
Policy Evaluation in Uncertain
Economic Environments 

It will be remembered that the seventy translators of the Septuagint were shut
up in seventy separate rooms with the Hebrew text and brought out with them,
when they emerged, seventy identical translations. Would the same miracle be
vouchsafed if seventy multiple correlators were shut up with the same statisti-
cal material? And anyhow, I suppose, if each had a different economist perched
on his a priori, that would make a difference to the outcome.1

This paper describes some approaches to macroeconomic policy evalu-
ation in the presence of uncertainty about the structure of the economic
environment under study. The perspective we discuss is designed to facil-
itate policy evaluation for several forms of uncertainty. For example, our
approach may be used when an analyst is unsure about the appropriate
economic theory that should be assumed to apply, or about the particular
functional forms that translate a general theory into a form amenable to
statistical analysis. As such, the methods we describe are, we believe, par-
ticularly useful in a range of macroeconomic contexts where fundamental
disagreements exist as to the determinants of the problem under study. In
addition, this approach recognizes that even if economists agree on the

235

W I L L I A M  A .  B R O C K
University of Wisconsin

S T E V E N  N .  D U R L A U F  
University of Wisconsin

K E N N E T H  D .  W E S T
University of Wisconsin

We thank the John D. and Catherine T. MacArthur Foundation and the National Science
Foundation, the Vilas Trust, and the University of Wisconsin Graduate School for financial
support. This paper was written while Kenneth West was a visitor at Victoria University,
Wellington, and the Reserve Bank of New Zealand, whose hospitality he gratefully ac-
knowledges. We are especially grateful to Ritesh Banerjee, Ethan Cohen-Cole, Artur
Minkin, Giacomo Rondina, Chih Ming Tan, and Yu Yuan for outstanding research assis-
tance. Our discussants and the other conference participants provided valuable suggestions.

1. Keynes (1940, pp. 155–56).

1440-04 BPEA/Brock  07/17/03  08:12  Page 235



underlying economic theory that describes a phenomenon, policy evalua-
tion often requires taking a stance on details of the economic environ-
ment, such as lag lengths and functional form, that the theory does not
specify. Hence our analysis is motivated by concerns similar to those that
led to the development of model calibration methods. Unlike in the usual
calibration approach, however, we do not reject formal statistical infer-
ence methods but rather incorporate model uncertainty into them.

The key intuition underlying our analysis is that, for a broad range of
contexts, policy evaluation can be conducted on the basis of two factors:
a policymaker’s preferences, and the conditional distribution of the out-
comes of interest given a policy and available information. What this
means is that one of the main objects of interest to scholarly researchers,
namely, identification of the true or best model of the economy, is of no
intrinsic importance in the policy evaluation context, even though
knowledge of this model would, were it available, be very relevant in
policy evaluation. Hence model selection, a major endeavor in much
empirical macroeconomic research, is not a necessary component of pol-
icy evaluation. 

To the contrary: our argument is that, in many cases, model selection is
actually inappropriate, because conditioning policy evaluation on a par-
ticular model ignores the role of model uncertainty in the overall uncer-
tainty that surrounds the effects of a given policy choice. This is true both
in the sense that many statistical analyses of policies do not systematically
evaluate the robustness of policies across different model specifications,
and in the sense that many analyses fail to adequately account for the
effects of model selection on statistical inference. In contrast, we advo-
cate the use of model averaging methods, which represent a formal way
through which one can avoid policy evaluation that is conditional on a
particular economic model. 

From a theoretical perspective, model uncertainty has important impli-
cations for the evaluation of policies. This was originally recognized in
William Brainard’s classic analysis,2 where model uncertainty occurs in
the sense that the effects of a policy on a macroeconomic outcome of
interest are unknown, but may be described by the distribution of a
parameter that measures the marginal effect of the policy on the outcome.
Much of what we argue in terms of theory may be interpreted as a gener-
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alization of Brainard’s original framework and associated insights to a
broader class of model uncertainty.

An additional advantage of our approach is that it provides a firm foun-
dation for integrating empirical analysis with policy evaluation. By
explicitly casting policy evaluation exercises as the comparison of the
losses associated with the distribution of macroeconomic outcomes condi-
tional on alternative policy scenarios, connections between the observed
history of the economy and policy advice are seamlessly integrated. Con-
ventional approaches, which often equate evaluation of a policy’s efficacy
with the statistical significance of an estimated coefficient, do not embody
an equally straightforward way of moving from empirical findings to pol-
icy outcomes. Hence one practical implication of our discussion is that the
reporting of empirical results for policy analysis should focus more
explicitly on describing probability distributions for outcomes of interest,
conditioned on a given policy, rather than on statistical significance test-
ing per se.

Our goals in this paper are ambitious in that we attempt to place policy
theoretical and empirical evaluation exercises in a framework that prop-
erly accounts both for the decision-theoretic nature of the question and for
the different types of uncertainty. In this we are motivated by concerns
similar to those that have influenced a number of other researchers. Many
of James Heckman’s contributions may be interpreted as providing meth-
ods for policy analysis that properly account for the ways in which indi-
viduals make decisions.3 Gary Chamberlain and Christopher Sims have
argued explicitly in favor of Bayesian decision-theoretic approaches to
data analysis.4 Charles Manski has advocated, in contexts where one can-
not identify which of several models explains a given data set, an
approach that focuses on finding “undominated” policies, that is, policies
that are optimal for at least one model consistent with the data.5 Our own
approach has been strongly influenced by this important work, and we
will indicate in the course of our discussion where our approach overlaps
and where it contrasts with this previous research. And, of course, much
of what motivates our discussion is modern statistical decision theory,
which now functions as a foundation of Bayesian statistics.
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We are also far from being the first researchers to attempt to integrate
concerns about model uncertainty into policy analysis. In terms of general
econometric questions, Edward Leamer has made a range of fundamental
contributions to the development of methods of econometric inference
that account for model uncertainty.6 Leamer’s ideas have motivated a
number of recent developments in the statistics literature.7 In terms of the
theory of policy analysis, Lars Hansen and Thomas Sargent, among oth-
ers, have pioneered the use of robust control theory to evaluate macro-
economic policy in environments in which model uncertainty may be
characterized as occurring around a particular core model.8 This research
program has initiated new directions in policy evaluation, which focus on
how to construct policies that are robust against unfavorable draws from
the space of possible models. 

The problem of model uncertainty has also motivated a range of empir-
ical analyses. The literature on monetary policy rules has become quite
explicit about this objective. And, to be fair, it is rare to see an empirical
paper that does not consider some modifications to a given baseline spec-
ification to see whether particular empirical claims are robust to such
modifications.9 Within the economic growth literature, analyses such as
those by Ross Levine and David Renelt and by Xavier Sala-i-Martin have
modified standard growth regression analysis to account for model uncer-
tainty;10 Gernot Doppelhofer, Ronald Miller, and Sala-i-Martin, as well as
Carmen Fernández, Eduardo Ley, and Mark Steel,11 have explicitly
employed the averaging approach to model uncertainty that we endorse.12

And, of course, empirical work very typically involves a consideration of
the robustness of findings across different specifications of the estimated
model, application of the model to different subsamples of data, and so
forth. It would therefore be a caricature of the empirical literature to sug-
gest that model uncertainty is generally ignored. Relative to these applied
approaches, our analysis, we believe, will have some useful suggestions
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12. See Brock and Durlauf (2001).
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for how to make robustness analyses more systematic and how to link the
evaluation of model uncertainty to the goals of an econometric exercise in
a more effective fashion. 

Although our goals are ambitious, we recognize that there are impor-
tant limits in the extent to which we have achieved them. The decision-
theoretic approach is, in an abstract sense, an extremely appealing way to
engage in econometric policy evaluation, but significant questions as to
how one would implement the approach remain open. We will discuss
some ways of making decision theory and model averaging operational,
but much substantial work remains to be done. Finally, we do not claim
there is “one true path” for empirical work. Debates over the philosophi-
cal merits of Bayesian versus frequentist approaches, for example, are of
little intrinsic use to us. We are interested in the pragmatic questions that
revolve around the use of theoretical and econometric models to inform
policy evaluation. 

The next section of the paper introduces a basic framework for policy
evaluation. The discussion is designed to place policy evaluation in a
decision-theoretic framework, which we will then exploit throughout the
paper. This section is followed by an analysis of how model uncertainty
affects policy evaluation. We contrast our perspective with other recent
efforts in the economics literature to address model uncertainty. Next we
explore some theoretical implications of model uncertainty for policy
evaluation. We then discuss some issues that arise in implementing the
general decision-theoretic framework we have described. First, we show
how our basic framework may be applied under Bayesian, frequentist,
and Waldean perspectives on policy evaluation. Second, we discuss a
number of questions that arise when one is specifying a space of possible
models. The penultimate section provides two applications of our ideas:
to monetary policy rules and to the analysis of growth policies. These
applications are designed to follow previous empirical work closely in
order to illustrate how to implement some of the methodological ideas we
advocate. The concluding section is followed by computational and data
appendixes.

Decision Theory and Uncertainty

Here we describe a basic decision-theoretic approach to policy evalua-
tion. The abstract ideas laid out here constitute the building blocks of
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modern statistical decision theory.13 No claim of originality is made. We
believe that the underlying logic of the framework is something that the
great majority of economists do or would regard as appealing. These ideas
have been invoked periodically over time as economists have attempted
to place empirical research on a more policy-relevant foundation.14 Our
own discussion will place these ideas in a context that helps identify some
dimensions along which this framework can inform theoretical and
empirical work on macroeconomic policy analysis. 

From a decision-theoretic perspective, one thinks of a policymaker as
facing a choice among a set of policies and wishing to use available infor-
mation, including data on the economy, to inform this choice. As such,
the policymaker’s decision is interpretable as a standard microeconomic
problem of choice under uncertainty. To formalize this idea, suppose that
a policymaker must choose a policy, indexed by p, from some set of pos-
sible policies P. The policymaker has available a data set d (a realization
from a process with support D), which may be used to inform the policy
evaluation. We initially assume that the policymaker is evaluating poli-
cies conditional on a given model of the economy, m. At this level there is
no need to define precisely what constitutes a model; typically a model
will incorporate a particular economic theory or theories as well as vari-
ous functional form specifications. Although the model of the economy
could be treated as part of the policymaker’s information set (which
would mean treating it in a symmetric fashion to d ), it is convenient to
separate it from the other information the policymaker possesses. Each
policymaker has preferences over policy effects that may be represented
as a loss function l(p, θ), where θ represents whatever quantities affect
the function; the support of these unknowns is Θ. For example, θ may rep-
resent parameters that determine the effects of the policy. Typically, θ
will include innovations to the economy that have not been realized at the
time the policy is chosen. From the perspective of a policymaker, uncer-
tainty about θ is the only source of uncertainty about the losses of a given
policy. For simplicity, we do not allow the loss function to depend on the
model; this generalization may easily be incorporated.
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In order to describe the effect of uncertainty over θ on policy evalua-
tion, it is necessary to characterize the policymaker’s preferences as they
relate to risk. We initially assume that the policymaker seeks to minimize
the expected loss; alternative preference assumptions will be considered
later. Expected loss calculations, in turn, require specification of the prob-
abilities associated with different realizations of θ. These probabilities are
described by the density , so that uncertainty about θ is condi-
tioned on the available data d and a particular model m of the economy.
The expected loss associated with policy p is therefore

This type of calculation allows for policy comparisons. The optimal pol-
icy choice may be treated as 

As equations 1 and 2 illustrate, policy analysis is thus straightforward
once the loss function l(p, θ) and the probability density are
specified. However, it is useful to observe that the sorts of calculations
associated with equations 1 and 2 are not necessarily those that are asso-
ciated with conventional econometric practice. This is so in three senses. 

First, the relevant uncertainty associated with θ cannot necessarily be
reduced to its expected value and associated variance. The entire posterior
probability density of θ may be relevant. Of course, as has been under-
stood since the early days of mean-variance analysis in portfolio theory,
there are various assumptions about the structure of uncertainty and poli-
cymaker preferences under which the second moments are the only
moments of µ(θ | d, m) that affect policy assessment. The appropriateness
of these assumptions will differ from context to context, and so they
should not be adopted without any forethought. 

Second, even if the relevant uncertainty associated with θ can be sum-
marized by its posterior mean and variance, this does not provide a clear
way of linking policy evaluation to hypothesis testing. For example, con-
sider the way in which various policies are evaluated in the empirical
growth literature. Typically, a researcher identifies an empirical proxy for
a policy and determines whether it is relevant for growth according to
whether or not, in a growth regression in which the proxy is included as

µ θ( | , )d m

( ) min ( , ) ( | , ) .2 p P l p d m∈ ∫ θ µ θ θd
Θ

( ) ( , ) | , ( , ) ( | , ) .1 E l p d m l p d mθ θ µ θ θ[ ] = ∫ d
Θ

µ θ( | , )d m
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an independent variable, the proxy is statistically significant at the 5 per-
cent level. This assessment does not directly speak to the question of
whether the policy variable should be changed, even if one ignores the
question of the costs of such a change. 

What implications might one draw from these two arguments? One
implication is that it is generally more appropriate to report posterior dis-
tributions that describe the effects of policies on variables of interest than
to focus on test statistics per se. The relevance of this implication differs
across empirical literatures; the literature on monetary policy rules is very
much focused on the evaluation of such rules with respect to loss func-
tions.15 In contrast, the economic growth literature is largely dominated
by hypothesis testing as a way to evaluate growth policies; for example,
the survey of the empirical growth literature by Robert Barro and Sala-i-
Martin typically equates evidence that a policy is relevant for growth with
the statistical significance of its associated regression parameter.16 We
will discuss the use of empirical models to evaluate growth policies in
more detail in the penultimate section of the paper.

A third criticism of conventional econometric practice concerns the
distinction between parameters and estimates of parameters. The uncer-
tainty that is relevant for policy evaluation is uncertainty over θ, not
uncertainty with respect to estimates of θ, or θ̂. Yet most empirical work
reports standard errors of estimates rather than measures of the uncer-
tainty concerning underlying parameters. This is a standard objection that
Bayesians make of frequentist approaches to econometrics.17 The import
of this criticism will differ across contexts. The reason is that, for a large
range of cases, Bayesian and maximum likelihood estimates converge, so
that the distinction focusing on the distribution of parameters versus the
associated estimates is of second-order importance in large samples.18 We
will not focus on this issue.
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Model Uncertainty

The basic framework we have described may be employed to under-
stand how to account for model uncertainty. To see how one would do
this, suppose that there exists a set M of possible models of the economy.
We treat the set of possible models as finite; allowing for richer model
spaces may be done in a straightforward fashion for a number of con-
texts.19 With respect to our previous discussion, the question we now
address is how to incorporate uncertainty about the appropriate model of
the economy when evaluating policies. 

One important issue in dealing with model uncertainty concerns
whether it should be treated in the same way as uncertainty over other
unknowns, such as parameters, or over the realizations of future shocks to
the economy. For now, we treat all uncertainty symmetrically, so that the
incorporation of model uncertainty into policy evaluation calculations
requires only that the policymaker incorporate a probabilistic description
of model uncertainty into equations 1 and 2; however, there will turn out
to be some dimensions along which model uncertainty may warrant a dif-
ferent treatment.

Expected Loss Calculations under Model Uncertainty 

To extend our discussion in the previous section to include model
uncertainty, it is necessary to modify the description of uncertainty over θ
in such a way that it no longer is conditioned on a given model. Put dif-
ferently, from the perspective of policy evaluation, a policymaker will not
want to condition decisions on a particular model unless he or she knows
that the model is true with a probability of 1. Rather, the policymaker will
want to compute expected losses conditioning only on the realized data d.
Relative to the expected loss calculation described by equation 1,
accounting for model uncertainty means that the expected loss for a given
policy should be evaluated under the assumption that the model m is an
unknown. This requires modifying the policy evaluation equation (equa-
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tion 1) so that the expected loss associated with each policy accounts for
this; the expected loss associated with a policy that conditions only on the
data may be calculated as

where

The term µ(θ | d) describes the posterior probability of the relevant
unknowns conditional on the observed data d and accounting for model
uncertainty. As before, the role of econometric analysis is in computing
this object. 

Equation 4 illustrates how one can eliminate the dependence of
expected loss calculations on a particular model: one treats the identity of
the true model as an unobserved random variable and “integrates” it out
of the loss function and the posterior density for unobservables. This tech-
nique is known in the statistics literature as model averaging.20

Failure to account systematically for model uncertainty is, in our judg-
ment, a defect of much current econometric practice. “Standard” econo-
metric practice consists of calculating quantities that are variants of the
conditional probability µ(θ | d, m). As we have argued, in the presence of
model uncertainty, the natural object of interest in policy evaluation is
µ(θ | d). Although it is common practice to evaluate the robustness of
µ(θ | d,m) relative to some set of modifications of a baseline model speci-
fication, these are typically ad hoc. In addition, the common practice of
reporting results for a set of related models in order to show the robust-
ness or nonrobustness of a given finding across models does not provide a
way of combining this information across specifications. Nor does this
practice provide a clear way of thinking about nonrobustness. If a coeffi-
cient is large in one regression and small in another, what conclusion
should be drawn? The calculation of µ(θ | d) renders such questions moot,
because the information about θ that is contained in each model specifi-
cation is integrated into its construction. 

