consequences of the growth of money and credit in the run-up to the financial crisis. The subsequent collapse of money and credit growth is a useful diagnostic of the true underlying stance of monetary policy in the downturn.

In his study of credit policy, in particular, Reis focuses on an immediate problem in the aftermath of the crisis: the fact that the supply of credit to the real economy is now impaired. And I agree with him that, in the near
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchases of public sector securities</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Commitment to low interest rates</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Exceptional long-term fixed-rate operations</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Purchases of corporate bonds</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Purchases of equities</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchases of commercial paper</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purchases or funding of asset-backed securities</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Sources: Central bank websites.
term, economies that have experienced this financial shock will face the problems that motivate his model, resulting in an inefficiently low level of financial intermediation. In undertaking unconventional measures, the Federal Reserve and other central banks have certainly been mindful of their potential to mitigate this outcome. Indeed, this has been the cornerstone of the Federal Reserve’s policy response.

Such a credit policy creates a stimulus through a direct effect on asset prices and by influencing the equilibrium interest rates and quantities of credit available to businesses and households. But there are important judgments to be made about where the greatest marginal effect can be found. Also, public purchases of private sector assets create nontrivial governance issues and public risk management concerns, making it almost certain that central banks will wish to exit from this regime at the earliest opportunity.

Although I admire what Reis is doing in this paper, at least one important feature is missing from the core model of financial markets that he uses to study credit policy in the current context. This is the impossibility of the model to generate excess credit creation. Although this omission is probably not relevant in the aggregate at the moment, it is possible for central banks to distort the allocation of credit, causing excess credit creation in some areas. Thus, it is important to consider the sectoral credit impact as well as the aggregate effects.

Better understanding of excess credit creation is important, since, as I have already mentioned, it is a feature of almost all significant financial crises and certainly of the current one. To fulfill their financial stability mandate, central banks will need to think more carefully about how to design credible structures with appropriate policy instruments to prevent such excess credit growth from recurring. Asking monetary policymakers to “lean against the wind” in such situations is almost certainly inadequate. Although Reis’s model is useful, it does not offer progress on this issue, by design. This remains an open challenge for modeling.

It is probably too early to discern the pros and cons of different unconventional policies. Moreover, in the end their effects will be overdetermined, making it unlikely that any amount of evidence will ever show their impact precisely. The Federal Reserve and other central banks have acted decisively to combat the downturn. A good deal of policy experimentation is already in train, which will doubtless inform the next generation of policy models. Reis’s paper is a fine example of how quickly leading monetary economists have also been responding to the challenges thrown up by this astonishing episode.
REFERENCES FOR THE BESLEY COMMENT

COMMENT BY
DONALD L. KOHN
I appreciate the opportunity to comment on Ricardo Reis’s paper. In this paper, Reis classifies critical aspects of monetary policy over the past two years and uses models and his own analysis to interpret and evaluate these policies. I very much enjoyed reading the paper and thinking through the issues he raises and will discuss a few of them in my remarks.¹

An important contribution of the paper is a new, stylized model of capital market frictions, which is used to study how credit policies affect capital allocation by providing funds to different kinds of financial intermediaries, including nonbanks and institutional investors. I am not going to comment much on the details of the model, but I do want to draw attention to the conclusion from the model that favors the provision of central bank credit to so-called traders, which are characterized as financial intermediaries that leverage their own capital as well as client funds to invest in securitized loans. The Federal Reserve has indeed recognized the importance of securitization, and working together with the Treasury, it created the Term Asset-Backed Securities Loan Facility, or TALF, precisely to support the market for securitized assets. In addition, by making credit available to primary dealers, it supported trading and liquidity in a variety of securities markets.

However, this stylized model does not capture the heterogeneity in lending activity that we see in the economy. In the model, all loans are equally eligible for securitization once they have been originated by the lenders. Providing funds to traders thus benefits all lenders and entrepreneurs similarly. In reality, not every borrower would benefit equally if the Federal Reserve were to backstop only the securitized loan market without providing liquidity to commercial banks and other institutions. Banks and other intermediaries are at least as important in ensuring a healthy flow of credit

¹. The views presented here are my own and not necessarily those of other members of the Board of Governors of the Federal Reserve System or the Federal Open Market Committee. Elmar Mertens and Roberto Perli of the Board’s staff contributed to these remarks.
to creditworthy borrowers, and it would be very disruptive if a scramble by such intermediaries to meet funding shortfalls in a panic led to fire sales of assets or a freeze in lending. Thus, lending to banks should remain a central part of the Federal Reserve’s toolbox.

I agree with Reis that, at least prior to his effort, no off-the-shelf model was available for analyzing much of what has happened over the past two years, and further research in this direction is essential. Still, we at the Federal Reserve were certainly not without guidance from well-established principles when we formulated policies to address the financial crisis. In designing our liquidity facilities we were guided by the time-tested precepts derived from the work of Walter Bagehot. Those precepts hold that central banks can and should ameliorate financial crises by providing ample credit to a wide set of borrowers, as long as the borrowers are solvent, the loans are provided against good collateral, and a penalty rate is charged. Such lending addresses discontinuities in investor behavior in a crisis in which uncertainty sets off flights to liquidity and safety that feed on themselves and then circle back on the economy in adverse feedback loops—a dynamic not fully captured by Reis’s model.

The liquidity measures we took during the financial crisis, although unprecedented in their details, were generally consistent with Bagehot’s principles and aimed at short-circuiting these feedback loops. The Federal Reserve lends only against collateral that meets specific quality requirements, and it applies haircuts where appropriate. Beyond the collateral, in many cases we also have recourse to the borrowing institution for repayment. In the case of the TALF, we are backstopped by the Treasury. In addition, the terms and conditions of most of our facilities are designed to be unattractive under normal market conditions, thus preserving borrowers’ incentives to obtain funds in the market when markets are operating normally. Apart from a very small number of exceptions involving systemically important institutions, such features have limited the extent to which the Federal Reserve has taken on credit risk, and the overall credit risk involved in our lending during the crisis has been small.

In Reis’s view, if the collateral had really been good, private institutions would have lent against it. However, as has been recognized since Bagehot, private lenders, acting to protect themselves, typically severely curtail lending during a financial crisis, irrespective of the quality of the

2. My colleague Brian Madigan (2009) evaluated the Federal Reserve’s recent policies from this perspective.
available collateral. The central bank—because it is not liquidity constrained and has the infrastructure in place to make loans against a variety of collateral—is well positioned to make those loans in the interest of financial stability, and can make them without taking on significant credit risk, as long as its lending is secured by sound collateral. A key function of the central bank is to lend in such circumstances to contain the crisis and mitigate its effects on the economy.

Reis’s model does not directly address central banks’ long-term asset purchases, but in one place the paper seems to question their effectiveness. Our framework for this aspect of our credit policies relied on preferred habitats of investors and imperfect arbitrage. There was ample evidence that private agents had especially strong preferences for safe and liquid short-term assets in the crisis; in those circumstances, sizable purchases of longer-term assets by the central bank can have an appreciable effect on the cost of capital to households and businesses. The marked adjustments in interest rates in the wake of the announcements of such actions, both in the United States and elsewhere, suggest that market participants also saw them in this light.

Reis raises the possibility that our credit policies, together with the payment of interest on reserves, could leave the Federal Reserve dependent on the fiscal authorities for funding our expenses, with adverse implications for our ability to conduct a sound monetary policy. This outcome seems extremely remote. As I have already noted, the Federal Reserve’s exposure to credit losses is quite limited. Certainly, the Federal Reserve’s interest expense will increase when short-term rates move up from their current very low level because of the payment of interest on reserve balances. However, the Federal Reserve will continue to earn substantial net income over the next few years under all but the most remote contingencies, for at least two reasons. First, currency, on which we pay no interest, will remain a substantial portion of our liabilities. And second, we will have sizable earnings on our assets. Short-term interest rates would have to rise very high very quickly for interest on reserves to outweigh the interest we are earning on our longer-term asset portfolio. With the global economy weak and inflation low, a large and rapid rise seems quite improbable. Moreover, even in the unlikely event that a sharp rise in interest rates forced us to

3. In their Brookings Paper of last year, Stephen Morris and Hyun Song Shin (2008) pointed out that the drying up of securitized lending was an important aspect of the constriction on liquidity and the forced deleveraging of this crisis.
suspend remittances to the Treasury temporarily, we would still maintain our ability to implement monetary policy to foster our statutory objectives of maximum employment and stable prices.