( ) ( | ) ( | , ) ( | ).4 µ θ µ θ µd d m m d
m M

=
∈
∑

( ) ( , ) | ( , ) ( | ) ,3 E l p d l p dθ θ µ θ θ[ ] = ∫ d
Θ
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To understand what is needed to construct µ(m | d), it is useful to
rewrite this conditional probability as

where ∝ means “is proportional to.” As equation 5 indicates, the calcula-
tion of posterior model probabilities depends on two terms. The first term,
µ(d | m), is the probability of the data given a model, and so corresponds
to a model-specific likelihood. The second term, µ(m), is the prior proba-
bility assigned to model m. Hence, computing posterior model probabili-
ties requires specifying prior beliefs on the probabilities of the elements
of the model space M. The choice of prior probabilities for a model space
is an interesting and not fully understood problem and will be discussed
below. One common choice for prior model probabilities is to assume that
each model is equally likely. But even in this case, the posterior probabil-
ities will not be equal since these probabilities depend on the relative like-
lihoods of each model. 

One can develop some insight into what this approach can accomplish
by comparing it to a recent analysis by Andrew Levin and John Williams,
which is very much in the spirit of model averaging.21 In their paper,
monetary policy rules are evaluated when a forward-looking model, a
backward-looking model, and a hybrid, forward- and backward-looking
model of output and inflation are each given a probability weight of 1/3;
in each case the parameters are also assumed known a priori. The calcula-
tion of expected losses from the policy rules is done using their analogue
to equation 3. Relative to this approach, we would argue that the appro-
priate model weights are not fixed probabilities but rather posterior prob-
abilities that reflect the relative goodness of fit across the various models.
In addition, we would argue that one needs to account for specification
uncertainty for each of the models Levin and Williams consider. For
example, one would not want to assume that lag lengths are known a pri-
ori. In other words, model uncertainty occurs at a range of levels, includ-
ing both the economic theory that constitutes the underlying logic of a
model and the detailed specification of its statistical structure. (Our
approach would also account for parameter uncertainty in the calculation
of expected losses, but this is an issue distinct from model uncertainty.) 

( ) ( | )
( | ) ( )

( )
( | ) ( ),5 µ µ µ

µ
µ µm d

d m m

d
d m m= ∝
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How does model uncertainty alter the ways in which one thinks about
statistical quantities? Suppose that the goal of an exercise is to character-
ize aspects of an unknown quantity δ. Suppose that one is able to calculate
the mean and variance of this object conditional on a given model. In
order to compute the mean and variance of δ without conditioning on a
given model, one uses the posterior model probabilities to eliminate this
dependence. Following formulas due to Leamer,22 the mean and variance
of δ, once one has accounted for model uncertainty, are 

and 

respectively.
These formulas illustrate how model uncertainty affects a given pa-

rameter estimate. First, the posterior mean of the parameter is a weighted
average of the posterior means across each model. Second, the posterior

variance is the sum of two terms. The first term, µ(m | d) var(δ | d, m),

is a weighted average of the variances for each model and directly paral-
lels the construction of the posterior mean. The second term reflects the
variance across models of the expected value for δ; these differences
reflect the fact that the models are themselves different. This term,

µ(m | d ) [E(δ | d, m) – E(δ | d )]2, is not determined by the model-

specific variance calculations and in this sense is new, capturing how
model uncertainty increases the variance associated with a parameter esti-
mate relative to conventional calculations. The term measures the contri-
bution to the variance of δ that occurs because different models produce
different estimates E(δ | d, m). To see why this second term is interesting,
suppose that var(δ | d, m) is constant across models. Should one conclude
that the overall variance is equal to this same value? In general, one

Σ
m M∈

Σ
m M∈

( )

var( | ) ( | ) – ( | )

( | ) var | , ( | , ) – ( | )

( | )var( | , ) | ( | , ) – ( | ) ,

7

2 2

2 2

2

δ δ δ

µ δ δ δ

µ δ µ δ δ

d E d E d

m d d m E d m E d

m d d m m d E d m E d
m M

m M m M

= [ ] =

( ) + [ ]{ } [ ] =

+ ( )[ ]
∈

∈ ∈

∑
∑ ∑

( ) ( | ) ( | ) ( | , ),6 E d m d E d m
m M

δ µ δ=
∈
∑
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should not do so. So long as there is any variation in across
models, then var(δ | d, m) < var(δ | d); that is, the cross-model variations
in the mean increase the uncertainty (as measured by the variance) that
exists with respect to δ. As argued by David Draper,23 this second term
explains why one often finds that the predictions of the effect of a policy
grossly underestimate the actual uncertainty associated with the effect.

Model Uncertainty and Ambiguity Aversion

This analysis of model uncertainty may be generalized to allow for
preferences that move beyond the expected utility paradigm that underlies
equations such as equation 1. In particular, the framework may be adapted
to allow for preference structures that evaluate uncertainty about models
differently from other types of uncertainty. Does this distinction between
sources of uncertainty matter? We would argue that this is an important
implication of some of the work associated with the new behavioral eco-
nomics,24 and with recent developments in economic theory. 

One famous example of a behavioral regularity that suggests that indi-
vidual preferences cannot be modeled using standard expected utility
formulations is the Ellsberg paradox,25 which is based on the following
experiment. Individuals are asked to state their preferences across four
different lotteries. In lottery 1 the individual receives a cash prize if a red
ball is drawn from an urn with fifty red and fifty black balls. In lottery 2
the same prize is awarded if a black ball is drawn from the same urn. In
lottery 3 the same prize is awarded if a red ball is drawn from a second
urn, which also contains a total of 100 red and black balls, but in this urn
the proportion of red to black balls is not specified. In lottery 4 the same
prize is awarded if a black ball is drawn from the second urn. Daniel
Ellsberg argues that individuals show a consistent preference for lotteries
1 and 2 over either 3 or 4. From the perspective of expected utility the-
ory, this is paradoxical because it implies certain violations of the Sav-
age axioms that underlie expected utility theory. For our purposes, the
Ellsberg paradox is interesting because it suggests a distaste for model

E d m( | , )δ
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uncertainty, in the sense that lotteries 3 and 4 are associated with a range
of probabilities for the proportions of red and black balls.

A range of experimental studies have confirmed that individual prefer-
ences reflect a distaste for model uncertainty of the type Ellsberg
described.26 This distaste does not appear to be explained by the possibil-
ity that the participants do not understand the rules of conditional proba-
bility: Paul Slovic and Amos Tversky found that providing participants
with written explanations of why preferring lotteries 1 and 2 to lotteries 3
and 4 is inconsistent with expected payoff maximization does not elimi-
nate the paradox.27 Further, it does not appear that the distaste for urns
with unknown proportions reflects a belief that lotteries 3 and 4 are some-
how rigged against the participant (in the sense, for example, that the
composition of the second urn is changed once a payoff rule is chosen).28

It therefore seems that the Ellsberg paradox reflects something about indi-
vidual preferences, not cognitive limitations.

This type of behavior has been axiomatized in recent work by Larry
Epstein and Tau Wang and by Itzhak Gilboa and David Schmeidler on
ambiguity aversion.29 This work has proposed a reformulation of individ-
ual preferences so that they reflect a dislike of “ambiguity” as well as of
risk. In these approaches, distaste for ambiguity means that the actor
places extra weight on the worst uncertain outcome that is possible in a
given context. The theoretical development of models of ambiguity aver-
sion is important in showing that this aversion emerges as a feature of
behavior not because of the cognitive limitations of an actor but rather
from a particular formulation of how an actor evaluates uncertainty in
outcomes. 

The ideas that underlie recent work on ambiguity aversion are directly
applicable to the formulation of policymaker preferences. Notice that one
essential feature in the lotteries that motivate the Ellsberg paradox
appears to be the distinction agents draw between knowing that an urn has
fifty red and fifty black balls and not knowing the proportions of colors,
even if one is then allowed to choose which color produces a payoff. This
is interpretable as meaning that individuals assess model uncertainty dif-
ferently from uncertainty with respect to outcomes within a model.
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Although these experiments do not, of course, directly measure objects
that are relevant to policymaker preferences, we do believe they suggest
that model uncertainty plays a special role in such preferences. 

In our context, suppose that a policymaker’s preferences reflect ambi-
guity aversion in the sense that extra weight is placed on the most unfa-
vorable model of the economy that may hold, relative to the weight
associated with the posterior probability of that model. Following the
approach suggested by Epstein and Wang,30 such preferences may be for-
malized through the function

In this expression, e indexes the degree of ambiguity aversion. When e = 0,
this expression reduces to our earlier expected loss calculation (equa-
tion 3). When e = 1, policies are evaluated by a minimax criterion: the
loss associated with a policy is determined by the expected loss it pro-
duces under the worst possible model; good rules are those that minimize
losses under worst-case scenarios.31

Is this type of preference structure relevant to policy analysis? We
argue that it is on several levels. First, the preference structure does reflect
the sorts of experimental evidence that have motivated the new behavioral
economics, and so as a positive matter they may be useful in understand-
ing policymaker preferences. Second, we believe that this type of prefer-
ence structure reflects the intuition that there exist qualitative differences
across types of uncertainty. In particular, we believe that ambiguity aver-
sion is a way of acknowledging that one can plausibly argue that there are
situations where priors over the space of models are not necessarily well
enough defined, nor is any version of a noninformative prior well enough
developed, that standard expected loss calculations can be sensibly made.
And, of course, as work by Epstein and Wang and by Gilboa and
Schmeidler has shown, ambiguity aversion is perfectly consistent with
rational decisionmaking; the expected utility paradigm does not have a
privileged position in this sense.

( ) ( – ) ( , ) ( | ) sup ( , ) ( | , ) .8 1 e l p d e l p d mm Mθ µ θ θ θ µ θ θd d+ [ ]∫ ∫∈Θ Θ
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Relation to Other Work

The approach we advocate to incorporating model uncertainty may be
usefully contrasted with those of a number of other research programs. 

extreme bounds analysis. An important research program on
model uncertainty originated with Edward Leamer and includes a strategy
for rendering the reporting of empirical results more credible.32 Leamer’s
ideas have been most extensively developed in the context of linear
regressions. Suppose that one is interested in the relationship between an
outcome y and some variable p. There exists a set Z of other variables that
may or may not affect y as well. For each subset of regressors Zm (differ-
ent subsets of Z correspond to different models), one can evaluate the
effect of p on y via the regression

Leamer proposes evaluating evidence on the relationship between p and y
via the distribution of estimates δ̂m across different subsets of control vari-
ables. He argues that a benchmark for evaluating the robustness of such
inferences is the stability of the sign of δ̂m across different specifications.
Leamer proposes a rule of thumb that stipulates that the relationship
between p and y should be regarded as fragile if the sign of δ̂m changes
across specifications. 

Following work by Brock and Durlauf,33 this rule of thumb may be
given a decision-theoretic interpretation. Suppose that a policymaker is
considering whether to change p from an initial value p– to some alterna-
tive p= > p– . Suppose that, conditional on model m, the loss function for the
policymaker is –δ̂m(p= – p– ). Leamer’s rule means that one will choose to
implement the policy if and only if infm∈M δ̂m(p= – p– ) > 0. This illustrates
how in two respects Leamer’s rule presupposes rather special preferences
on the part of the analyst. First, the rule requires that δ̂m be a sufficient sta-
tistic for the policymaker’s payoff function conditional on a particular
model. Second, the rule means that the policymaker’s evaluation of risk is
described by a very particular functional form. 

( ) .,9 y p Zi m i m m i i= + ′ +δ β ε
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Extreme bounds analysis has been subjected to serious criticism by a
number of authors.34 The major criticism, in our reading of the literature,
has been that Leamer’s procedure is insensitive to the relative goodness of
fit of different models. We believe this concern is valid: the fact that a
model that appears to be grossly misspecified produces a different sign for
δ̂m than does a model that does not appear to be misspecified seems, intu-
itively, a weak reason to conclude that evidence concerning δ is fragile.
This does not, however, invalidate Leamer’s deep idea that one needs to
account for the fragility of regression findings across specifications, nor
does it mean that extreme bounds analysis cannot be adapted in a way to
respond to the objection.

Following an argument by Brock and Durlauf,35 one can modify
Leamer’s idea in a way that preserves its core intuition. This becomes
apparent when one interprets Leamer’s analysis in the context of the
ambiguity aversion analysis we described above. Specifically, the
decision-theoretic version of extreme bounds analysis is a limiting case of
equation 8, where e = 1 and ∫Θl(p, θ)µ(θ | d, m)dθ = – δ̂m p. This calcula-
tion makes clear that ambiguity aversion is the key feature underlying
extreme bounds analysis as a procedure for reporting empirical results.
This implies that if one relaxes the requirement that e = 1, one can pre-
serve the ambiguity aversion that lies at the core of the extreme bounds
method and at the same time address criticisms of the procedure. In par-
ticular, for 0 < e < 1, the overall effect of a particular model-specific
parameter on a policy evaluation will be increasing in the model’s poste-
rior probability.

robust optimal control. In an influential recent body of research,
Hansen and Sargent have employed robust decision theory to account for
the fact that a policymaker typically does not know the true model of the
economy.36 This work has stimulated a growing literature.37 The robust
control framework differs from ours in two respects. First, Hansen and
Sargent consider model uncertainty that is centered around a “core
model.” What this means is that they consider environments in which the
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true model is known only to lie within some local neighborhood of mod-
els that surround it. This neighborhood set may be small or quite large,
depending on how the notion of distance between models is parameter-
ized. We will call this type of analysis a “local” analysis even though,
technically speaking, the neighborhood does not have to be small in the
usual mathematical sense. 

Second, Hansen and Sargent do not work with priors on the model
space, that is, µ(m). Rather, they engage in minimax analysis, in which
the least favorable model in the space of potential models is assumed to
be the “true” one for purposes of policy evaluation; this assumption is in
the spirit of Abraham Wald.38 To put it another way, Hansen and Sargent
assume that Nature draws a model from the neighborhood set of models
in such a way as to maximize the loss to the policymaker. They then set
their policy rule so as to minimize that loss while playing such a game
against Nature. In fact, their analysis is explicitly based on a two-player,
zero-sum game where Nature chooses a model (from a set of models cen-
tered on a core model) so as to maximize losses to the policymaker, and
the policymaker then chooses a policy to minimize losses.

Our discussion of the decision-theoretic approach to policy analysis is
closely connected to the Hansen-Sargent research program. In compari-
son with our discussion, Hansen and Sargent may be interpreted as devel-
oping their analysis on the basis of a particular way of characterizing the
space of potential models (one that possesses enormous power because it
allows one to bring robust control theory tools to bear) combined with a
description of policymaker preferences in which e = 1. This approach
reflects a modeling philosophy in which one starts with a well-developed
and economically sensible core model and explores the implications of
allowing for the possibility that the core model is misspecified. As
Hansen and Sargent describe their approach:

Starting from a single dynamic model, we add perturbations that represent
potential model misspecifications around that benchmark model. The perturba-
tions can be viewed as indexing a large family of dynamic models. . . . We pre-
fer to think about the perturbations as errors in a convenient, but misspecified,
dynamic macroeconomic model. We take the formal structure of our model for
perturbations from a source that served macroeconomists well before. . . .39
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Our analysis, in contrast, is motivated by the belief that model uncer-
tainty is, in many macroeconomic contexts, associated with the existence
of more than one core model that potentially describes the phenomenon
under study. Disagreements as to whether democratization is necessary
for sustained growth, or whether business cycles are better understood as
generated by monetary or real factors, are associated with very different
conceptions of the macroeconomy and constitute a different type of
uncertainty from the sort for which robust control theory is best designed.
Hence we favor an approach that allows for model uncertainty across a
range of core models.40 As such, it attempts to address the sorts of chal-
lenges John Taylor has identified in modern research on monetary policy:

. . . researchers are using many different types of models for evaluating mone-
tary policy rules, including small estimated or calibrated models with or with-
out rational expectations, optimizing models with representative agents, and
large econometric models with rational expectations. Some models are closed
economy models, some are open economy models, and some are multicountry
models. . . . Seeking robustness of . . . rules across a wide range of models,
viewpoints, historical periods, and countries, is itself an important objective of
policy evaluation research.41

Our focus on “global” (in this sense) model uncertainty has implica-
tions for how one thinks about losses. Specifically, if one does not believe
that the space of potential models is “narrow” in the sense defined by
Hansen and Sargent, the minimax approach is likely to give highly unsat-
isfactory results. The reason is that the minimax assumption implies that
policy evaluation will ignore posterior model probabilities. Hence a
model with arbitrarily low posterior probability can determine the optimal
policy so long as it represents the “worst case” in terms of loss calcula-
tions. This does not mean that the minimax assumption in Hansen and
Sargent is in any sense incorrect, only that the appropriateness of a partic-
ular strategy for evaluating losses depends on context. In particular, we
believe that the minimax strategy is very natural for the study of those
local forms of model uncertainty explored in the new robust control
approach to macroeconomics. In fact, the minimax approach has proved
extremely important in the development of robust approaches to policy
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evaluation, which is arguably the main new theoretical contribution of
recent macroeconomic research on model uncertainty. In the next section
we show how a very localized version of the minimax strategy can be
developed that gives intuitively reasonable results and uses only simple
calculus tools.