As Reis points out, paying interest on reserve balances also has important benefits and will play a key role in our exit from unusually accommodative policies when the time comes. Raising the interest paid on those balances should provide substantial leverage over other short-term market interest rates because banks generally should not be willing to lend reserves in the federal funds market at rates below what they could earn simply by holding reserve balances.4 Against that background, Reis questions why the Federal Reserve is highlighting the availability of reserve-draining tools, since the level of reserves should not impede the usual transmission mechanism of tighter policy working through interest rates. However, neutralizing or draining reserves could be helpful in tightening the link between the interest rate on excess reserves and other short-term interest rates. And the presence of a large volume of reserves on bank balance sheets—even when remunerated—could have undesired effects on the portfolio decisions of banks. So we continue to develop tools that enable the Federal Open Market Committee (FOMC) to drain or neutralize large volumes of reserves were the FOMC to decide that doing so would support its objectives.5

Finally, Reis notes that the theoretical literature on monetary policy at the zero lower bound commonly prescribes targeting higher-than-normal inflation rates even beyond the point of economic recovery, so that real interest rates decline by more and thus provide greater stimulus for the economy. The arguments in favor of such a policy hinge on a clear understanding on the part of the public that the central bank will tolerate increased inflation only temporarily—say, for a few years once the economy has recovered—before returning to the original inflation target in the long term. Notably, although many central banks have put their policy rates near zero, none have adopted this prescription. In the theoretical environment considered by the

4. I would also note that there are large participants in the federal funds market—the government-sponsored housing enterprises—that are not eligible to receive interest from the Federal Reserve and thus may be willing to make reserves available in the federal funds market at rates lower than the interest rate paid on reserves.

5. For example, the Federal Reserve could drain liquidity by engaging in reverse repurchase agreements with a range of counterparties, or it could offer banks the option of term deposits, which would then not be available for lending in the federal funds market. The Federal Reserve could also sell a portion of its holdings of securities. Any combination of these tools, in addition to the payment of interest on reserves, may prove very valuable when the time comes to tighten the stance of monetary policy—although, as the FOMC has said, that time is not likely to come for an extended period.
paper, long-run inflation expectations are perfectly anchored. In reality, however, the anchoring of inflation expectations has been a hard-won achievement of monetary policy over the past few decades, and we should not take this stability for granted. Models are by their nature only a stylized representation of reality, and a policy of achieving “temporarily” higher inflation over the medium term would run the risk of altering inflation expectations beyond the horizon that is desirable. Were that to happen, the costs of bringing expectations back to their current anchored state might be quite high. But while the Federal Reserve has not attempted to raise medium-term inflation expectations as prescribed by the theories discussed in the paper, it has taken numerous steps to lower real interest rates for private borrowers and keep inflation expectations from slipping to undesirably low levels in order to prevent unwanted disinflation. These steps include the credit policies I discussed earlier, the provision of forward guidance that the level of short-term interest rates is expected to remain “exceptionally low for an extended period” conditional on the outlook for the economy and inflation, and the publication of the longer-run inflation objectives of FOMC members.