Theoretical Implications

Here we consider some theoretical implications of model uncertainty
for policy evaluation. Specifically, we analyze how a preference for pol-
icy robustness influences the design of policies. This approach employs
minimax preferences in the context of analyzing how a policymaker
might account for the introduction of model uncertainty defined by a local
neighborhood of models generated around a benchmark model or set of
models. As we have suggested, robustness analysis represents an impor-
tant innovation in the theory of policy evaluation and may be interpreted
as an approach to accounting for model uncertainty when policymaker
preferences reflect ambiguity aversion.42

Local Robustness Analysis

We first describe an approach to conducting local robustness exercises
in policy design. Recall that the previous general discussion placed pri-
mary focus on the role of the posterior density of θ—µ(θ | d, m) if the
model is known, µ(θ | d) if the model is unknown—in allowing a policy-
maker to evaluate policies. We initially assume that m is known and ask
how perturbations around this initial model affect optimal policy choice.
Specifically, we ask how the optimal policy changes with respect to a
change in one of the parameters of that density, which we designate as α.
Let p*(α) denote the optimal policy as a function of this parameter, and let
J[p*(α), α | m] denote the value of equation 2 evaluated at this optimal
policy choice. For technical simplicity we assume that both J[p*(α), α | m]
and p*(α) are twice differentiable.
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To think about robustness, we consider how a policy should be chosen
when the policymaker does not choose it in response to a fixed parameter
α– but rather chooses it when the parameter is constrained to lie in a neigh-
borhood N = [α– – ∆, α– + ∆]. Each element in this neighborhood defines a
different distribution for θ and thus constitutes a separate model. Of
course, one cannot specify an optimal policy unless one specifies how this
parameter is determined. The key idea behind robustness analysis is to
assume that this choice is dictated in the way that is least favorable to the
policymaker. Metaphorically, one can suppose that the policymaker faces
an “adversarial agent,” who chooses the actual parameter from this inter-
val in such a way as to maximize the loss function of the policymaker.
This metaphor captures the idea in robustness analysis that one chooses a
policy based upon minimax considerations. A robust policy is the one that
is optimal when confronted by the least favorable model in the space of
models implied by the neighborhood. 

To understand how robustness affects optimal policy choice, we first
consider how an adversarial agent will choose an element of N. When ∆ is
small, one can work with the approximation 

The second equality follows from the envelope theorem. Hence the adver-
sarial agent will, for small ∆, choose α– + ∆ if {∂J[p*(α– ), α– | m]}/∂α > 0,
and α– – ∆ otherwise. 

The robust policy response can thus be computed as a response to the
action of the adversarial agent. It is straightforward to show that the
robust policy response to the introduction of the adversarial agent is43
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One important feature of these formulas is that they indicate how
introducing an adversarial agent and considering robustness are different
from simply introducing uncertainty around a model parameter. As first
shown in the classic work of Kenneth Arrow and John Pratt, risk is a
second-order phenomenon in the sense that, starting, for example, with
consumption at a certain risk-free level, the addition of a sufficiently
small random variable with mean zero to this consumption level has no
effect on utility. In our context, adding a small amount of uncertainty
around α– in the form of a mean-zero random variable would similarly
have no effect on optimal policy. The introduction of a neighborhood of
uncertainty around α– combined with an adversarial agent, in contrast,
produces a first-order effect on behavior, except in the special case
where {∂J[p*(α– ), α– | m]}/∂α = 0. The reason is quite intuitive: the pres-
ence of the adversarial agent ensures that the effect on the expected loss to
the policymaker from the introduction of the neighborhood will never be
zero. Put differently, robustness analysis is predicated on the idea that
uncertainty cannot be modeled as a mean-preserving spread, but rather is
measured in terms of the bounds of the effects of the uncertainty on
changes in payoffs. For this reason, robustness analysis is conceptually
distinct from conventional risk analysis. 

application to brainard. This general discussion can be applied in
the context of Brainard’s classic analysis of the optimal choice of policies
in the presence of uncertainty.44 Brainard’s model focuses on the question
of how to stabilize (in the sense of minimizing expected squared devia-
tions) a variable y around some objective y– using two policy instruments
p1 and p2. The baseline model for this analysis is
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where ε denotes a random variable that captures aspects of y outside the
policymaker’s influence. In the context of our loss framework, Brainard’s
problem may be written as

Following Brainard, it is assumed that ε is independent of θ1 and θ2 and
that E(θ1) = E(θ2) = 1. Letting σij denote the covariance of θi and θj,
Brainard shows that the optimal policy choices in this environment are 

and 

The key insight of these formulas is that policy options with uncertain
effects as formulated here render the choice of policies analogous to a
portfolio problem, such that the policy weights are determined by an opti-
mal mean-variance trade-off. 

How does a robustness analysis affect these calculations? To explore
this, we consider how, starting from fixed parameters, allowing for an
adversarial agent to choose a parameter from an interval centered on these
parameters affects optimal policy. Let σ–ij denote the baseline for parame-
ter σij. Suppose that the adversarial agent chooses the variance of the first
instrument from the interval [σ–11 – ∆, σ–11 + ∆]. Using equation 13, it is
straightforward to verify that the adversarial agent will choose σ–11 + ∆,
since the policymaker’s payoff is decreasing in the variance of the policy
instrument’s parameter; that is, the loss is increasing in σ11. (This follows
immediately from the risk aversion built into the policymaker’s loss func-
tion.) The first-order conditions for optimal policy choice may be shown
to imply 
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and 

Equations 16 and 17 illustrate several basic ideas. First, policy p2 is
always adjusted in the opposite direction from p1 if 1 + σ–12 > 0, and in the
same direction if 1 + σ–12 < 0. Recall that the policies have been normal-
ized so that the expected values of their effects are 1; that is, θi has been
divided by E(θi). This suggests a presumption that the policies will be
adjusted in opposite directions.

Second, regardless of the covariance structure of the policy effects, an
increase in σ11 leads to a reduction in |p*

1 |. This makes intuitive sense: the
less trustworthy control is used less aggressively. Combined with 1 + σ–12

> 0, one derives a “precautionary principle” for policymakers: one robus-
tifies against uncertainty in p1 by using that policy less aggressively and p2

more aggressively.
Third, this discussion illustrates the difference between evaluating the

introduction of risk and evaluating robustness. Suppose that one started
with σ11 = σ22 = 0 and began a local increase in the variances. Following
the logic of the Arrow-Pratt theory of risk aversion, there would not be a
first-order effect. The robustness analysis, in contrast, does produce a
first-order effect.

application to monetary policy rule evaluation. Analogous
results may be developed in the context of monetary policy rules. This can
be seen using a model by Lars Svensson,45 which is a one-equation ver-
sion of an important output-inflation model due to Glenn Rudebusch and
Svensson.46 In this model πt denotes the gap between actual inflation and
some target, yt denotes the gap between output and some target, and et

denotes an independently and identically distributed (i.i.d.) sequence of
shocks. The inflation gap evolves according to 
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where φ = 1. This equation is a proxy for the actual policy process: the
policymaker is assumed to be able to control the output gap. The policy-
maker’s preferences are described by the loss function

Svensson shows that the optimal policy rule for this model is

To see how robustness works for this model, consider the coefficient φ,
in equation 18, which Svensson assumes equals 1 in all periods. Suppose
that at time t the adversarial agent may select φ from the neighborhood
N = [1 – ∆, 1 + ∆] for period t; there is no such choice for future periods.
One can show that the loss to the policymaker is increasing in this coeffi-
cient, so that the least favorable possible coefficient in N is 1 + ∆. (Intu-
itively, a policymaker prefers less persistence in the inflation process,
because it diminishes the net costs to an expansionary policy today.) The
optimal choice of the output gap will then equal

which is more aggressive than the original rule. To understand the differ-
ence, consider that robustness in this case means that the policymaker
needs to react more aggressively when inflation experiences a shock due
to the potentially explosive dynamics associated with the least favorable
coefficient value φ = 1 + ∆. The locally robust response to this potential
for explosiveness in the inflation process is to act more aggressively in
response to deviations of output above target. This finding is consistent
with the intuition when the channel from the control variable to the out-
come of interest is more “trustworthy” than the other determinants of the
outcome of interest (the free dynamics of the process), in the sense that if
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one robustifies with respect to those parameters that characterize the free
dynamics, one will use the control more aggressively.47

Alternatively, robustness may be sought with respect to the measure of
control strength δ; that is, rather than treat the control strength as a fixed
δ–, an adversarial agent chooses the measure of control strength from the
neighborhood [δ– – ∆, δ– + ∆]. One can show that the least favorable param-
eter for the policymaker in this neighborhood is δ– – ∆. This is unsur-
prising because a smaller value for δ in equation 18 implies a steeper
Phillips curve for the policymaker. The response to this change will
depend on the sign of βkδ2 – λ. If this term is positive, the policymaker
will be more aggressive than when there is no desire to make policies
robust with respect to δ. In other words, the coefficient that relates πt to y*t
will be larger than appears in equation 20. On the other hand, if this term
is negative, the coefficient will be smaller than appears in equation 20.
Why does introducing robustness affect policy responses in this way? The
condition βkδ2 – λ > 0 implies that relatively little weight is placed upon
output gap volatility. This leads the policymaker to react very strongly
when output is above target; a central bank with such preferences can
choose a robust policy strategy to guard against uncertain control by
becoming more aggressive in moving output back down to target. 

It is interesting to compare this result with the following statement by
Taylor: 

I think it is clear that the Phillips curve and the low estimate of the natural rate
of unemployment helped lead [in the 1960s] to the appointment of policymak-
ers with less concern about pursuing price stability. It also probably led to mon-
etary decisions—such as delays in raising interest rates when faced with
inflationary pressures in the late 1960’s and 1970’s—which were inconsistent
with price stability.48

Suppose one interpreted Taylor as saying that policymakers in the late
1960s and early 1970s had high confidence in their Phillips curve slope
estimates—∆ was close to zero. As confidence waned and ∆ became
larger during the stagflation experience of the 1970s, our findings suggest
that control would have become more aggressive so long as βkδ2 – λ > 0,
which would be consistent with the preferences of an inflation hawk as
Federal Reserve chairman such as Paul Volcker or Alan Greenspan.
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Of course, we do not claim that such a simple model can explain U.S.
monetary policy history over the last twenty-five years. We offer this sce-
nario only to illustrate how robustness analysis can yield interpretable
results. More generally, we believe that robustness analysis is important
in allowing one to analyze how “ignorance” affects policy, where igno-
rance is measured using the intervals around parameters.

Robustness with Multiple Core Models

The analysis of robustness may be extended to the case where there is
more than one core model. Abstractly, the analysis of robustness with
respect to a parameter α of µ(θ | d) may still be done using the formula in
equation 11 if J[p*(α),α | m] is replaced with J[p*(α),α], where 

so that p*(α) now denotes the optimal policy conditional on α after model
uncertainty has been accounted for.

We will use equation 22 as the basis for our discussion of robustness
with multiple core models. In doing so, we will not address issues of
robustness that arise when ambiguity aversion is present in the form
described by equation 8, although one certainly can conduct the analysis
under such preferences.

application to growth economics. To see what new insights
emerge when one introduces multiple core models, we develop an analy-
sis of robustness in a growth context. We first discuss within-model
robustness and then allow for multiple core models.

Consider a policymaker who is evaluating whether to change a policy
variable p in order to affect the rate of economic growth in country i. We
consider the econometric issues involved with such a question below;
here we wish to deal with some theoretical issues. Let model m of the
growth process for country i be

Here Si,m denotes all growth determinants other than the policy variable pi;
different models are indexed by different choices of growth determinants.
Suppose this regression is applied to data in order to produce estimates of
the mean and variance of δ as well as the covariance of δ and υ. 
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Let the policymaker evaluate growth in country i according to the loss
function

where r scales the relative weights of expected growth and the uncertainty
in growth (as measured by the standard deviation). The optimal policy
level for a given model will, under these preferences, equal

How does one design a robust policy strategy to deal with uncertainty
in the effectiveness of policy parameter σδδ? Taking σ–δδ as the value of the
parameter without uncertainty, and following the same line of argumenta-
tion used above, the policymaker does this by choosing a policy that
guards against the least favorable value in the interval [σ–δδ – ∆, σ–δδ + ∆].
That value is σ–δδ + ∆, since the policymaker is assumed to be risk averse.
In turn, the optimal policy choice has the property that 

which means that the robust policy level p* + dp* is smaller than p*(σδδ)
if p* > 0, and p* + dp* is larger than p*(σδδ) if p* < 0. Again we see that
a policymaker who seeks local robustness with respect to σδδ will follow a
precautionary strategy by being less aggressive. More generally, if a
policymaker’s preferences are described by expression 24, one can show
from equation 25 that p* is increasing in E(δ), that |p*| is decreasing in
σδδ, that p* is decreasing in σδυ, and that p* is decreasing in r if E(δ) > 0
but increasing in r if E(δ) < 0.

Relative to these results, in particular equations 25 and 26, the intro-
duction of multiple core models requires the replacement of model-
specific versions of E(δ), σδδ, and συiδ by their counterparts as calculated
via model averaging, as described by equations 6 and 7. Once one has
replaced the model-dependent moments in equation 25 with the moments
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described by equations 6 and 7, one can proceed with various forms of
robustness analysis. 

Following our earlier discussion, we first focus on the variance of the
policy variable coefficient. Let σδδ,m denote the variance of the policy
coefficient conditional on model m; the corresponding variance of the pol-
icy coefficient when one uses equation 7 to eliminate model dependence
is σδδ. Suppose that an adversarial agent chooses σδδ,1 from the neighbor-
hood [σ–δδ,1 – ∆, σ–δδ,1 + ∆]. Letting µ(m = i) denote the posterior probability
of model i, one can show that

This means that the least favorable variance for the policymaker is σ–δδ,1

+ ∆. In response, the policymaker will adjust the policy variable accord-
ing to 

This equation is quite intuitive. It says that the policymaker will reduce
the level of the policy variable and that this reduction is increasing in the
degree of risk aversion, r, and in the probability of model 1.

One can also discuss robustness with respect to the model probabili-
ties. For simplicity, we assume there are only two models. This allows
one to assess robustness with respect to µ(m = i) without having to spec-
ify where the change in probability for this model affects others. (In the
case of two models, changing the probability of one of the models of
course means the other changes by an opposite amount.) Letting J1 denote
the policymaker’s loss under model 1 and J2 the loss under model 2, then

This formula indicates that if one is considering robustness with respect to
posterior model probabilities in the interval [µ(m = 1) – ∆, µ(m = 1) + ∆],
the value against which one guards will depend on the relative values of J1

and J2. Suppose that J1 > J2, so that the policymaker prefers model 1, con-
ditional on p*. In this case the optimal policy response will follow
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where Em denotes the expectation under model m.
In general, it is unclear whether the change described by equation 30 is

positive or negative. However, if r is small, then dp* ≈ –[E1(δ) – E2 (δ)]∆,
so that if E1(δ) > E2(δ), then the policy is used less aggressively when
robustness is incorporated into the policy construction.

Issues in Empirical Implementation

Here we turn from the theoretical side of model uncertainty to a dis-
cussion of how to incorporate model uncertainty into empirical exercises.
This section discusses some operational issues; the next section will pre-
sent some empirical exercises.

Bayesian, Frequentist, and Waldean Approaches to Model Evaluation

From the perspective of empirical analysis, the key objects that must
be computed are µ(θ | d, m) and µ(m | d). These calculations require that a
researcher take a stance on the use of Bayesian versus frequentist meth-
ods. Here we describe how this is so and show that the basic model aver-
aging idea may be applied in both Bayesian and frequentist contexts.

a full bayesian approach. The basic framework we have described
corresponds to the way a Bayesian would model a decision problem, once
one has specified a way of estimating µ(θ | d, m) that formally accounts
for prior information. To see this, notice that 

or

This latter formulation is the classic Bayes rule. The key idea is that the
description of uncertainty about θ given data d, also known as the poste-
rior density, depends on two terms: µ(d | θ, m), the probability of the data
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d given θ, and µ(θ | m), the probability of θ conditional on model m.
Notice that, in our interpretation, this prior density represents the uncer-
tainty about θ that exists before the data d are realized. We do not assume
that these unknowns are necessarily intrinsically random (such an
assumption may not be appealing when the unknowns are parameters that
characterize the economy, but of course is natural when the unknowns are
shocks). Rather, the uncertainty about θ is subjective, in that it is charac-
terized relative to the policymaker.

This formulation is what David Lindley has called “the complete
Bayesian paradigm,” concluding as follows:

Notice how constructive the paradigm is. It is like a recipe. You only have to
follow the rules. What do you know? . . . What is uncertain? . . . What are the
possible decisions? . . . In the coherent system, it is perfectly clear what has to
be done. The difficulties are the evaluation of some of the probabilities and util-
ities and the calculation of others. . . .49

Lindley’s distinction between evaluating probabilities and calculating
them alludes to a standard objection to the assumption in Bayesian meth-
ods that all uncertainty may be described (evaluated) in terms of probabil-
ities. This worry should not be dismissed; some eminent statisticians such
as David Freedman are not Bayesians for this reason. However, in our
view the correct response to this objection is to recognize that decisions
on priors are perfectly defensible on pragmatic grounds. Eric Leeper,
Christopher Sims, and Tau Zha provide a good example of this and per-
suasively argue in favor of their use of informal methods to place prior
restrictions on impulse-response functions in order to produce plausible
results. As these authors remark,

We could have accomplished the same, at much greater computational costs, by
imposing our beliefs about the forms of impulse responses as precise mathemat-
ical descriptions, but this would not have been any more “disciplined.”. . . There
is nothing unscientific or dishonest about this. It would be unscientific or dis-
honest to hide results for models that fit much better than the one presented . . .
or for models that fit about as well as the one reported and support other inter-
pretations of the data that some readers might regard as reasonable. . . .50

The basic message we wish to communicate is that accounting for model
uncertainty can be done using standard Bayesian statistical methods.
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model uncertainty and frequentist methods. Although a full
Bayesian approach provides a coherent way of dealing with model uncer-
tainty, it does not constitute a unique strategy for doing so. The basic
logic of treating the true model as an unknown and accounting for this can
be readily adapted to frequentist data analyses; we will term this a
pseudo-Bayesian approach. To see this, suppose that, conditional on
model m and data d, a policymaker assigns losses to each policy and data
combination via some function l(p | d,m). We interpret this as a frequentist
loss function; the idea is that, given a model and data, one may compute
sample moments of interest to the policymaker and define losses with
respect to them. This function may in turn be thought of as a random vari-
able that has been conditioned on another random variable, namely,
model m. One can therefore eliminate this dependence on m using the
standard formula for conditional probabilities, that is, by computing an
expected loss of the form

Although the last term of this expression requires a statement of prior
probabilities on the model space, it does not require assigning prior prob-
abilities to the unobservables contained in θ. From the perspective of
frequentist calculations, µ(d | m) may be approximated by the standard
likelihood statistic.51

Although an orthodox Bayesian might object to analyses such as equa-
tion 33 using the standard critiques of frequentist statistical methods, this
is not relevant for our objective of providing ways to enhance the utility
of empirical analyses of policies.52 In our empirical applications we will
use both full Bayesian and pseudo-Bayesian strategies to illustrate how
each may be made operational.

the waldean approach. Perhaps the major non-Bayesian approach
to decision theory is due to Abraham Wald. In this type of analysis, the
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focus is on the development of statistical decision functions, that is, the
modeling of p(d), which is a mapping from the space of data to the space
of possible policy choices. The expected loss for a decision rule depends
on the unknown θ. This leads to the notion of the risk function R associ-
ated with a given statistical decision function:53

Policy rules are thus evaluated with respect to their associated risk. Risk
functions, however, can only be evaluated conditional on θ. There are a
range of ways to eliminate this conditioning when θ is unknown. If uncer-
tainty about θ is described by a probability density µ(θ), one can choose
p(d) so as to minimize expected risk:

By a standard calculation,54 the evaluation of average risk leads to the
same expected loss calculation as in equation 1 when one uses the com-
plete Bayesian solution we have described; µ(θ) functions as a prior
density.

A meaningful contrast between the Waldean and Bayesian approaches
occurs if instead one follows a minimax strategy: choose p(d) so as to
minimize

Are there cases where the Waldean approach can yield useful insights?
The answer reduces, in our view, to the question of how one wants to han-
dle priors, and so must be handled in context. For example, in the Hansen-
Sargent context where model uncertainty is defined around a single core
model, the minimax strategy seems quite appealing. Similarly, our discus-
sion of ambiguity aversion provides a justification for applying the
Waldean approach with respect to cross-model uncertainty regardless of
how one evaluates within-model uncertainty.
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Characterizing Model Uncertainty

specifying elements of the model space. The specification of a
space of possible models is ultimately a matter of the researcher’s judg-
ment. In one trivial sense, this follows whenever two researchers disagree
on what models should be assigned zero prior probability. At the same
time, our general view of disagreements about models in economics sug-
gests that it is useful in specifying a model space to consider several dis-
tinct levels of model uncertainty and build up the space sequentially. The
following levels are, we believe, a useful way to structure the building up
of a model space.

—Theory uncertainty. As a rule of thumb, we would argue that model
uncertainty occurs first because of theory uncertainty. Continuing dis-
agreements among macroeconomists over the degree of price flexibility,
the role of rational expectations and forward-looking behavior in describ-
ing individual decisions, and so forth are a good illustration of the limits
to which the current state of economic theory can guide a policymaker. Of
course, the persistence of disagreements over fundamental aspects of the
economy also reflects the absence of empirical evidence that would be
decisive in adjudicating among alternative theories. At the same time,
there are in most policy-relevant cases a rich range of alternative theories
whose empirical analogues can form the first dimension along which to
characterize the model space.

—Specification uncertainty. Once one has specified a range of theo-
ries, model uncertainty may then be discussed from the perspective of
specification uncertainty. Standard examples of things subject to specifi-
cation uncertainty in macroeconomic contexts include the lag length for
vector autoregressions and possible nonlinearities in the processes under
study. Another form of specification uncertainty relates to measurement.
In contexts such as growth economics, many empirical proxies have been
proposed for a given theory.

—Heterogeneity uncertainty. A third level of uncertainty in model
specification concerns the extent to which different observations are
assumed to obey a common model. In business cycle contexts, one needs
to determine whether a model is rich enough so that data generated during
a boom and data generated during a recession may be interpreted as real-
izations from the same model. In growth contexts, one needs to determine
the extent to which one allows for exceptionalism in the experiences of
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individual countries or regions. Different specifications of heterogeneity
in turn produce different models.

To be clear, these levels of uncertainty are not “natural kinds.” For
example, one can interpret heterogeneity uncertainty in many cases as a
question of incorporating nonlinearity, and thus as a form of specification
uncertainty. Our purpose is merely to indicate some of the judgments that
need to be made in constructing a model space.

interpreting a model space. Although the specification of a model
space is something that may be discussed only in the context of a partic-
ular economic phenomenon, a distinct issue is whether the analysis
assumes that the “true” model is an element of the space. Jose Bernardo
and Adrian Smith distinguish environments that are M-closed and
M-open:55 M-closed environments are those where the true model is
unknown but is included in the model space; in M-open environments,
none of the models under analysis is true. From the perspective of model
averaging procedures, as the number of observations increases, the “true”
model will receive an asymptotic weight of 1;56 when no model is true,
that model which best approximates the data (in a particular sense based
on Kullback-Leibler distance) will asymptotically receive a weight of 1. 

Although the asymptotics of statistical procedures that account for
model uncertainty are reasonably well understood for both M-closed and
M-open cases, there has been relatively little work on the analysis of deci-
sion rules in M-open contexts. Bernardo and Smith propose some ways of
engaging in statistical decision theory when no model is true; they do this
in a very special context where the action of the modeler is the choice of a
model and the objective of the modeler is the prediction of a future obser-
vation. The analysis unfortunately does not readily generalize to the sorts
of problems that economic policymakers typically face, one reason being
the question of interpreting counterfactuals in light of the Lucas critique;
nor does the analysis address the model averaging approach we advocate. 

The evaluation of policies in M-open cases is, in our judgment, an
important open question. At the same time, we would note that the con-
cern should not be overstated, at least in our context. Incorporating model
uncertainty into policy analysis is the most appropriate way, we believe,
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to minimize the role of misspecification in distorting policy evaluation.
The objective of our model averaging approach is explicitly to treat alter-
native models of the economy as potential candidates for the true model
and allow the data to distinguish between them. Concerns about the
absence of a true model in the space of potential models can thus apply
only to models that the researcher has failed to foresee as a possibility.
(The analysis of decision rules in the presence of unforeseen types of mis-
specification lies at the frontiers of decision theory, because it requires
thinking about decisions when the decisionmaker does not know the sup-
port of the uncertainty he or she faces. Although recent work in economic
theory has addressed some aspects of this problem, it is far from well
understood.) Further, because the specification of a model space will pre-
sumably evolve over time as more information becomes available to an
analyst, at least asymptotically the assumption that the space is M-closed
may not be as strong as it first appears. 

specifying prior probabilities on models. A final issue in charac-
terizing model uncertainty concerns the construction of prior probabilities
over models. The specification of prior probabilities on a model space
raises many conceptual issues. Some of these are related to the general
questions, which continue to be debated in Bayesian contexts, concerning
the nature of prior probabilities. Our own views in this regard are prag-
matic. Desiderata in the assignment of priors include, in our view:

—Informativeness with respect to the likelihood. Priors should assign
relatively high probability to those areas of the likelihood that are rela-
tively large. Otherwise, the prior will have an excessive impact on the
posterior description of the parameters.57

—Robustness. A prior should be robust in the sense that a small change
in the prior should not induce a large change in the posterior. As argued
by James Berger,58 robustness may be interpreted as a safeguard against
misspecification of prior information.

—Ability to serve as a benchmark. Priors should be flexible enough to
allow for their use across similar studies and thereby facilitate compara-
bility of results.
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Of course, these obviously desirable properties leave a great deal of
discretion to a given researcher. And one could easily add other desider-
ata. The arguments made by Leeper, Sims, and Zha,59 described above,
suggest that “reasonableness of results” should be included. This lack of
algorithmic precision in the assignment of priors is in our view appropri-
ate; priors ultimately are at least in part a nuisance, whose choice should
be regarded as no more than facilitating the presentation of salient fea-
tures of the data.

How do these simple principles apply to the model uncertainty con-
text? At first glance, it might seem that if one does not have such infor-
mation, one should assign equal prior weight to each element of M.
However, this is not entirely satisfactory because it ignores interrelations
between different models. 

The problem is easiest to see in the case of linear regression models.
Suppose that one is considering model uncertainty in a case where differ-
ent models correspond to different choices of which control variables to
include in a linear regression. This is the problem described in the context
of equation 9, and one to which we will return in the context of growth
econometrics in the next section. The recent efforts to employ model
averaging to account for uncertainty with respect to variable inclusion
generally assume that the possible models are all equally likely a priori.60

So, in the case of linear regressions where there is uncertainty over which
of K regressors are present, each of the 2K models in the model space is
assigned a probability of 2–K. This is equivalent to assuming that the prob-
ability that a given variable is present in the “true” model is equal to 0.5
and is independent of the presence or absence of any of the other regres-
sors in the model. Some have proposed altering the probability of variable
inclusion in order to give greater weight to models with a small number of
regressors,61 as well as to assume the probability that a given variable is
included is itself a random variable drawn from some distribution,
thereby allowing different variables to be included with different proba-
bilities,62 but the independence assumption is, at least in our reading,
essentially universal.
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As argued by Brock and Durlauf,63 such a formulation of priors on the
model space is difficult to justify. For example, the growth theory that
holds that the rule of law affects growth may be logically distinct from the
theory that property rights affect growth, but that does not mean that the
fact that one matters has no implications for the likelihood that the other
does. This problem is thus closely related to the “red bus, blue bus” para-
dox that appears in discrete choice theory. The issue in discrete choice
analysis is how the probability of an individual choosing a red bus over a
taxi is affected by adding the possibility of choosing a blue bus. Under the
independence of irrelevant alternatives assumption of a logit model, the
presence of the blue bus should not affect the ratio of the choice probabil-
ities between a red bus and a taxi; this is an unappealing feature because
the blue bus is a far closer substitute for the red bus than the taxi. The dis-
crete choice literature has proposed a number of ways of addressing these
types of issues, including nested logit models, which organize choices in
a tree structure that reflects similarities (modeled in the nested logit con-
text as common utility components). We will use an analogous approach
in defining model probabilities in the applications we take up next. 

Empirical Applications

Monetary Policy Rules

Our first empirical example concerns monetary policy rules and is
designed to illustrate a way of integrating model uncertainty using fre-
quentist (or what we called pseudo-Bayesian) methods. The last decade
has seen an explosion of research on alternative policy rules, much of it
stimulated by the seminal work by Taylor on what are now called Taylor
rules. In this section we present some results on Taylor rules and model
averaging. For simplicity, we use a conventional loss function that is
quadratic in output, inflation, and interest rates; we assume that mone-
tary policy is constrained to follow a Taylor rule; and we consider only
backward-looking models. We compute estimates of the effects of alter-
native choices of monetary policy parameters and contrast those estimates
with those of the well-known Rudebusch and Svensson model.64

63. Brock and Durlauf (2001).
64. Rudebusch and Svensson (1999).
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Model uncertainty has played a prominent role in recent analyses of
monetary policy. An early example is Bennett McCallum’s analysis of
normal income rules, which experimented with alternative Phillips curve
specifications in order to establish robustness across results.65 The same
concern with robustness appears in a number of papers in the Taylor vol-
ume and in recent papers such as one by Levin and Williams.66 Like much
empirical research, this literature typically proceeds on the intuition that
the set of estimates produced will bracket the actual effect of a policy
under consideration (or, more modestly, is likelier to bracket that effect
than is a set produced by extrapolating results from a single model).

As explained above, what we offer is a procedure for formally combin-
ing the estimates from a set of models. In this section estimates are
weighted by the corresponding model’s likelihood (adjusted for degrees
of freedom) and by prior model probabilities. We set these prior probabil-
ities equal for all models, so that the weights are simply the model likeli-
hood: well-fitting models get more weight than do ill-fitting models. We
view our approach as complementing rather than replacing that described
in the previous paragraph. Formal model combination will help focus
attention on a central tendency across models. But economists and policy-
makers will still find it useful to answer the question, “If one puts prior
weight of unity on one or another model, what is the risk?”

The approach that we have proposed is well suited to considering what
may be the central source of such uncertainty in monetary policy analysis,
namely, the modeling of expectations. We share the view of many econo-
mists that explicit modeling of expectations is relatively important when
one is considering the effects of a permanent change in regime, say, a
switch to inflation targeting. Models with an atheoretical lag structure are
relatively appealing if one wants to think about the trade-off between, for
example, raising interest rates 50 basis points this month, and raising them
25 basis points this month and 25 basis points next month, when either
action is within the framework of how monetary policy is currently con-
ducted. Our approach naturally accommodates this view, by allowing one
to choose model weights, or µ(m)’s, that vary with the question at hand.

In this first analysis, however, we limit ourselves to models in which
expectations are backward looking. Indeed, we abstract from simultane-
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ity of any sort—even that associated with Cowles Commission-style
simultaneous-equations models. With various definitions of “robust,” but
also with the use of quadratic preferences, Taylor rules, and backward-
looking models, calculations similar to ours have been supplied by
Alexei Onatski and James Stock and by Onatski and Noah Williams.67

The research presented here is intended both to complement this work
and to illustrate the frequentist approach to model averaging (equa-
tion 33) in a simple context.

We employ the same notation as previously: yt is the output gap; πt

is quarterly inflation, at an annual rate; it is the federal funds rate; 

We assume that policymakers wish to

minimize

Following the literature, R is referred to as a measure of the risk of a pol-
icy. We do not attempt to link parameters to a particular microeconomic
model,68 nor do we allow the weights to vary across specifications.

We consider different three-equation systems for it, yt, and πt. Our
specification assumes that the output gap and the inflation rate are prede-
termined. The nominal interest rate is determined by a Taylor rule:

In equation 38 and elsewhere we suppress constants and all other deter-
ministic terms. 

We consider models in which the output gap yt and quarterly inflation
πt depend on up to four lags of i, y, and π. We label the equation with yt on
the left-hand side the IS curve and the equation with πt on the left-hand
side the Phillips curve. The right-hand side of the IS equation always
includes at least one lag of y and one lag of an annual or quarterly ex post
real interest rate, although we do not in all specifications constrain coeffi-
cients on nominal interest rates and inflation to be equal and opposite. The
right-hand side of the Phillips curve equation always includes at least one
lag of inflation and one lag of output, with the lags of inflation constrained
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67. Onatski and Stock (2002); Onatski and Williams (2003). 
68. See Woodford (2002).
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to sum to unity. The most profligate specification entails four lags of i, y,
and π in both equations, which is almost but not quite an unrestricted vec-
tor autoregression (“almost” because lags of inflation in the Phillips curve
are always constrained to sum to 1).

Specifically, we vary lags across specifications as follows. In the IS
curve we include specifications of two types. First, we construct specifi-
cations with a single lag of the annual ex post real interest rate, i

-
t–1 – π–t–1,

along with alternative lags for y of lag 1 (where 1 designates the most
recent previous period), lags 1-2, lags 1-3, and lags 1-4; lags for π of
none, lag 1, lags 1-2, lags 1-3, and lags 1-4; and lags for i of none, lag 1,
lags 1-2, and lags 1-3. This set of 4 × 5 × 4 alternative specifications may
be written as

The first two terms on the right-hand side of equation 39 were included in
all regressions. The terms in the brackets describe the additional regres-
sors. Additional IS specifications were obtained with models that are
identical to those we have just described, except that a single lag of the
quarterly ex post real interest rate, it-1 – π t-1, was always present, with lags
of i adjusted to prevent linear dependence in the regressors in particular
versions of equation 39. This also produces 4 × 5 × 4 specifications.

For the Phillips curve, specifications included lags for y of lag 1, lags
1-2, lags 1-3, and lags 1-4; lags for π of lag 1, lags 1-2, lags 1-3, and lags
1-4; and lags for i of none, lag 1, lags 1-2, lags 1-3, and lags 1-4. This set
of 4 × 4 × 5 specifications may be written

Once again, the first two terms on the right-hand side of equation 40 were
included in all regressions, and the terms in brackets describe the addi-
tional regressors.

Each of the regressions described was estimated alternately with a con-
stant term as the only deterministic component and with a constant term
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as well as a dummy for periods after 1984:1. The dummy is intended to
crudely allow for changes initially documented by Margaret McConnell
and Gabriel Perez-Quiros.69 Thus the total number of specifications is
[(4 × 5 × 4) + (4 × 5 × 4)] × 4 × 4 × 5 × 2 = 25,600, where the final “2”
accounts for the two sets of deterministic terms.