REFERENCES FOR THE KOHN COMMENT

GENERAL DISCUSSION Deborah Lucas observed that there has not been a sharp distinction between fiscal policy and monetary policy in the recent crisis, and that a lot of what has been described as monetary policy was actually fiscal policy. Although she understood the need for immediate action, she found it worrisome that many economists seem to have so easily accepted the Federal Reserve’s decision to take actions outside the normal course of oversight by Congress. Lucas went on to cite a piece of anecdotal evidence about the possible consequences. The advance business of the Federal Home Loan banks, a large source of capital for smaller banks, has dropped by about a third since the crisis began. The banks’ explanation is that the Federal Reserve is outcompeting them in the business of making risky loans: their customers are no longer interested in borrowing from them because they are getting such sweet deals from the central bank.
In Lucas’s view, the issue came down to one question: Why do we value the Federal Reserve’s independence? The answer, presumably, is that the Federal Reserve needs to be able to make the difficult and unpopular decisions necessary to keep inflation down. Lately, however, the Federal Reserve has been making the popular decisions. That should not become a habit.

Robert Gordon raised what he viewed as a fundamental issue about the ability of a central bank to manage expectations. When the Japanese had their dismal decade, and the Bank of Japan finally woke up and began to relax monetary policy, inflation expectations did not spontaneously revive. Gordon thought that Paul Krugman’s 1998 Brookings Paper on the liquidity trap in Japan, although it drew nice parallels with the late 1930s that are still relevant today, was off base in implying that a central bank can control inflation expectations by exhortation. The alternative model, which holds that inflation expectations are based on inertia and experience, seems closer to the reality.

Gordon argued further that one hears it too often asserted today that large federal deficits are bound to lead to inflation, when in fact the risk of deflation is much more serious; if current forecasts are correct, the unemployment gap will soon have never been so high for so long. Either the modern version of the Phillips curve is going to be contradicted over the next four years, or a significant deflation is likely in the absence of a collapse of the dollar or an explosion of oil prices.

Gita Gopinath observed that a frequently heard argument in the run-up to the crisis was that one reason why interest rates were so low was the global savings glut. She wondered whether the Federal Reserve still held that view and whether it will continue to play an important role in the postcrisis recovery period. She also wondered how much the outcome relies on China retaining its appetite for U.S. assets and on China’s high saving rate.

Christopher Sims agreed with Donald Kohn that the likelihood of negative seigniorage and balance sheet problems at the Federal Reserve is quite remote, but just how remote, he argued, depends on whether the Federal Reserve has thought through what it would do in that situation, and on how completely people are convinced that the Federal Reserve is prepared for it. The problem, as Sims saw it, is not the possibility of a small or even a fairly large capital loss on the private assets. It has to do with what would happen if there were a sudden shift in sentiment, in which, for example, the dollar’s role as a reserve asset suddenly started to deteriorate, the exchange rate started dropping, and inflationary pressure began to build. The need for extraordinarily high interest rates might arise, especially if the public
does not understand exactly how the Federal Reserve intends to address the problem.

Sims also agreed with Kohn on the importance of inflation expectations being well anchored and on the difficulty of restoring the anchor once lost. But if an anchor can stabilize the boat in a storm, it can also drag it under the water. Japan, after all, has very well anchored inflation expectations. The problem is that one would like to anchor expectations from above and below, by convincing people that the Federal Reserve is concerned not only about possible future inflation, but also about inflation falling below roughly 2 percent.

Sims disputed the idea, implied in the paper, that there is no social cost to the Federal Reserve creating interest-bearing reserves. That is true in terms of paper and printing costs, but interest-bearing reserves are interest-bearing government debt. The only reason a central bank balance sheet matters is that its independence depends on its ability to raise revenue through seigniorage. If the central bank’s capital is seriously insufficient, there are limits to how strongly anti-inflationary it can be without recourse to explicit fiscal backing.

Sims also underlined the point made by others that the lines between monetary and fiscal policy are becoming blurred. Interest-bearing reserves do not count against the federal debt limit right now. But if interest rates were to rise substantially while reserves remained at their current level, Congress might well become interested in this distinction. The Federal Reserve and academic economists should be thinking about what happens in these extreme scenarios: both about what would be good fiscal policy, and about what the Federal Reserve should ask for if it should fall under this kind of fiscal pressure.