In all computations we discarded specifications whose estimates
implied behavior that was nonstationary. Mechanical processing of such
estimates would yield unbounded variances and infinite risk. Our view is
that in a full treatment such estimates should be dampened to yield finite
variance and risk, in accordance with our prior knowledge that the output
gap and inflation are stationary. Discarding the estimates was done for
simplicity’s sake.70

For each model we estimate the IS and Phillips curves by ordinary least
squares (OLS). In conjunction with choices of gπ, gy, and gi, in equa-
tion 38, one can compute estimates of the total loss described by equa-
tion 37 using point estimates of the variances implied by the model. For
model m we refer to this estimated loss as R

^

m . For each model we com-
pute a Bayesian information criterion–adjusted likelihood, Lm. We com-
pute model average risk as

This equation fits into the frequentist approach outlined in the previous 

section, with R
^

m playing the role of l(p | d, m) and Lm / Lm the role of 

µ(d | m) in equation 33, under the assumption that all models have equal
prior probability, that is, that µ(m) = 1/25,600.

To clarify and illustrate the effects of model averaging, we contrast our
model averaging results with those of one well-known special case of the
class of models considered. This is the Rudebusch and Svensson model.71

In this model the IS equation is
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69. Statistical tests in McConnell and Perez-Quiros (2000) suggested that a shift in
GDP and some of its components occurred around 1984.

70. See Onatski and Williams (2003) for a discussion of alternative treatments and
interpretation of nonstationary estimates.

71. Rudebusch and Svensson (1999).
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and the Phillips curve equation is

where is imposed so that the long-run Phillips curve is vertical.

For a range of values of parameters λy and λi in the risk function in
equation 37, we solve for Taylor rule parameters that were optimal under
the Rudebusch and Svensson model. We compute risk according to the
model, denoting it as R

^

RS, as well as according to all other models in the
model space we have described. The model-specific risk calculations are
then averaged according to equation 33 to produce model average risk.
The objective of this exercise is to see whether the Rudebusch and Svens-
son figures for risk well match those for model averages. The ranges of
values for the risk parameters are those suggested by Levin and
Williams:72 λy = {0.0, 0.5, 1.0, 2.0} and λi ={0.1, 0.5, 1.0}, twelve sets of
values in all.

Apart from lags, the sample period is 1969:1–2002:4. Inflation is com-
puted as annualized growth in the GDP deflator, and the output gap is
computed from actual real GDP and the Congressional Budget Office’s
estimate of potential GDP. We use the latest data available, thus abstract-
ing from possible complications from data revision.

Results are presented in table 1. The values given for the Taylor rule
parameters gπ, gy, and gi are those that are optimal under Rudebusch and
Svensson, as found by a grid search. These display a familiar and intuitive
pattern: larger weights on output volatility (higher λy) lead to higher opti-
mal gy, and larger weights on interest rate volatility (higher λi) lead to
higher optimal gi. As has been found in previous studies of the Rudebusch
and Svensson model, the optimal interest rate parameter gi is not very
large and sometimes is negative.

For the Taylor rule parameters given in table 1, we compute model
average risk ER based on equation 41 and compare it with the Rudebusch-
Svensson risk R

^

RS. In principle, model average risk can be higher or
lower. And indeed we see that the last column of table 1 includes both
negative and positive values, with positive values indicating that model
average risk is higher. Relative to Rudebusch-Svensson risk, model

βπj
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=
=
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average risk tends to be high where there is a relatively small penalty to
interest rate volatility, and low when there is a large interest rate penalty.
Although the figure in the last column of the first row of table 1 is quite
large (over 300 percent), the other numbers are much smaller and scat-
tered fairly evenly around zero.

We take this as illustrating two points. First, when our results are com-
pared with those of Levin and Williams,73 it seems that there is substan-
tially less variation in risk within the class of backward-looking models
we have studied than there is between backward- and forward-looking
models. Specifically, findings for the Rudebusch-Svensson baseline are
generally representative of the risk associated with the monetary policies
considered in the table. The second and potentially more useful point
from the perspective of future research is one emphasized in our discus-
sion above: model averaging allows tractable accounting for the effects of
model uncertainty.

278 Brookings Papers on Economic Activity, 1:2003

73. Levin and Williams (forthcoming).

Table 1. Effects of Model Uncertainty on Risk for Optimal Rudebusch-Svensson
Rules

Risk parametersa Taylor rule parametersb

Change in riskc

λy λi gπ gy gi (percent)

0.0 0.1 4.5 2.0 0.2 306
0.0 0.5 2.3 1.0 0.4 17
0.0 1.0 1.7 0.7 0.5 –2
0.5 0.1 4.4 2.7 0.0 56
0.5 0.5 2.4 1.3 0.3 1
0.5 1.0 1.8 0.9 0.4 –9
1.0 0.1 4.3 3.2 –0.1 16
1.0 0.5 2.5 1.6 0.2 –7
1.0 1.0 1.7 1.0 0.4 –10
2.0 0.1 4.1 3.7 –0.2 8
2.0 0.5 2.5 1.9 0.1 –13
2.0 1.0 1.8 1.3 0.3 –14

Source: Authors’ calculations.
a. Assumed weights on the variances of yi (λy) and ∆ii (λi) in the equation for the model average risk (equation 37 in the text).
b. Optimal values for the parameters πt (gπ), yt (gy), and it–1 (gi) in the monetary policy rule (equation 38 in the text) when the

Rudebusch-Svensson (1999) model given by equations 42 and 43 is assumed to generate the data.
c. Increase in risk when the model average risk (equation 37) is used rather than the risk estimated using the Rudebusch-

Svensson model; the increase is calculated as 100 × [(ER / R̂RS ) – 1], where ER is defined as in equation 41.
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Economic Growth

In our second application, which will follow the full Bayesian
approach we discussed in the previous main section, we turn to the empir-
ical growth literature. Our analysis focuses on the evaluation of the effect
of tariffs on economic growth. In order to develop the empirical exercise,
we first discuss some general issues in growth econometrics.74

growth econometrics: general issues. Much recent macro-
economic analysis has focused on issues associated with economic
growth. The empirical basis for much modern growth research is the now-
classic cross-country growth regression.75 From the vantage point of
using such regressions to evaluate a growth policy p, a canonical form of
this regression is

where gi is real growth per capita across some fixed time interval, Xi is a
set of regressors suggested by the Solow growth model (initial population
growth, technological change, and physical and human capital saving
rates transformed in ways implied by the model), Zi is a set of additional
control variables suggested by new growth theories, pi is the policy vari-
able of interest, and εi is an error. Edmond Malinvaud summarized the
importance of such regressions in policy analyses:

If large cross-sections of country experiences are interesting, it should mainly
be because they ought to reveal the global impact of other growth determinants
than the proximate factors of increases in productivity, factors about which we
have other sources of evidence. Policy-oriented macroeconomists pay particu-
lar attention to the various components of government interventions. . . .76

Regressions such as equation 44 have been used to evaluate many dif-
ferent policies: a survey of this type of empirical work can be found in
Barro and Sala-i-Martin.77 For our purposes the main point is that the
evaluation of a growth policy typically amounts to assessing the statistical

( ) ,44 g X Z pi i i i i= ′ + ′ + +β γ δ ε
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74. See Brock and Durlauf (2001), Durlauf (2000), and Temple (2000) for related
analyses.

75. See Barro (1991) and Mankiw, Romer, and Weil (1992).
76. Malinvaud (1998, p. 781).
77. Barro and Sala-i-Martin (1995).
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significance of δ for a baseline specification like that in equation 44 and a
small set of alternative specifications, which typically amount to changing
the variables included in Zi. Such analyses pay only indirect and unsys-
tematic attention to the question of the space of models and how to evalu-
ate differences across models in drawing conclusions about parameters of
interest.

From the perspective of evaluating growth policies, this standard
approach may be faulted using arguments we have developed elsewhere.78

One problem is that the choice of control variables to include as compo-
nents of Zi is typically very ad hoc. A survey by Durlauf and Danny Quah
found nearly as many alternative growth theories and associated empirical
measures as there are countries in the standard data sets;79 by now the
number of theories exceeds the number of countries. This plethora of
alternative theories is particularly worrisome because, following Brock
and Durlauf,80 growth economics suffers from theory open-endedness.
Theory open-endedness means that one growth theory typically has no
logical connection to the empirical possibility of another. The theory that
political stability affects growth is compatible with any number of other
theories, such as the claim that the composition of natural resources
affects growth. 

Second, empirical growth research has generally not dealt systemati-
cally with questions of heterogeneity in the growth processes for different
countries. Regressions such as those of equation 44 are interpretable for
policy evaluation only to the extent that the regression specification is
considered sufficiently rich that the data from each country constitute a
draw from the common statistical model defined by the regression.
Although this requirement is hardly unique to growth contexts, its plausi-
bility is particularly questionable when one is working with such compli-
cated objects as national economies. To be concrete, suppose that an
adviser to a sub-Saharan African government on some policy wishes to
use a cross-country regression as a source of empirical evidence. Does
one believe that the growth implications of a unit change in a given policy
variable are the same for countries in sub-Saharan Africa as for the United

280 Brookings Papers on Economic Activity, 1:2003

78. Extended criticisms of cross-country growth regressions include Brock and Durlauf
(2001) and Temple (2000). A number of these criticisms may be interpreted as arguing that
standard growth analyses fail to properly account for model uncertainty.

79. Durlauf and Quah (1999).
80. Brock and Durlauf (2001).
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States? It is easy to think of cases, for example changes in the percentage
of high school graduates in the labor force, where one would not wish to
make such an assumption, but this is precisely what is asserted when one
uses equation 44 to uncover growth determinants.81

A number of studies have documented parameter uncertainty of vari-
ous forms.82 The sorts of parameter heterogeneity that have been identi-
fied have often been interpreted to indicate how different stages of
socioeconomic development are associated with different growth
processes. Even if one does not believe that the empirical case for param-
eter heterogeneity has been established, there is certainly enough such
evidence to allow for the possibility in policy evaluation exercises.83

A third problem is that it is far from clear that statistical significance
can provide a useful guide to policy evaluation. Although the abstract
argument was made earlier in this paper, it is particularly salient in the
growth context, and so we expand upon it here. Suppose one’s purpose in
using linear growth regressions is to evaluate whether country i should
make the policy change from p– to p=. As we have suggested earlier, stan-
dard practice in the growth literature is based on the use of the t statistic
associated with δ̂ to evaluate the policy. Following Brock and Durlauf,84

one can think about t statistic rules from a decision theory perspective. A
simple way to do this is to interpret a t statistic rule as implying that, when
comparing p– with an alternative policy p= > p– , one will only move from p– to
p= if the associated t statistic for the policy parameter δ is greater than 2.
Further, interpreting a t statistic as the ratio of the mean of the parameter
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81. In addition, many modern growth theories imply that the growth process is funda-
mentally nonlinear. One important example of this type of model is due to Azariadis and
Drazen (1990), who develop a model in which multiple steady states exist, with sufficiently
poor economies subject to development traps. As shown in Durlauf and Johnson (1995),
cross-country data generated by this model will have the property that various subsets of
economies will be associated with distinct linear models. These distinct models identify
countries that are associated with a common steady state. As a result, linear regressions will
poorly approximate the growth process; see Bernard and Durlauf (1996) for discussion.

82. See Canova (1999), Desdoigts (1999), Durlauf and Johnson (1995), Durlauf,
Kourtellos, and Minkin (2001), and Tan (2003).

83. The empirical growth literature has become increasingly sensitive to the problem of
parameter heterogeneity in the sense that it is now common to add dummy variables for
certain regions or collections of countries, and occasionally to add interaction terms that
multiply income per capita, for example, with some growth determinant. It seems fair to
say that these efforts are generally ad hoc.

84. Brock and Durlauf (2001).
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to its standard deviation, one can approximate the t statistic rule as imply-
ing that one makes the policy change based upon

with the policy change adopted only if the value of equation 45 is less
than 0. (If we were considering instead a reduction in the policy variable,
the requirement would be that the value of equation 45 be greater than 0;
this will be relevant when we consider the question of a tariff reduction.)
This is a special preference structure in two senses. First, it assumes that
one’s evaluation of the policy depends on the effect of the policy on
growth and not on growth itself. Second, it assumes a very particular
trade-off between the mean and the variance of the policy effect.85

This interpretation of the t statistic rule may also be used when one
has averaged across models; one simply computes the formula using
moments on the right-hand side of equation 45 that are conditioned on
the data d but not on a specific model m. We will use this below to facil-
itate comparisons between policy advice for different models and model
averaging. 

evaluating a policy of tariff reduction to enhance growth.
To show how one might address these problems, we consider a particular
policy question: should the countries of sub-Saharan Africa lower tariffs
in order to improve their growth performance?86 Our analysis based only
on cross-country growth regressions will obviously be a caricature of the
actual policy process, as it ignores the plethora of information available to
organizations such as the World Bank to help inform policy decisions, but
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85. Blinder (1997, p. 6) makes a similar criticism of the use of quadratic loss functions
for policy analysis in business cycle contexts. Our own view is that the limitations of qua-
dratic loss functions for business cycle analysis largely stem from their failure to accom-
modate issues of distribution effects, so that a proper development of alternative loss
functions would simultaneously need to address the question of how to introduce the mea-
surement of distribution effects in empirical business cycle analysis. See Heckman (2001a)
for important recent work on policy evaluation when effects are heterogeneous.

86. Data are available for thirty-one countries in sub-Saharan Africa across the time
period we consider: Benin, Botswana, Burkina Faso, Burundi, Cameroon, Central African
Republic, Congo, Côte d’Ivoire, Ethiopia, Gabon, Ghana, Kenya, Madagascar, Malawi,
Mali, Mauritania, Mauritius, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Somalia,
South Africa, Sudan, Tanzania, Togo, Uganda, Zaire, Zambia, and Zimbabwe. 
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for expositional purposes we treat such an analysis as if it were the sole
basis on which policy decisions are made. 

To evaluate this policy question, we proceed as follows. First, we
define a set of different growth theories that have been proposed in the
empirical literature. This constitutes a first level of model uncertainty.
Second, for each theory there is uncertainty as to which empirical proxies
to employ to capture it. Third, we allow for uncertainty concerning
whether sub-Saharan African countries obey the same growth process as
the rest of the world.

With respect to theory uncertainty, we proceed as follows. In every
model we include the variables predicted by the Solow growth model and
our tariff variable. With respect to equation 44, this means that every ele-
ment in the model space contains Xi and pi.87 We then introduce six possi-
ble additional categories of theories of cross-country growth differences
that have received prominence in the literature: exchange rate policies,
government spending policies, inflation, characteristics of the economic
system, characteristics of the financial system, and characteristics of the
political system. The first three categories, roughly speaking, represent
theories that relate various government policies to economic growth. The
second three represent theories that link growth to longer-run structural
aspects of a country’s economic and political system. Although these cat-
egories do not exhaust the range of new growth theorizing, we argue that
they cover a relatively broad part of the spectrum.

The construction of this first stage of the model space for cross-country
growth behavior requires a number of decisions on the part of the analyst.
One decision concerns the ways in which alternative theoretical specifica-
tions are defined. We interpret each theoretical specification for a growth
model as the choice of a set of theories to include in a growth regression.
We therefore rule out combinations of theories such as would occur if one
were to use the space of empirical growth proxies to recombine elements
as is done in factor analysis. Such alternative approaches are not, in our
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87. This approach corresponds to Leamer’s (1983) distinction between “maintained”
and “doubtful” variables. In using this approach, we are conducting a different exercise
from that done in Doppelhofer, Miller, and Sala-i-Martin (2000) or Fernández, Ley, and
Steel (2001b), where the focus is on identifying which variables should be included in a
growth model out of a large set of potential growth determinants, and where no distinctions
are made between the prior inclusion probabilities for different variables. We make such a
distinction in that we include the Solow variables and the tariff variable with a probability
of 1. 
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view, interpretable as growth models. However, there may be an argu-
ment for doing so in policy evaluation contexts, if one is indeed interested
only in posterior distributions of policy effects; we defer this considera-
tion to future work. Further, even if one restricts oneself to distinct theo-
ries, there are questions of how to organize variables into distinct
theoretical categories. Our choices for distinct growth theories have been
made in a way that we believe minimizes the connections across theories,
in the sense that one can treat the probabilities of each theory being
included as approximately independent. This is admittedly a judgment
call, but it is no different from the judgments often necessary to imple-
ment models such as the nested logit.88

Second, once one has specified a set of theories, it is necessary to spec-
ify how the various theories are to be characterized empirically. For each
theory we have identified a small number of variables that have been
employed in the empirical growth literature to capture the theory; these
various data series are defined in appendix B. For each of these sets of
variables, we allow each nonempty subset to correspond to a way of
empirically modeling the theory. For example, for the theory that political
structure affects growth, we have two empirical proxies: civil liberties
and an index of democracy. There are three different nonempty subsets of
these variables that may be used to empirically instantiate the theory.
Each subset choice corresponds to a distinct growth model. 