David Romer thought the paper’s model provided a helpful framework for thinking about multiple layers of frictions in a very complicated environment. But although the model is as simple as one could make it, it is still hard to grasp intuitively. He asked where the special ability of the Federal Reserve to improve outcomes was coming from and suggested two possibilities: either it is a special technological skill that makes the Federal Reserve good at keeping people from absconding, or it is an ability to essentially break private contracts. Private individuals cannot make their debt more senior than a prior lender’s, but the Federal Reserve can, and the knowledge of this capability presumably feeds back into the equilibrium. Romer also wondered whether there is something unique about the independence of the Federal Reserve that requires that it retain the ability to set its own budget. Many government agencies are and should be independent, including the
judiciary, the district attorneys, and the Federal Election Commission. And many of those agencies could legitimately derive a stream of revenue from pursuing their government business. Yet Congress in all cases sets their budget. Why is the Federal Reserve different?

Christopher Carroll found it striking that both Donald Kohn and Timothy Besley—the one a current, the other a former policymaker—had expressed great concern about the lack of useful macroeconomic models for the current circumstances. A century and a half after Bagehot, this might still be the most important question for macroeconomists to address today. Why, then, does there seem to be an intellectual block on the topic? One reason might be that macroeconomists are reluctant to abandon the equilibrium rational expectations approach, but in a model where everyone understands everything about how the entire model works, there is not the feedback from past events into expectations about the future needed to capture what is going on. Carroll argued that developing such a well-articulated framework ought to be macroeconomists’ top priority.

Benjamin Friedman agreed with Sims on the need for symmetry in central banks’ expression of objectives for inflation, whether it be embodied in formal inflation targets or in terms of stated objectives within a dual-mandate system. The classic example of the lack of such symmetry today is the European Central Bank, which cannot even bring itself to say out loud that deflation is bad and instead expresses its objective as “inflation of no more than 2 percent.”

Friedman agreed with the paper’s assertion that there is nothing particularly wrong with a central bank having negative capital. What, then, is the real risk to Federal Reserve independence? The prospect of the Federal Reserve needing outright funding from Congress is remote, he argued, but the problem is that certain policies were pursued precisely because Congress would not have provided that funding. Friedman conjectured that in the event the Federal Reserve does realize serious losses on its recently acquired assets, it will become clear that it has been pursuing fiscal policy without congressional approval, and the political reaction to that is likely not to be subtle. It might not be limited to taking away the Federal Reserve’s authority to set its own budget, as David Romer suggested, or placing other limits on its powers while leaving its independence with respect to monetary policy intact. The fallout could be a diminution of the Federal Reserve’s independence not only with respect to its own budget but also on more fundamental matters.

Vincent Reinhart noted that in the models that monetary policymakers use, policy works its effects through current and expected short-term interest
rates. He saw the fundamental question raised by this paper as whether unconventional policies should be viewed as commitment devices to lock in that current and expected future path of the short-term rate, or rather as a revealed preference, that is, as demonstrating that policymakers actually believe that monetary policy works through different channels. On that score, the various facilities that the Federal Reserve has created and the actions it has taken amount to a very long list of potential channels of monetary policy. They probably mark, in Reinhart’s view, the beginning of a substantial expansion of the way macroeconomics is done, either to explain what policymakers thought they were doing in recent months or, having identified the channels through which policy actually works, coming up with different models.

Michael Woodford sympathized with the Federal Reserve’s concern that any tolerance of temporarily higher inflation on its part might be misunderstood and pose a threat to its hard-won credibility. Indeed, he argued, monetary policymakers need to think about not only what will happen if people understand what the central bank says, but as a practical matter, what alternative interpretations people might give to its words and actions, and what will happen as a consequence. Theoretical analyses that simply assume that people understand the same things the policymaker understands fail to address this. Policymakers need to think more about how to explain policy so that it can be understood and therefore effective, rather than simply give up on the public’s ability to understand a nuanced policy. Woodford himself had previously proposed one approach to better public understanding, one that described monetary policy in terms of catch-up to some price-level path or a path of nominal GDP.