Third, we model parameter heterogeneity in a way that allows us to
treat it as a variable inclusion problem. Specifically, we use a very stan-
dard procedure in empirical work in which models with parameter hetero-
geneity take the form

where ξi,SSA is an indicator variable that equals 1 if country i is in sub-
Saharan Africa and 0 otherwise. This type of heterogeneity has proved
useful in previous work on sub-Saharan Africa: for example, Brock and
Durlauf found, reexamining an important study by William Easterly and
Ross Levine, that the effects of ethnic heterogeneity on growth are much
stronger for Africa than for the rest of the world.89

( ) ,, , ,46 g X Z p X Z pi i i i i i i i i i i= ′ + ′ + + ′ + ′ + +β γ δ β ξ γ ξ δ ξ εSSA SSA SSA
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88. George (1999) suggests accounting for similarities in models by a method he refers
to as “dilution priors.” The approach does not appear to have yet been formalized in the sta-
tistics literature, but its logic appears similar to the tree structure approach we employ.

89. Brock and Durlauf (2001); Easterly and Levine (1997).

1440-04 BPEA/Brock  07/17/03  08:12  Page 284



Figure 1 illustrates our formulation of model uncertainty for growth
regressions. The first level of uncertainty that must be resolved in defining
a particular model concerns the set of growth theories to include in the
specification. The second level of uncertainty that must be resolved is
which empirical proxies for these theories are to be used. Once a set of
theories and associated empirical proxies are specified, the final level of
uncertainty that must be resolved is whether or not sub-Saharan Africa
obeys a different growth process from the rest of the world. If one were to
enumerate every ramification of the tree diagram in figure 1, the final
nodes would denote the universe of possible models. The levels of the tree
indicate the levels at which we assign model probabilities; at each level,
probabilities are assigned equally to all possible branches. This procedure
partially addresses the red bus, blue bus problem described earlier. 

This tree structure provides the basis on which we assign probabilities.
With respect to theory inclusion, we assume that the inclusion probabili-
ties are equal and unaffected by what additional theories are included.
This means, for example, that the probability that the exchange rate the-
ory of growth appears in a model is independent of whether the political
structure theory of growth is also included in that model. Second, we
assign equal probability weights to each of the possible empirical ana-
logues of a theory (that is, to each combination of variables used to
instantiate the theory). Third, for each specification of theories and asso-
ciated variables, we specify versions with and without sub-Saharan
African heterogeneity. Models with heterogeneity correspond to equa-
tion 46; we allow the error variances for sub-Saharan African countries to
differ from those of the rest of the world. For each pair of corresponding
models with and without heterogeneity, we assign a probability of q to the
heterogeneous model and of 1– q to the homogeneous model. For exposi-
tional purposes, we report q = 0 separately. Overall, there are 4,096 dif-
ferent models generated by theory uncertainty and regressor choice
uncertainty; allowing for heterogeneity uncertainty doubles this to 8,192.

This tree structure for the probabilities represents an effort to address a
problem in previous work,90 namely, that two empirical proxies for the
same theoretical property are treated in the same way as two proxies for
different theories in terms of their joint probability of inclusion. Our
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90. See Brock and Durlauf (2001), Doppelhofer, Miller, and Sala-i-Martin (2000), and
Fernández, Ley, and Steel (2001b).
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approach is designed to distinguish the questions of uncertainty over the-
ories from questions of uncertainty concerning empirical proxies.
Although our approach is, we believe, an improvement on previous ways
of assigning prior probabilities, we fully expect that it will evolve in
future work.91

To compute posterior densities for the parameters and associated
expected growth levels in the models defined by equations 44 and 46, it is
necessary to specify prior distributions on the model coefficients and a
distribution on model errors. We assume a uniform prior on the coeffi-
cients and a Gaussian error distribution. As explained in appendix A, this
has the important benefit that the posterior expected value of the regres-
sion coefficients in a given model may be approximated by the OLS esti-
mate of the parameters, and the posterior variance may be approximated
by the OLS estimate of the parameters’ variance-covariance matrix. This
makes our results straightforward to interpret from a frequentist perspec-
tive. However, we wish to be clear that this choice of priors is made pri-

286 Brookings Papers on Economic Activity, 1:2003

91. For example, we are currently exploring ways to treat observed control variables as
proxies for underlying theories, so that the way they appear in a model conditional on the
inclusion of a theory is handled in such a way that the empirical proxies are combined to
form an optimal estimate of the empirical “signal” associated with the theory.

Figure 1. Construction of the Model Space for Analyzing Growth
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marily for expositional clarity; see Fernández, Ley, and Steel for an
extensive discussion of the appropriate use of priors in linear model aver-
aging contexts.92

Table 2 reports the results of our estimates of the posterior mean and
standard deviation for the tariff parameter under a range of specifications.
The tariff variable measures tariffs on intermediate and capital goods and
corresponds to the variable OWTI (see appendix B) in the standard Barro
and Lee data set. The first data column reports the OLS estimate of the
coefficient on the tariff variable based on regressions that include only
the Solow variables and the tariff variable. The second column reports
the OLS estimate when all available variables are included. The next
three columns report Bayesian model averaging exercises under different
theory inclusion probabilities q; we consider q = 0.25, 0.5, and 0.75. The
next two columns report those estimates among all models estimated in
the Bayesian model averaging analysis that produce the minimum and
maximum posterior means of the parameter. The final two columns report
the results for the analogous models whose payoffs under the t statistic
rule in equation 45 are minimal and maximal. The OLS regressions are
included to serve as benchmarks in indicating where model averaging
matters. (Recall that, under our assumption, the OLS regression estimates
of coefficients and associated standard errors correspond to the posterior
means and standard deviations of the parameters; thus the OLS regression
is a degenerate model averaging exercise, in which all prior model proba-
bility is assigned to one model.) The last four columns are useful in under-
standing how data mining and ambiguity aversion may be evaluated.

Table 2 indicates that estimates of the posterior densities of the param-
eters associated with the tariff variable are each very robust with respect
to model uncertainty. The alternative probabilities of theory inclusion q
produce very little difference in posterior means and standard deviations.
The model averaging estimates of the mean of the tariff parameter are
more than 10 percent higher than the tariff coefficient of the OLS regres-
sion for the narrow Solow model and about 3 percent larger than that for
the expanded Solow model. The standard deviations from our model aver-
aging estimates are about 10 percent smaller than that for the narrow
Solow model and similar to our estimate for the expanded Solow model.
Notice that in each case the tariff variable is negative, with a standard
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deviation less than half the size of the coefficient; by the “t statistic” loss
function described by equation 45, these regressions would support the
recommendation of a tariff reduction. Overall, the support for the policy
change under these preferences is somewhat stronger when the posterior
probabilities are computed using model averaging rather than the OLS
estimates. To be clear, the model averaging analysis does not lead to a dif-
ferent view of the policy advice suggested by the two OLS specifications.
Its value added comes in showing that this advice is not an artifice of the
choice of specification.

One can compare the model averaging results with those obtained
under models that are singled out because they are particularly favorable
or unfavorable for a policymaker with t statistic preferences. If the policy-
maker is risk neutral, the column labeled “Minimum coefficient” reports
the model that would provide the strongest support for a tariff reduction
(that is, has the smallest parameter estimate). A policymaker with t statis-
tic preferences would find the model described in the column labeled
“Minimum coefficient + 2 SE” most favorable. We call these cases data
mining models, because an advocate of a tariff reduction would want to
use these specifications in an effort to persuade the policymaker to imple-
ment the reduction. A policymaker who possessed an ambiguity aversion
parameter e = 1 but cared only about the mean of the parameter condi-
tional on a model would make a policy evaluation on the basis of the
model described in the column labeled “Maximum coefficient,” whereas
an ambiguity-averse policymaker with t statistic preferences conditional
on a model would evaluate a tariff reduction on the basis of the model
described in the column labeled “Maximum coefficient + 2 SE.” 

These results indicate that the policy recommendation implied by the
OLS and model averaging exercises is similar to that implied by the data
mining models. This occurs because models in the vicinity of the data
mining models are associated with relatively large posterior probabilities.
So, in this sense, the support for the tariff reduction is strong. In contrast,
an extremely ambiguity-averse agent will find the evidentiary support for
the reduction to be far weaker. However, if the policymaker is risk neutral
within a model, he or she will still conclude that the reduction is justified.
The policymaker with t statistic preferences will not favor the reduction,
but the payoff differential between the status quo and the reduction is not
particularly large. 
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Table 3 extends our analysis to allow for heterogeneity between sub-
Saharan Africa and the rest of the world. We report OLS estimates for
equation 44 for the tariff parameter from regressions based on the Solow
variables plus tariffs (first data column), and regressions based on the
Solow variables, tariffs, and all other variables (second column). For the
model averaging analysis, we focus on the case where the theory inclu-
sion probability is 0.5, and we consider prior probability weights on mod-
els with heterogeneity and corresponding models without heterogeneity to
equal 0.5, 0.75, and 1, respectively. These results appear in the last three
columns.

The latter results indicate a significant discontinuity in the mean and
standard deviation of the tariff parameter for q = 1 compared with the
other cases. In particular, the first two moments of the parameter are sim-
ilar to those found in table 2 for q = 0.5 and q = 0.75; allowing for het-
erogeneity slightly lowers the posterior mean and raises the posterior
standard deviation by about 20 percent for a prior heterogeneity proba-
bility of 0.5 and by about 50 percent for a prior heterogeneity probability
of 0.75. In contrast, the posterior mean and standard deviation for q = 1
are very different; the mean is nearly doubled, and the standard deviation
is about four times as large as those found for the model averaging coun-
terparts in table 2. The reason for the large differences is that the poste-
rior probabilities on the subset of models that allow for sub-Saharan
African heterogeneity are very small. When q = 0.5, the total posterior
probability on models with heterogeneity is only 0.014 (not shown); for
q = 0.75, the posterior probability is only 0.04. As a result, these models
have relatively little effect on the overall posterior density of the tariff
parameter. In contrast, q = 1 imposes heterogeneity on all models. This
leads to very different estimates, which would lead a policymaker with
preferences like those expressed in equation 45 to decide against a tariff
reduction. Our other regression exercises also lead to a rejection of the
tariff reduction under those preferences. In both of the Solow cases, if
sub-Saharan African heterogeneity is included with a probability of 1,
the standard deviation of the posterior density of the tariff coefficient for
sub-Saharan African countries swamps the posterior mean. These
results, of course, mean that a sufficiently ambiguity-averse agent would
not lower tariffs. A data miner could produce a model, however, that
supports a tariff reduction, as indicated by the most favorable models we
report. 

290 Brookings Papers on Economic Activity, 1:2003
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We are surprised by the weakness of the evidence on heterogeneity
given previous work that found parameter heterogeneity,93 albeit in a very
different statistical context. However, the bottom line of this exercise is
that sub-Saharan African heterogeneity does not appear to be important in
the interpretation of our exercises with respect to policy evaluation,
except under a very high degree of ambiguity aversion.

As we suggested in our earlier discussion of policy evaluation as a
decision theory problem, using hypothesis tests to analyze growth poli-
cies suffers from the problem that statistical significance (or its analogue)
may not constitute an appropriate way to think about policymaker prefer-
ences. We therefore provide some additional analyses that allow one to
discuss a tariff change as a counterfactual from the perspective of the dis-
tribution of growth rates. Table 4 reports an exercise for the sub-Saharan
African economies in which the mean and variance of the growth rate for
each country between 1960 and 1985 are compared with and without a
10 percent reduction of tariffs beyond what occurred historically. To do
this, we use the posterior means and variances of the model parameters β,
γ, and δ based on the historical data. We then compute the posterior mean
and variance of gi with and without a 10 percent reduction in the tariff
variable, keeping all other regressor values constant. We assume that the
errors in the growth process are independent of the regressors. This type
of exercise is subject to Lucas critique–type arguments, in that we do not
account for the effects of the policy change on model parameters (or for

William A. Brock, Steven N. Durlauf, and Kenneth D. West 291

93. Brock and Durlauf (2001).

Table 3. Tariff Parameter Moments under Alternative Prior Heterogeneity
Probabilities

Prior heterogeneity probabilityc

Sample OLSa Full OLSb 0.50 0.75 1.00

Sub-Saharan Africa –0.4320 –0.2512 –0.6079 –0.6246 –1.2322
(0.8943) (1.0112) (0.2205) (0.2707) (0.7678)

Rest of world –0.6276 –0.4630 –0.5981 –0.5961 –0.5222
(0.2067) (0.2005) (0.1890) (0.1899) (0.2067)

Source: Authors’ calculations.
a. OLS estimates of the coefficient on the tariff variable based on equation 46 in the text, where only the tariff variable and the

Solow variables are available for inclusion in the regression. Standard deviations are reported in parentheses.
b. OLS estimates where all available policy and structural variables as well as the tariff variable and the Solow variables are

included in the regression.
c. Bayesian model averaging estimates using versions of equation 46 with priors generated with an inclusion probability of 0.5

and prior probabilities of coefficient heterogeneity as indicated.
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that matter on the other regressors). Nevertheless, we think the exercise is
useful in terms of illustrating how a decision-theoretic approach to evalu-
ating the tariff policy differs from the conventional hypothesis testing
approach. We also compare these estimates with those models that gave
the largest and the smallest tariff coefficients. For the model averaging
exercises, we employ a theory inclusion probability q = 0.5, which reflects
our judgment that the theories we have allowed for are quite plausible ex
ante, that is, that the growth process is best understood as driven by a rel-
atively large number of factors; we have separately verified that the
results we report are quantitatively similar for other probability choices.
We do not allow for parameter heterogeneity: as one would suspect from
table 3, introducing such heterogeneity does not affect the findings if the
prior heterogeneity probability is 0.5 or 0.75. In addition to the model
averaging exercises, table 4 reports results for the models with the largest
and the smallest tariff parameters.

What sorts of conclusions might one draw from the information in
table 4? One finding of importance is the heterogeneity in expected
growth levels across countries. To focus on the estimates under model
averaging, Botswana, for example, is associated with expected growth
over this period of over 100 percent (under the historic level of the tariff
variable), whereas Burundi’s expected growth was –9 percent. The dif-
ferences in the standard deviations are much smaller, because the uncer-
tainty in the growth rates is very much dominated by the contribution of
the model error. Even with these similarities in the standard deviations,
the cross-country heterogeneity in the posterior densities of growth rates
means that, in general, one cannot make strong policy statements for
mean-variance loss functions without explicitly calculating the moments
of the growth process; the invariance of policy advice that one finds
using a loss function such as equation 45 is not general. It is easy to con-
struct loss functions that would lead one to advise one sub-Saharan
African country to lower tariffs but not another, using the same econo-
metric information from cross-country growth regressions. 

A second finding is that the effects of a change in tariffs on the stan-
dard deviation of a country’s growth are far smaller than one would guess
from looking at the standard deviation of the density for the tariff parame-
ter in isolation. In fact, in many of the cases, one finds a reduction in the
posterior standard deviation of the expected growth rate. The reason is
that the different growth determinants may be interpreted as different ele-

294 Brookings Papers on Economic Activity, 1:2003
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ments of a portfolio; in the growth case they apparently act to reduce the
overall variance of the growth rate, at least in terms of the data we have
analyzed. This once again suggests the importance of specifying priors
and computing posterior densities of the outcomes of interest, and not
focusing on model parameters in isolation. From the perspective of a pol-
icymaker with mean-variance preferences, a tariff reduction may have
desirable effects in terms of stabilizing the growth rate. These findings are
not affected by considering the two extreme models reported in table 4. 

In evaluating the results in table 4, it is essential to keep in mind that
the counterfactual assumed that the values of all the growth determinants
Xi and Zi are known, so that all uncertainty about the growth process is
generated by the parameters associated with the determinants. So we cer-
tainly do not wish to argue that the estimates of variance in the expected
component of growth are as precise as suggested in table 4. Nevertheless,
we believe this exercise helps demonstrate the utility of thinking about
policies as elements of a “portfolio” that determines the variability of out-
comes of interest. This is, of course, exactly the idea that Brainard origi-
nated in his seminal analysis.94 Overall, we believe this analysis provides
support for a policy of tariff reduction for sub-Saharan Africa, unless one
has very strong priors that a growth model that applies to the rest of the
world does not apply to that region.

Conclusions and Suggestions for Future Research

In this paper we have attempted to exposit a perspective on policy eval-
uation that explicitly places such evaluation in a decision-theoretic con-
text and that explicitly accounts for uncertainty about the structure or
model that describes the economic environment under analysis. On the
theoretical side, this approach indicates that many of the standard objects
of econometric study, for example evaluations of the statistical signifi-
cance of a policy variable, may not be appropriate guides to policy analy-
sis. The approach is also shown to allow for the evaluation of questions
such as the robustness of policies in the presence of model uncertainty.
We have also offered some suggestions about how to implement this
approach empirically. An example of empirical implementation to growth

William A. Brock, Steven N. Durlauf, and Kenneth D. West 295
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econometrics provided some additional insights relative to what is learned
from more conventional approaches, although there are also important
respects in which our new approach did not provide particularly different
insights from what one obtains from OLS exercises. 

We reiterate that the methods we have described and the new literature
in which it is situated still have far to go in terms of new methodological
work. One important class of extensions may be defined in terms of gen-
eralizing our basic framework to better account for dynamics. For exam-
ple, we have not dealt with issues relating to the evolution of the model
space. The averaging procedures we have described treat the model space
as fixed; the only thing that evolves over time is the set of posterior model
probabilities. This approach fails to incorporate the possibility that the set
of models that a policymaker perceives as possible descriptions of the
economy evolves over time; as we argued earlier, this evolution has
implications for whether the true model lies in the model space or not.
Similarly, our analysis has not explicitly considered issues of policy
choice when choices are updated across time in response to learning by
the policymaker. Further, once learning is introduced, one can imagine an
experimental design component to policy choice. A second important
class of extensions concerns statistical issues. For example, our pseudo-
Bayesian approach to integrating model uncertainty into a frequentist
framework leads to a host of econometric questions in terms of how to do
statistical inference for comparing the performance of different policy
rules. Yet another question concerns possible nonlinearities in dynamic
models; a body of work initiated by James Hamilton suggests that the
macroeconomy exhibits shifts across regimes;95 allowing for this possibil-
ity could prove to produce first-order effects in comparing stabilization
policies. Regime shifts represent an additional layer of model uncertainty
if a policymaker is not sure which regime is in effect when making a pol-
icy choice. Work is needed to illustrate how to calculate policy effects
while accounting for possible nonlinearities (one loses the simple vari-
ance calculations that may be done with linear time series) as well as on
the specification of model spaces and prior probabilities. 

These limitations are not surprising, since the incorporation of model
uncertainty into econometric analysis is still in its infancy. We believe
that explicit attention to model uncertainty and the use of decision-

296 Brookings Papers on Economic Activity, 1:2003
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theoretic methods will prove to be a fruitful direction for future macro-
economic research. At a minimum, explicitly accounting for model
uncertainty in a decision-theoretic framework is an important step in clar-
ifying the limits to which econometric analysis can contribute to policy
evaluation. 

A P P E N D I X  A

Methodology

Posterior Coefficient Densities

Posterior densities for the parameters of growth models were calcu-
lated under the following assumptions. For a given regression, let Si

denote the regressor associated with country i. A growth regression will
therefore have the form

To compute the posterior distribution µ(ζ | d, m) of ζ given data and a
specific model, we assume first that there is no useful prior information
available on the coefficients. In more standard language, we impose a
noninformative prior on the coefficients: 

Second, we assume that the errors are i.i.d. (identically and independently
distributed) normal with a known variance. Under this assumption, one
can show that the posterior density of the regression coefficients is96

where ζ
^

is the OLS estimate of the coefficient parameters in equation A1.
Notice also that (S′S)–1 σ2

ε is the OLS variance estimate for the parameters
when the error variance is known. A helpful feature of this formula is
that it means that the parameters of the posterior density of ζ have OLS

( ) , ˆ,( ) ,–A3 1 2µ ζ ζ σεd m N S S( ) = ′[ ]

( ) ( ) .A2 µ ζ ∝ c

( ) .A1 1g S i Ii i i= + =ζ ε K
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interpretations. The assumption that the error variance is known is not a
serious problem when the number of observations is large relative to the
number of regressors.

A considerable discussion in the literature concerns the appropriate
choice of priors even for this model. Fernández, Ley, and Steel consider a
range of alternative priors and argue in favor of a different set of priors
than those we employ.97 We do not claim that our choice of priors is in
any sense optimal; we employ it here in order to produce a close relation-
ship between OLS estimates and Bayesian posterior estimates.

Model Averaging Calculations

Monetary Policy

All Bayesian model averaging exercises in the monetary policy section
of the paper were performed using the statistical software package RATS. 

Growth

All Bayesian model averaging exercises in the growth section of the
paper were calculated using the SPLUS statistical package. The number
of models under study was small enough to allow the analysis to calculate
posterior coefficient densities using all available models. For larger exer-
cises it is necessary to use a search algorithm to focus on models with rel-
atively large posterior probabilities. One such program is bicreg, written
by Adrian Raftery at the University of Washington and available on the
Internet at lib.stat.cmu.edu/S/bicreg. This procedure uses an “Occam’s
window” procedure due to David Madigan and Raftery.98 In adapting the
code for our exercise, a few adjustments were necessary and are available
from the authors.

Prior probabilities were set as follows. For a given growth specifica-
tion, one first specifies the probability that a given theory is included.
Table 2 allows these probabilities to be 0.25, 0.5, and 0.75. For a given
theory, with r empirical proxies, there are 2r – 1 different ways to include
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these proxies. All specifications are assumed to have equal ex ante proba-
bility. Table 3 reports results where each specification of a set of theories
and empirical proxies used to calculate table 2 is matched with a corre-
sponding model with sub-Saharan Africa heterogeneity, with correspond-
ing specifications given equal probability.

The calculation of posterior model probabilities can also be computa-
tionally difficult. To handle these calculations, we follow an approxima-
tion suggested by Raftery,99 which exploits the fact that if the data under
study fulfill the necessary conditions for posterior coefficient distributions
to converge to their associated maximum likelihood estimators, one can
use the maximum likelihood estimates as approximations to the posterior
distributions and therefore avoid the need to specify a particular prior on
the coefficients within a model; in essence the weights are Bayesian infor-
mation criterion-adjusted likelihoods. This greatly simplifies the calcula-
tion of posterior model probabilities.100 Of course, the approximation
becomes more accurate the larger the data set. The program for this
approximation is taken from bicreg described above. 

A P P E N D I X  B

Data Definitions and Sources

Monetary Policy

All data in the monetary policy section were obtained from the Federal
Reserve Bank of St. Louis website. Real GDP is measured in chained
1996 dollars, with inflation measured by the corresponding GDP price
index. Potential GDP is the Congressional Budget Office measure. The
quarterly average federal funds rate was computed by averaging monthly
average figures.
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Growth

Table B1 lists the various growth variables, their definitions, and their
sources.

300 Brookings Papers on Economic Activity, 1:2003

Table B1. Variables Used in the Growth Regressions

Variable Definition Source

Solow variablesa

MNGD Log(n + g + d), where n is the rate of Mankiw, Romer, and
population growth, g the exogenous rate of Weil (1992)
technical change, and d the rate of depreci-
ation; g + d is assumed to equal 0.05 for all
countries.

MINV Logarithm of the investment rate Mankiw, Romer, and
Weil (1992)

MSCH Logarithm of the fraction of the population  Mankiw, Romer, and
aged 12–17 enrolled in school multiplied by the Weil (1992)
fraction of the working-age population
aged 15–19

MGDP60 Logarithm of income per capita in 1960 Mankiw, Romer, and 
Weil (1992)

Policy variables
Tariffs
OWTI Country’s own import-weighted tariff rate on Barro and Lee (1994)

intermediate and capital goods

Exchange rates
BMPL6089 Logarithm of the average black-market Barro and Lee (1994)

premium on the domestic currency, 1960–89, 
log(1 + BMP)

RERD Measure of real exchange rate distortion Dollar (1992)

Inflation
PI6089 Average annual inflation rate for 1960–89 Sala-i-Martin, citing

data in Levine and
Renelt (1992)

PIHYP6089 Dummy variable equal to 1 when PI6089 Calculated by the
> 15 percent authors from data for

PI6089

Government spending
GGCFD Ratio of real public domestic investment to  Barro and Lee (1994)

real GDP
GVXDXE5 Ratio of real government “consumption” Barro and Lee (1994)

spending (net of spending on defense and 
education) to real GDP

(continued)
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Table B1. Variables Used in the Growth Regressions (continued)

Variable Definition Source

Structural variables
Economic structure
EcOrg Index of the degree of capitalism prevailing Sala-i-Martin (1997)

in the country as measured by Freedom House
RULELAW Index of the rule of law prevailing in the Sala-i-Martin (1997)

country

Financial structure
DCPY Ratio of gross claims on the nonfinancial King and Levine 

private sector by the central bank and deposit (1993)
banks to GDP

LLY Ratio of liquid liabilities of the financial  King and Levine
system to GDP (1993)

Political structure
CIVILLY Index of civil liberties Knack and Keefer

(1995)
DMCYBL Index of democracy, ranging from 0 to 1,  Barro and Lee 

where 1 = most democratic (1994)

a. A constant term is included as a Solow regressor in all specifications.
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Comments and 
Discussion

Eric M. Leeper: This is an unusual paper for the Brookings Panel because
it is heavily methodological. I mention this at the outset, not to criticize the
paper or Brookings, but to urge people who are serious about giving policy
advice to read and study this paper, despite its methodological bent. This is
a provocative paper: it provoked me to rethink how I would formulate and
present policy advice. Any policy adviser who digests the paper’s central
messages will give better and more pertinent advice. In this comment I
adopt the perspective of a policy adviser—a perspective from which it is
apparent where the paper’s marginal product lies.

This comment consists of two parts. The first part reviews the substan-
tial progress that William Brock, Steven Durlauf, and Kenneth West have
made toward embedding model uncertainty and policy evaluation in a
decision-theoretic framework. I highlight those aspects of their work that
develop methods of reporting results that differ from the norm in ways
that can be helpful to policymakers. The second part points out the ways
in which the authors’ current development of their methods falls short of
offering a framework for policy evaluation that can be taken immediately
into the briefing room. Before their methods can speak to actual policy
questions, they need to be extended to confront problems of identification
and to incorporate dynamics along with the kinds of strategic interactions
that arise in rational expectations equilibria. I conclude with a discussion
of some practical problems associated with communicating policy analy-
sis that accounts for model uncertainty.

The approach that Brock, Durlauf, and West develop is designed to
answer exactly the right question: how can we design good policies in the
face of extreme uncertainty about how the economy works? Model uncer-
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tainty, almost everyone agrees, is important, yet it is grossly understud-
ied. And accounting for this kind of fundamental uncertainty is crucial for
policy analysis when the social costs of basing decisions on a bad model
can be very high.

One appealing aspect of this approach, which the authors do not
emphasize, is that it formalizes and systematizes an informal and unsys-
tematic process that already takes place in policy institutions. Current
practice in policy analysis brings many disparate models to bear on the
questions at hand. At Federal Open Market Committee (FOMC) meet-
ings, for example, there are probably at least as many models and priors
over models as there are participants. Models are combined with data in
both coherent and incoherent ways. Acknowledgment of model uncer-
tainty and a type of model averaging both take place during policy
debates, as arguments frequently draw on implications from different
models. Because all of this occurs informally, there is little basis for com-
paring competing models. And although the models are presented as com-
peting, the rules of the competition are only vaguely spelled out. At the
end of the day, the “winner” is typically the model on which the policy-
makers base their decisions, rather than the model that most accurately
represents the economy. Unfortunately, there is no assurance that models
demonstrated to be at odds with the data will be discredited and eventu-
ally disappear.1 The authors offer a cure for this common practice by cre-
ating a framework for rigorous discussion of alternative models.

It may be especially difficult to apply the authors’ methodology to U.S.
monetary policy. It is unlikely that the governors of the Federal Reserve
System and the presidents of the regional Federal Reserve banks could
easily agree on a single loss function for the Fed.2 But monetary policy
analysis in countries that announce an explicit inflation target may readily
lend itself to the authors’ approach. Indeed, by adopting their approach
and explaining it in their periodic inflation reports, inflation-targeting cen-
tral banks could derive the benefits that a more formal and systematic
approach to policymaking offers. That approach may also carry with it
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some positive externalities, in the form of greater accountability and
transparency.

Reflecting on how actual policymaking is practiced, with its explicit,
although typically informal, recognition of model uncertainty, one is
struck by how wide the gulf is between this practice and research on pol-
icy evaluation. It is fashionable to pose optimal monetary and fiscal pol-
icy questions as Ramsey problems, which solve for the policies that select
the best competitive equilibrium. Although it is understood that the
answer to the question of which policy is optimal is strongly model
dependent, varying both with the frictions present in the models and with
the policy instruments assumed to be available,3 no analysis of optimal
policy proceeds by first averaging across models according to their fit to
data. The present paper has the potential to bridge that gulf and bring
research and practice closer together.

The paper considers a potentially very large and disparate range of
models and applies formal statistical evaluation to them. Models unsup-
ported either by the policy advisers on a priori grounds or by the data are
given little weight in the posterior density. The authors embed this sta-
tistical analysis in a decision-theoretic framework for policy evaluation
as a means of arriving at optimal policy rules in uncertain economic
environments.

The paper presents two extended empirical examples. The first is the
“backward-looking,” reduced-form monetary model of Glenn Rudebusch
and Lars Svensson,4 for which the authors compute the mapping from
weights in the policy loss function to parameters of the optimal Taylor
rule, after averaging across 25,600 variants of the model. Many of their
findings are close to Rudebusch and Svensson’s. Assuming that Rude-
busch and Svensson pretested their specification, the similarity of results
is not too surprising given that the present authors’ procedure assigns
small weights to ill-fitting models.

This example does not do justice to the richness of the authors’
approach, however. The variants of the models in the example are really
quite close to each other and hard to distinguish empirically. Moreover,
whether three or four lags of output enter the IS curve is not the kind of
uncertainty that makes policy discussions heated. Nor is it the type of
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uncertainty that is likely to lead to very bad policy choices based on the
wrong model.

Instead, the uncertainty that matters arises when, for example, one
adviser points to low inflation figures and a federal funds rate of 1 percent
to underscore worries about deflation, while another cites four consecu-
tive quarters of rapid M2 growth to argue that deflation is not even a
remote concern. The models behind each piece of advice differ dramati-
cally—probably by more than any two of the 25,600 models the authors
consider. But their methodology can in principle be applied to models that
differ greatly.

The authors’ second example uses cross-country growth regressions to
address the question of how tariffs affect growth. The authors consider
three levels of uncertainty—different growth theories, different empirical
proxies for the key variables in the theories, and different assumptions
about the heterogeneity of countries’ growth processes—in a total of
8,192 models. Even someone who regards growth regressions as reduced-
form specifications that cannot offer clear policy advice would find this
analysis fascinating. The authors show how policymakers with various
kinds of preferences would interpret and act on very different statistics.
An adviser must be sufficiently attuned to the policymaker’s preferences
to present evidence that speaks to the policymaker’s concerns. The exam-
ple also illustrates how an advocate of a particular policy choice can mine
the data to find evidence to persuade policymakers of that choice. 

These are important insights, and they are applicable to the current
monetary policy environment. To explain its May 2003 decision to leave
the federal funds rate unchanged, the FOMC said in its public statement
that “. . . the probability of an unwelcome substantial fall in inflation,
though minor, exceeds that of a pickup in inflation from its already low
level.”5 Even though FOMC members claim that deflation is extremely
unlikely, its ill effects are deemed sufficiently great that policymakers
adopted an asymmetric policy directive. This is a case where merely
reporting central tendencies, as policy advisers are wont to do, simply
would not address the policymakers’ concerns. 

Let me now turn to some possible extensions of the authors’ approach.
What this paper offers is a first step toward a practical framework for
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policy analysis. Before I would know how to take the framework into a
policy briefing, some further problems need to be worked out.

The first necessary extension involves identification. Both the exam-
ples that the authors present are reduced-form setups in which it is unclear
how to interpret the model-averaged results in terms of economic behav-
ior. It would be instructive to work out an example in which uncertainty is
concentrated in a set of “deep” parameters, π, describing preferences or
technologies. The prior distribution, p(π), over those parameters would
also represent the prior distribution over economic models. Reduced
forms would be indexed by π. One could then proceed with model aver-
aging and estimation to obtain the posterior density function. Model-
averaged results would then be clearly interpretable, because the posterior
distribution for π would be connected to well-defined economic behavior.

In this more detailed description of private behavior, one might want to
take a more symmetric position on the treatment of uncertainty. In the
present paper, policymakers are ignorant of the “true” model, whereas
private agents happily inhabit the truth. In a more symmetric treatment,
private agents might understand their local environment but be uncertain
about the aggregate laws of motion. At the same time, the policy authori-
ties would entertain a wide set of possible models, just as the authors
imagine.

A second important extension involves dynamics. Extending the
method to incorporate dynamics would serve several purposes. First, it
would allow policy evaluation to confront the Lucas critique head on.
This is generally important, but it seems particularly so for the kinds of
once-for-all policy choices discussed in this paper.

Second, dynamics allows the modeling of learning, by both the private
sector and the policy authority. Here two possibilities offer themselves.
On the one hand, it would seem that uncertainty might become less dif-
fuse over time, as additional data alter the posterior probabilities and,
therefore, policy rules and private decision rules. On the other hand, there
does not appear to be much evidence that this kind of convergence on
models actually takes place. The introduction of model innovation would
create a dynamic that prevents convergence and may generate interesting
dynamics in policy choices.

Third, dynamics might lead to a description of the authors’ approach
for ongoing policy analysis. Over time, as new policy problems arise and
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the economy changes, the set of relevant models will also change. How
can their approach evolve as, over time, policymakers apply it and private
agents react to its application?

Because they have focused on developing their methods, the authors
naturally did not confront some practical issues surrounding how to get
these methods into policy meetings. Several steps are involved in actually
using their methods. First, policymakers must buy into the notion of for-
malizing the analysis of model uncertainty. Although policy institutions
readily admit there is no single, universally accepted model of the econ-
omy, there is little evidence that those institutions embrace the idea of
juggling many, possibly quite different, representations of reality. The
closest central banks come to this is the presentation of alternative scenar-
ios in briefing materials. But these really represent alternative realizations
of exogenous shocks, or alternative paths of policy instruments, rather
than predictions from alternative economic structures. These alternative
scenarios capture one or two degrees of uncertainty, but not the funda-
mental uncertainty that concerns the authors.