Woodford felt the Federal Reserve has been too reluctant to think about having an articulated strategy as the basis for the credibility of its inflation commitment. The Federal Reserve appears to perceive no payoff from such a strategy, and instead simply lets the public observe the inflation rates delivered in the past. The current situation, however, illustrates a weakness of that approach: when one asks if it is ever possible to have temporarily higher inflation expectations without undermining longer-run inflation credibility, the answer has to be no, because that undermines the basis of the Federal Reserve’s approach to controlling long-run inflation expectations. An explicit strategy, such as price-level path targeting, that justified the temporary inflation, in the context of a strategy that would nonetheless imply no change in long-run inflation, would allow a way around this constraint.

John Williams observed that one way to improve the management of inflation expectations might be to publish interest rate forecasts, as is done in
New Zealand, Norway, and Sweden. He also proposed that one could move partway out the yield curve—using purchases not of long-term Treasuries, but of those in the short to middle range of maturities—as a way of reinforcing the view that the central bank intends to keep interest rates low for a while. Such policies could be useful for a central bank seeking to maintain a low inflation target in a zero-lower-bound world.

Williams also worried that the next recession might not look at all like the present one. It might be one where the only tools available are the short-term interest rate and maybe some other quantitative easing policies. The toolbox would be smaller because in the absence of a financial crisis, the alternative tools being used so freely today would not be appropriate.

Richard Cooper wondered whether anything beyond the discomfort of its accountants prevents the Federal Reserve from having negative capital forever. The capital of a central bank, after all, seems to be a completely arbitrary number. This is more evident with other central banks than with the Federal Reserve, because a much larger share of their assets is in the form of foreign exchange reserves, so that the relationship between the central bank’s assets and its liabilities is changing all the time as exchange rates change. Cooper reminded the Panel that a policy of devaluing the currency does not generalize to all countries. Moreover, a deliberate depreciation of the dollar is not a feasible policy for the United States, because other countries will not allow it. We now have a global capital market, with large pools of savings outside the United States and the United Kingdom. Long-term interest rates today are determined in that market, and not by the monetary policy of any particular country or countries, including the United States.

David Laibson observed that although the traditional bank run, where people line up outside the bank to withdraw deposits, is no longer a threat, there is now something that could be called a “modern” bank run, in which institutional sources of short-term credit are suddenly withdrawn because of worries that everyone else is withholding credit. This kind of bank run is obviously what afflicted Bear Stearns and Lehman Brothers, and the concern was that it would spread through the entire financial sector that was not in some sense federally insured. Laibson understood Federal Reserve policy as partly motivated by the need to avoid this kind of disorderly liquidation, and many of its actions follow from that motive. He wondered why the discussion was not more about the Federal Reserve’s efforts to avoid these bank runs as an organizing principle for a lot of the transactions that ended up changing policy in general, and the Federal Reserve’s balance sheet specifically. Linda Goldberg responded by pointing out that much of the debate on changes in the financial architecture is specifically targeted at this issue and
on expanding the resolution authority of the Federal Deposit Insurance Corporation, which currently is limited to banks and does not extend, for example, even to bank holding companies.

Xavier Gabaix observed that monetary policy during the crisis has exhibited creativity and originality, but the same cannot be said about fiscal policy, which has been desperately old-fashioned and uncreative. He would like to see some institutional innovation in fiscal policy, perhaps the creation of a Federal Reserve equivalent of fiscal policy. For example, some ability on the part of the central bank to change things like payroll taxes during a downturn would be useful. Gabaix argued that it is good to have fair-minded technocrats making these decisions rather than short-term-focused politicians.

Carmen Reinhart recommended expanding the paper’s scope to a more international setting, given that the crisis is global. A global framework would be particularly useful for the treatment of inflation expectations, because in only two postwar banking crises did the crisis country’s currency actually appreciate: Japan in the 1990s and the United States today. More generally, when one looks at all the new facilities that have been created, it is clear that the buyers were coming from somewhere else, and the setting of interest rates thus has a distinctly global element.