Second, a policy adviser must get inside the policymaker’s head, to try
to discern the relevant loss function. This is a difficult task, because many
policymakers are reluctant to reveal their preferences or are simply unable
to articulate them. But without a clear understanding of the loss function,
the adviser cannot effectively address pertinent issues and present useful
analysis.

Third, there is the tricky question of how to present model-averaged
results. Story telling is a key aspect of policy advice. Compelling stories
get retold by policymakers when they argue their viewpoint before other
policymakers and the public. Model uncertainty muddies the waters and
can make the story underlying a policy recommendation murky and less
compelling. At present, I fear, the authors’ approach is too much of a
“black box” for policymakers to find it palatable. 

Although the authors have impressively shown that their approach can
handle a huge number of alternative models, for practical policy analysis
it is not obvious that this is the most productive way to proceed. Differ-
ences of opinion about the appropriate model usually concentrate on a
small handful of alternative structures. By narrowing the class of struc-
tures, the adviser can focus discussion on the fit and the implications of
each viewpoint, in the hope of narrowing the differences still more.
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Thomas J. Sargent: Appealing to statistical decision theories, William
Brock, Steven Durlauf, and Kenneth West recommend that econometric
analysis be thoroughly integrated with the policy evaluation process in
new ways. This is a two-way street. First, if it is to be used to evaluate
policy, econometric work should not be directed toward model selection
tests, because the small samples that economists typically must work with
do not allow one to choose among competing specifications with much
confidence. Instead, econometric work should strive accurately and force-
fully to present measures of doubt that properly account for the com-
ponents of ignorance due to ambivalence about alternative plausible
specifications. Second, quantitative policy evaluation exercises should
take account not only of parameter uncertainty but also of uncertainty
about model specifications. Thus a set of alternative specifications should
be on the table when policy proposals are analyzed. In what is a popular
mainstream macroeconomic tradition nowadays, researchers first “cali-
brate,” then solve for the optimal policy for a given set of parameters. In
such exercises the formal procedures that the authors advocate are not
being used, although limited forms of robustness analysis that check the
sensitivity of results to parameter values are often performed.

What, precisely, does one mean by model uncertainty? The authors do
a good job of formalizing two distinct possible meanings. The first is
methodologically the more conservative, because it is amenable to
business-as-usual Bayesian modeling. According to this definition, the
decisionmaker has in mind a sufficiently small set of alternative specifica-
tions to assign meaningful prior probabilities to them. After that prior is
taken into account, there really only remains a single model on the table
(remember that a model is a probability distribution over sequences of
outcomes, that is, a likelihood function). As Ramon Marimon puts it,1 a
Bayesian decisionmaker acts as if he or she knows the truth (that is, a
unique model) from day one.

But how should the decisionmaker proceed if he or she cannot put a
prior over a given set of models or, if forced to do so, can only name a set
or range of priors? And what if the decisionmaker cannot articulate a set
of models but instead can only describe one (or at most a small number),
but nevertheless views that model as an approximation to some unknown
data-generating mechanism that the decisionmaker cannot specify? These
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types of uncertainty about models do not fit neatly into the Bayesian
single-model framework. They present the decisionmaker with the need
somehow to act while acknowledging multiple possible models. Taking
seriously the notion that a model is an approximation (to what?) thus
seems to require leaving the Bayesian setting and embarking on a quest
for decision rules that are robust across a range of model specifications.
“Robust” rules here mean rules that “work well enough,” that is, that
assure some minimal acceptable level of performance regardless of the
data-generating mechanism. 

To investigate the performance of a decision across a set of models, we
are impelled to compute bounds. A good tool for doing that is, for a given
decision rule, to study the consequences of minimizing the decision-
maker’s objective function by pretending that one can choose the data-
generating mechanism from among the set of models under consideration.
It happens that robust decision rules can be attained using a minimax rule.
Confronted with model uncertainty, the decisionmaker invents a hypo-
thetical malevolent agent to guide the analysis of the fragility of a pro-
posed decision rule to model misspecification.

The authors give some simple examples that illustrate the types of
analysis they recommend. Partly reflecting their roots in classical statisti-
cal decision theory, their examples share two features: they refer to a sin-
gle decisionmaker facing an environment that is not explicitly populated
by other decisionmakers, and the decision problems and the competing
models are static. But to appreciate the rich substantial implications of the
methodological reforms that the authors advocate for existing macro-
economic theory and practice, one should look at multiple-agent dynamic
models.

When one begins to think about misspecification in the context of
dynamic macroeconomic models with multiple agents, one is immedi-
ately forced to reconsider rational expectations. For thirty years rational
expectations has been used to economize ruthlessly, like a communist, on
the number of models that in a multiple-agent setting must necessarily
reside within the model itself (because the decisionmakers themselves
have beliefs, that is, models). I say “like a communist” because, in a ratio-
nal expectations model, the diverse agents being modeled, the theorist,
and the econometrician are all forced by the theorist to share the same
model, that is, the same probability distribution over the sequence of out-
comes. They may have different information, but they agree about the
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model. Within a rational expectations model, decisionmakers neither
acknowledge nor fear model misspecification, nor should they. The
uniqueness of the model eliminates decisionmakers’ beliefs as free param-
eters (instead they become outcomes of the analysis) and is the source of
the powerful cross-equation restrictions exploited by rational expecta-
tions econometrics.

That uniqueness of models vanishes in the presence of multiple deci-
sionmakers who acknowledge model uncertainty. The challenge will be
to preserve some of the empirical power of rational expectations econo-
metrics in this situation. For example, in a macroeconomic model
designed to analyze fiscal policy, to which decisionmakers do we choose
to attribute model uncertainty? The government, understood as a Ramsey
planner? some of the consumers and firms within the model? everybody?
And if we choose to characterize model uncertainty by attributing sets of
models to different decisionmakers, how should we characterize each
decisionmaker’s knowledge about the sets of models that concern other
decisionmakers? Researchers have only begun to think about these chal-
lenging questions about modeling strategy. One approach has been to
attribute concerns about model misspecification only to the government
decisionmaker, and to regard the private agents as knowing a model.2

In an effort to retain as many of the advantages of rational expectations
as we can, Lars Hansen and I have taken another approach that we think
appropriately generalizes rational expectations to acknowledge wide-
spread model uncertainty.3 We impose on all agents a common approxi-
mating model, but we allow each decisionmaker to have his or her own
set of alternative models around that model.4 The common approximating
model has to incorporate the robust decision rules of the various decision-
makers who compose the economy.5 Although they share a common
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approximating model, the fact that decisionmakers have different pref-
erences means that their individual minimax calculations yield different
context-specific worst-case models. These differences partly reflect the
fact that, because their preferences differ, the various decisionmakers’
rules are fragile to different departures from the common approximating
model.

Even for a single decisionmaker, dynamic settings introduce significant
complications into the task of modeling uncertainty about model misspec-
ification in terms of sets of models. Some of the complications pertain to
technical issues about how the minimax decisionmaking of the static
model transfers to a dynamic setting, and in particular to whether the mini-
mization and maximization can each be decentralized over time so that the
decision problem can be rendered recursive. Here we are in luck, because
the dynamic decision problem is a zero-sum, two-player dynamic game
with substantial structure that, under a technical Bellman-Isaacs condi-
tion, renders the minimax problem recursive.

In dynamic applications it can be especially interesting to inspect the
worst-case model that accompanies a robust decision analysis. For a per-
manent income model, Hansen, Thomas Tallarini, and I show that the
consequence of a consumer’s concern about possible misspecification of
the stochastic process governing the components of his or her endowment
process is to generate a form of precautionary saving, because the most
troublesome and hard-to-self-insure-against misspecifications are at the
low-frequency components.6 The minimizing player cannot harm the
consumer by tampering with high-frequency components, because the per-
manent income model does such a good job of smoothing those compo-
nents. Therefore the minimizing agent puts the worst-case misspecification
at low frequencies, and the consumer recognizes and responds to this strat-
egy by saving more.

The unique model presumed by the Bayesian paradigm gives rise to a
complete and convenient theory of learning based on Bayes’ Law. Models
of model uncertainty that have the decisionmakers entertain multiple
models require modifying the Bayesian theory of learning. An active
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area of research investigates how to model learning in the presence of
multiple models, an issue that interacts in interesting ways with the time-
consistency issues just mentioned.7

Before concluding, I offer a digression about another kind of misspec-
ification, one for which we need better theorists, not better statistical
decision theories. The theory of self-confirming equilibria directs our
attention to a type of model misspecification that even unlimited amounts
of historical statistical evidence are powerless to correct. The problem is
that there are multiple observationally equivalent models, each of which
can have different policy implications. Essentially, these models have
identical likelihood functions, not over all conceivable events, but condi-
tional on events that occur “infinitely often” in equilibrium.8 Many
important disputes in macroeconomics have been about which of such
observationally equivalent models is better. One example is the dispute
over various expectational and nonexpectational Phillips curves at the
dawn of the process of bringing rational expectations into macroeconom-
ics. A second involves the choices about how to form vectors of inter-
pretable shocks from the correlated innovations recovered by a vector
autoregression (this is the process of creating a just identified vector
autoregression).

To conclude, the authors are tackling a difficult set of problems, which
over the years have challenged and defeated some brilliant minds. Their
quotation from Keynes is apt. It alludes to what is either a deep insight or
a theoretical pipe dream and sideshow, depending on whom you ask.
Keynes’s Treatise on Probability and Frank Knight’s Risk, Uncertainty,
and Profit told us that decisionmakers often must act in the face of a kind
of ignorance that cannot be described by the usual laws of probability;
Keynes and some other smart people told us that this is a big deal for
macroeconomics.9 But taking cues from Frank Ramsey’s paper “Truth
and Probability,” Leonard Savage elegantly proved Keynes wrong by
completing a line of work that culminated in Savage’s model of a ratio-
nal decisionmaker as a Bayesian.10 There is no sense in which Savage’s
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decisionmaker fears model misspecification. But, as the authors empha-
size, it may be that Daniel Ellsberg, and Itzhak Gilboa and David
Schmeidler,11 have taken the high ground from the Bayesians and put
fear of model misspecification at the center of statistical decisionmaking.

For macroeconomists of the last thirty years, these are unfamiliar and
challenging issues to think about. In our econometric practice and model
building, most of us have followed John Muth in equating objective and
subjective distributions, thereby conveniently eradicating any grounds for
controversy between “frequentist” and “subjectivist” interpretations of
probability, to say nothing of the more extensive distinctions that the
authors have asked us to consider.

General discussion: Christopher Sims took issue with Thomas Sargent’s
suggestion that the Bayesian approach had lost the high ground. Sargent
had mentioned two attacks on Savage’s approach to decision theory: the
Ellsberg paradox and the axiomatic system of Gilboa and Schmeidler.
Sims viewed the Ellsberg paradox as a failure of perfect computing by
people, not of the Bayesian description of optimal behavior. Following
the Bayesian program for decisionmaking is hard, and frequently it can-
not be followed exactly; people may react differently from what Bayesian
theory prescribes. The descriptive implication is that economists should
not assume that agents act like Bayesians with infinite computing capac-
ity. But with respect to normative behavior, Sims argued that a decision-
maker should strive to achieve the Bayesian goal, even if it is too difficult
to execute all Bayesian computations in real time. 

Sims noted that if the explanation of the Ellsberg paradox is limited
computing power, it does not suggest fundamental differences between
Savage’s approach and Knightian uncertainty. As a practical matter, it is
sometimes too hard to create a formal model that incorporates all sources
of uncertainty. However, this does not mean that there are two kinds of
uncertainty in the world, nor does it mean that the Bayesian approach can-
not in principle encompass Knightian uncertainty. Even where formulat-
ing a complete prior is impossible, it may be easy to see that a “robust”
analysis produces a result that can be justified by no prior, or only by
priors that are plainly unreasonable. In such a case, we should all agree
that the robust algorithm used to derive the result provides no basis for
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clinging to it. Sims believed that the justification for robust analyses, min-
imax approaches, and non-Bayesian approaches is limited computing
power, and not the existence of some—in his view not well defined—
concept of Knightian uncertainty that the Bayesian approach will never be
able to analyze. 

Thomas Sargent strongly disagreed with Sims on the interpretation of
the Ellsberg paradox. In Ellsberg’s experiment, under all priors but one, a
participant should have preferred the urn with the uncertain distribution,
and under the remaining prior the participant should have been indifferent
between the two urns. This choice problem should have been easy to
solve under Savage’s assumptions. Savage himself participated in the
experiment and did not behave as a Bayesian. Sargent also disagreed with
Sims’ view that Knightian uncertainty is not well defined. He noted that
Gilboa and Schmeidler provide a rigorous axiomatic description basis for
Knightian uncertainty. Sargent guessed that, without knowing the impli-
cations, Sims would consider the axioms put forward by Gilboa and
Schmeidler as just as satisfactory a description of a rational person’s
behavior as Savage’s. Although Gilboa and Schmeidler’s axioms are not
any more artificial than Savage’s, they are able to generate the behavior
seen in the Ellsberg experiments and justify a decisionmaker behaving as
a minimax optimizer. 

Sims responded that he was familiar with the Gilboa-Schmeidler
axioms and did not regard them as a basis for Knightian uncertainty. They
lead to decisions that can always be justified as based on some proba-
bilistic beliefs. They are therefore not completely unreasonable, yet they
are always subject to critique if they lead to decisions that can be justified
only by evidently unreasonable probabilistic beliefs. 

Sims stressed that, under the assumption of a finite model space, it is
crucial whether the true model is included in this space or not. The
authors argue that this is not important, since the analysis will eventually
put a probability of 1 on the best-fitting model. But the model in a collec-
tion of false models that fits best by a likelihood criterion need not lead to
the best decisions or to the smallest losses available from the collection of
models. These points are made in detail in work by Frank Schorfheide of
the University of Pennsylvania.

Sims also criticized labeling the pseudo-Bayesian approach as “fre-
quentist.” A frequentist insists that only the data be treated as random and
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given probabilities. The authors label their procedure frequentist even
though it also puts probabilities on models, given the data. Sims sug-
gested speaking of a “likelihood” perspective rather than a “frequentist”
perspective. 

Sims elaborated on the selection of priors for models. The paper does
not consider countable infinite sequences of models, which actually
underlie a lot of practical procedures, for example selecting the number of
lags to be used in dynamic models. If the data gave enough evidence in
favor of very long lags, models with long lags would be used, but gener-
ally models with fewer lags are used unless the data force one to do other-
wise. This procedure can be rationalized by thinking of it as working with
countable collections of models with different numbers of lags, and with a
prior probability distribution over the collection of models. The Bayesian
approach then rationalizes the procedure of working with smaller models
unless the data strongly favor larger ones. 

Sims questioned the proposed principle that a priori, for scientific
reporting, one should always assign high probability to regions where the
likelihood function is large. He illustrated this point by citing the exam-
ples of seemingly unrelated regressions and simultaneous equations mod-
els; in such models the likelihood function can be unbounded from above.
When the number of equations is large, even when the usual measure of
“degrees of freedom” is substantial, there may be an unbounded peak in
the likelihood associated with a reduced-form residual covariance matrix
that is singular. In this situation the likelihood will be well behaved
around the finite peak near the ordinary least squares estimates of the
reduced form, and the infinite peak is not interesting. In these situations a
prior that assigns zero weight to the subset of the parameter space defined
by the singularities is usually a good idea, even though this rules out a
region with high likelihood.

Sims found the other two rules for selecting priors cited by the authors
to be very reasonable for the scientific reporting problem. One should
keep in mind that the econometrician is usually not making decisions
directly, but rather reporting results of data analysis to an audience of
interested people with differing views. The role of the prior is then only to
assist in reporting the likelihood shape. Different readers of the report will
apply their own priors in reaching decisions. However, if an econometri-
cian reports directly to a decisionmaker who has to make a decision
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immediately, the principles associated with picking a prior should change.
In this case the priors should reflect beliefs from all available sources of
information, including those outside the observed data. 

William Brainard applauded the authors’ adoption of a decision-
theoretic approach that recognizes the wide variety of candidate models
and emphasizes the need to focus on the probability distribution of out-
comes conditional on policy rather than only on statistical testing per se.
But he felt that the usefulness of model averaging depended on the con-
text. A policy recommendation based on performance averaged over a
large number of models is not likely to be persuasive to a policymaker,
nor are summary statistics about the performance of different policies
across models sufficient. Policymakers have their own priors about the
plausibility of models. In such situations it is important that the policy-
maker have some understanding of the alternative ways of looking at a
problem and their differing implications for policy, as well as some sense
of what the data suggest as their relative likelihoods. One needs to present
a limited hierarchy of models capturing the most important alternative
views of the world rather than a single policy recommendation based on
performance over a large number of models. 

Michael Woodford also congratulated the authors on addressing an
important problem and making considerable progress toward solving it.
However, he agreed with Eric Leeper on the need to move beyond the
static concept of policy choice. In the monetary policy example, the role
of the policymaker is to choose the coefficients for the Taylor rule once
and for all. Hence the analysis relies on asymptotic criteria. Short-term
objectives are given relatively little consideration; rather the goal is to
minimize the variability of output, inflation, and interest rates on the
assumption that the chosen system is run forever. However, policy-
makers, appropriately, are not worried that a policy might produce insta-
bility in the long run, because adjustments are always possible if they
become necessary. It is nevertheless not trivial to distinguish between
risks that can be easily addressed in the long run, and policies that can be
corrected only with considerable costs. Woodford suggested that the
authors investigate this central issue further.
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